Submitted:
29 December 2023
Posted:
03 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experimental procedures
2.1. Sample preparation
- (i)
- The base material employed are polyurethane foams being commercially available. These foams then set the porosity of the final superconducting foam. The base foam is then filled with a slurry of Y-211 powder, dissolved in a mixture of polyvinylalcohol (PVA) and demineralized O. A ceramic Y-211 foam is obtained by slow heating at 50 K/h to 600 °C and dwelling for 6 h. In this step, the organic materials, PVA and polyurethane, are fully burnt off. To further compact the Y-211 ceramic, the foam is heated to 1150 °C with 100 K/h and kept there for 10 h.
- (ii)
- In the second step, the ”green” Y-211 foam is transformed into the YBCO superconductor adopting the infiltration growth process [9,10]. Here, a Nd-123 seed crystal placed on top induces an overall texture to the foam sample. As liquid source, a pellet consisting of a 1:1 mixture of Ba- and Cu- oxides (nominal stoichiometry of ) and extra Y-123 powder is located below the Y-211 foam. A temperature above the eutectic temperature (1010 °C) is applied causing the liquid phase to infiltrate the 211 foam by capillary action [21]. Finally, in a slow-cooling process the Y-211 foam is completely transformed to the Y-123 phase, which is also accomplishing the necessary oxygen uptake.
2.2. Microstructure analysis
2.3. Resistance measurements
2.4. Excess conductivity
3. Results and discussion
3.1. Microstructure
3.2. Resistance measurements
3.3. Excess conductivity
3.4. Discussion
- The microstructure of the YBCO foam struts is distinctly different from both polycrystalline and melt-textured bulks. An overall texture was introduced by means of a seed crystal, but the local microstructure of an individual foam strut depends on its orientation in the original foam sample. Furthermore, there is not a true single-grain configuration as GBs between YBCO grains prevail, which are filled up with nanometer-sized, tiny Y-211 particles.
- The YBCO foam struts exhibit the presence of particles on the sample surface, left over from the capillary flow of the liquid phase during the IG processing.
- The microstructure investigation performed on the foam struts reveals several possibilities to further improve the current flow and hence, the critical current density.
- The resistance measurements reveal a relatively high of 101.5 K at zero field, a quite sharp superconducting transition followed by a broad foot close to .
- In applied magnetic fields at 3 T and above, a clear kink appears in leading to a double-peak structure in the d/dT-plot. This double-peak structure ( and ) is due to the formation of a long-range superconducting state at lower temperatures involving zero resistivity achieved via a percolation-like process.
- The FIC analysis reveals the presence of all five possible fluctuation regimes which can be clearly distinguished.
- The width of the 1D regime is found to decrease on increasing the applied magnetic field, reflecting a destabilization of the conducting charge strips in the YBCO foam strut with magnetic field application [15].
- The width of the 2D fluctuation regime increases while the width of the 3D regime shrinks on increasing the applied magnetic field.
- The coupling strength, J, between the planes is almost field-independent as .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- E. S. Reddy, G. J. Schmitz, Superconducting foams. Supercond. Sci. Technol. 15 (2002): L21-L24. [CrossRef]
- J. G. Noudem, Developing of shaping textured superconductors. J. Supercond. 24 (2011): 105-110. [CrossRef]
- M. R. Koblischka, S. Pavan Kumar Naik, A. Koblischka-Veneva, M. Murakami, D. Gokhfeld, E. S. Reddy, G. J. Schmitz, Superconducting YBCO Foams as Trapped Field Magnets. Materials 12 (2019): 853. [CrossRef]
- M. R. Koblischka, A. Koblischka-Veneva, D. Gokhfeld, S. Pavan Kumar Naik, Q. Nouailhetas , K. Berger, B. Douine, Flux Pinning Docking Interfaces in Satellites Using Superconducting Foams as Trapped Field Magnets. IEEE Trans. Appl. Supercond. 32 (2022): 4900105. [CrossRef]
- M. R. Koblischka, A. Koblischka-Veneva, Porous high-Tc superconductors and their applications. AIMS Material Sci. 5 (2018): 1199-1213. [CrossRef]
- Gokhfeld, D.; Koblischka, M. R.; Koblischka-Veneva, A., ВЫСОКОПОРИСТЫЕ СВЕРХПРОВОДНИКИ: СИНТЕЗ, ИССЛЕДОВАНИЯ И ПЕРСПЕКТИВЫ. Fizikia Metalov i Metalovidenie 2020, 121, 1026-1038 (in Russian); Gokhfeld, D.; Koblischka, M. R.; Koblischka-Veneva, A., Highly Porous Superconductors: Synthesis, Research, and Prospects. Physics of Metals and Metallography 2020, 121, 936–948 (English translation).
- E. S. Reddy, G. J. Schmitz, Ceramic foams. Am. Ceram. Soc. Bull. 81 (2003): 35-37.
- E. S. Reddy, M. Herweg, G. J. Schmitz, Processing of Y2BaCuO5 foams. Supercond. Sci. Technol. 16 (2003): 608-612. [CrossRef]
- K. Iida, N. Hari Babu, Y. Shi, D. A. Cardwell, Seeded infiltration and growth of large, single domain Y-Ba-Cu-O bulk superconductors with very high critical current densities. Supercond. Sci. Technol. 18 (2005): 1421-1427. [CrossRef]
- S. P. K. Naik, V. Seshu Bai, Role of nano and micron-sized inclusions on the oxygen controlled preform optimized infiltration growth processed YBCO superconductors. J. Phys. Chem. Solids 101 (2017): 65-73. [CrossRef]
- N. Devendra Kumar, Y. Shi, D. A. Cardwell, Fabrication of bulk (RE)BCO superconductors by the infiltration and growth process: past, present and future Superconductivity Applications Today and Tomorrow ed M Muralidhar (New York: Nova Science Publishers, 2016) chapter 1, pp. 1-35.
- M. R. Koblischka, A. Koblischka-Veneva, E. S. Reddy, G. J. Schmitz, Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD. J. Adv. Ceram. 3 (2014): 317-325. [CrossRef]
- M. R. Koblischka, A. Koblischka-Veneva, Q. Nouailhetas, G. Hajiri, K. Berger, B. Douine, D. Gokhfeld, Microstructural Parameters for Modelling of Superconducting Foams. Materials 15 (2022): 2303. [CrossRef]
- M. R. Koblischka, A. Koblischka-Veneva, K. Berger, Q. Nouailhetas, B. Douine, E. S. Reddy, G. J. Schmitz, Current flow and flux pinning properties of YBCO foam struts. IEEE Trans. Appl. Supercond. 29 (2019): 8001405. [CrossRef]
- E. Hannachi, Y. Slimani, M.K. Ben Salem, A. Hamrita, A.L. Al-Otaibi, M. A. Almessiere, M. Ben Salem, F. Ben Azzouz, Fluctuation induced conductivity studies in YBa2Cu3Oy compound embedded by superconducting nano-particles Y-deficient YBa2Cu3Oy: effect of silver inclusion. Indian J. Phys. 90 (2016): 1009–1018. [CrossRef]
- L.G. Aslamazov, A.L. Larkin, The influence of fluctuation pairing of electrons on the conductivity of normal metal, Phys. Lett. A 26 (1968): 238-252. [CrossRef]
- W. E. Lawrence, S. Doniach, in: Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, Japan, ed. E. Kanda, Tokyo, 1970.
- K. Maki and R. S. Thompson, Fluctuation conductivity of high-Tc superconductors. Phys. Rev. B 39 (1989): 2767-2771. [CrossRef]
- A. Larkin, A. Varlamov, Fluctuation Phenomena in Superconductors. Oxford University Press, Oxford, U.K., 2005.
- P. K. Nayak, S. Ravi, Excess conductivity and magneto-conductivity studies in pure and Ag-doped (La1-xYx)2Ba2CaCu5Oz superconductors. Supercond. Sci. Technol. 19 (2006): 1209. [CrossRef]
- E. S. Reddy, T. Rajasekharan, Fabrication of textured REBa2Cu3O7/RE2BaCuO5 (RE=Y,Gd) composites by infiltration and growth of RE2BaCuO5 preforms by liquid phases. Supercond. Sci. Technol. 11 (1998): 523-534. [CrossRef]
- M. R. Koblischka, A. Koblischka-Veneva, Applications of the electron backscatter diffraction technique to ceramic materials. Phase Trans. 86 (2013): 651-660. [CrossRef]
- TexSEM Laboratories (TSL) 2015 Orientation Imaging Microscopy Software V7.2, User Manual, TexSEM laboratories, (TSL), Draper, UT, USA.
- L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer Science: Berlin, Heidelberg (1985).
- Keyence Corp. Optical Microscopes. Available online: https://www.keyence.com/products/microscope/digital-microscope/ vhx-7000/ (accessed on 31 January 2022).
- M. R. Koblischka, M. Winter, A. Hu, M. Murakami, U. Hartmann, Stripe and Criss-Cross Patterns in High-Tc Superconductors Revealed by Atomic Force Microscopy and Scanning Tunnelling Microscopy. Jpn. J. Appl. Phys. 45, No. 3B (2006): 2259–2263. [CrossRef]
- S.P.K. Naik, R. Hagiwara, S. Ishibashi, N. Asano, H. Ogino, S. Ishida, M.R. Koblischka, A. Koblischka-Veneva, Y. Tsuchiya, K. Kawashima, H. Eisaki, T. Nishio, Investigation of high-energy ultrasonication of RE2BaCuO5 (RE = Y, Gd) on the growth and superconducting properties of REBa2Cu3O7-δ top-seeded melt textured bulks. Supercond. Sci. Technol. 35 (2022): 074003. [CrossRef]
- E. V. Petrenko, L. V. Omelchenko, Yu. A. Kolesnichenko, N. V. Shytov, K. Rogacki, D. M. Sergeyev, A. L. Solovjov, Study of fluctuation conductivity in YBa2Cu3O7-δ films in strong magnetic fields. Low Temp. Phys. 47, no. 12 (2021): 1050-1057. [CrossRef]
- M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, A study on magnetoresistivity, activation energy, irreversibility and upper critical field of slightly Mn added Bi-2223 superconductor ceramics. J. Supercond. Nov. Magn. 25, no. 4 (2012): 961-968. [CrossRef]
- A.K. Pradhan, M. Muralidhar, M.R. Koblischka, M. Murakami, K. Nakao, N. Koshizuka, Evidence of strong flux pinning in melt-processed ternary (Nd–Eu–Gd)Ba2Cu3Oy superconductors. Appl. Phys. Lett. 75, no. 2 (1999): 253–255. [CrossRef]
- A.K. Pradhan, M. Muralidhar, M.R. Koblischka, M. Murakami, K. Nakao, N. Koshizuka, Flux pinning in melt-processed ternary (Nd–Eu–Gd)Ba2Cu3Oy superconductors with Gd2BaCuO5 addition. J. Appl. Phys. 86, no. 10 (1999); 5705–5711. [CrossRef]
- E. Nazarova, N. Balchev, K. Nenkov, K. Buchkov, D. Kovacheva, A. Zahariev, G. Fuchs, Transport and pinning properties of Ag-doped FeSe0.94. Supercond. Sci. Technol. 28, no. 2 (2015): 025013. [CrossRef]
- W. M. Woch, M. Kowalik, M. Giebułtowski, R. Zalecki, A. Szeliga, J. Przewoźnik, Cz. Kapusta, Magnetoresistance, irreversibility fields, and critical currents of superconducting 2G tape. J. Supercond. Nov. Magn. 30, no. 3 (2017): 569-574. [CrossRef]
- F. Rullier-Albenque, H. Alloul, G. L. J. A. Rikken, High-field studies of superconducting fluctuations in high-Tc cuprates: Evidence for a small gap distinct from the large pseudogap. Phys. Rev. B 84, no. 1 (2011): 014522. [CrossRef]
- Y. Slimani, E. Hannachi, M. K. Ben Salem, A. Hamrita, M. Ben Salem, F. Ben Azzouz, Excess conductivity study in nano-CoFe2O4-added YBa2Cu3O7-δ and Y3Ba5Cu8O18 superconductors. J. Supercond. Nov. Magn. 28, no. 10 (2015): 3001-3010. [CrossRef]
- L.G. Aslamazov, A. I. Larkin. Effect of fluctuations on the properties of a superconductor above the critical temperature. In 30 Years Of The Landau Institute—Selected Papers, pp. 23-28. 1996.
- J. R. Rojas, A. R. Jurelo, R. Menegotto Costa, L. Mendonça Ferreira, P. Pureur, M. T. D. Orlando, P. Prieto, G. Nieva. Fluctuation conductivity and the dynamical universality class of the superconducting transition in the high-Tc cuprates. Physica C: Superconductivity 341 (2000): 1911-1912. [CrossRef]
- P. A. Mayorga, D. A. Téllez, Q. Madueno, J. E. Alfonso, J. Roa-Rojas, Conductivity fluctuation of YBa2Cu3O7-δ/Sr2YSbO6/SrTiO3 thin films. Brazil. J. Phys. 36 (2006): 1084-1087.
- E. Hannachi, Y. Slimani, A. H. M. E. T. Ekicibil, A. Manikandan, F. Ben Azzouz, Excess conductivity and AC susceptibility studies of Y-123 superconductor added with TiO2 nano-wires. Mat. Chem. Phys. 235 (2019): 121721. [CrossRef]
- P. C. Hohenberg, B. I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49 (1977): 435-479. [CrossRef]
- R. Menegotto Costa, P. Pureur, M. Gusmao, S. Senoussi, K. Behnia, Scaling beyond 3D- XY in the fluctuation conductivity of YBa2Cu3O7-y Solid State Commun. 113 (2000): 23-27. [CrossRef]
- M. Sahoo, D. Behera, Inhomogeneity Induced Conductivity Fluctuation in YBa2Cu3O7-y/Cr2O3 Composite. J. Supercond. Nov. Magn. 26, no. 10 (2013): 3017-3025. [CrossRef]
- F.M. Barros, P. Pureur, J. Schaf, F. W. Fabris, V. N. Vieira, A. R. Jurelo, M. P. Cantao, Unconventional superconducting granularity of the Y(1-x)PrxBa2Cu3O7-δ compound. Phys. Rev. B 73, no. 9 (2006): 094515. [CrossRef]
- E. Hannachi, Y. Slimani, M.K. Ben Salem, A. Hamrita, D. K. Mani, M. Ben Salem, F. Ben Azzouz, Magneto-conductivity fluctuation in YBCO prepared by sintering of ball-milled precursor powder. Mat. Chem. Phys. 159 (2015): 185-193. [CrossRef]
- Y.A. Opata, A.R. Kurelo, L.B. De Leite, G. Pinheiro, P. Rodrigues, A.R. Jurelo, E.C. Siqueira, Fluctuation-Induced Conductivity of Polycrystalline Er(1-x)CexBa2Cu3O7-δ Superconductor. Mod. Phys. Lett. B 25, no. 20 (2011): 1671-1681.
- Y. Slimani, Excess conductivity investigations of WO3 nanowires added to YBa2Cu3O7-δ superconductor. J. Mater. Sci.: Mater. Electron. 31, no. 4 (2020): 3023-3034. [CrossRef]
- Y. Slimani, E. Hannachi, M. K. Ben Salem, A. Hamrita, M. Ben Salem, F. Ben Azzouz. Excess conductivity study in nano-CoFe2O4-added YBa2Cu3O7-δ and Y3Ba5Cu8O18±δ superconductors. J. Supercond. Nov. Magn. 28, no. 10 (2015): 3001-3010. [CrossRef]
- Abou El Hassan, Ahmed, Abdelaziz Labrag, Ahmed Taoufik, Mustapha Bghour, Hassan El Ouaddi, Ahmed Tirbiyine, Brahim Lmouden, Abdelhalim Hafid, Habiba El Hamidi. Magnetic Penetration Depth and Coherence Length in a Single-Crystal YBa2Cu3O7-δ. Phys. stat. sol. (b) 258, no. 11 (2021): 2100292. [CrossRef]
- S. Subhasis, D.K. Namburi, S. D. Das, T. K. Nath. Magnetic field-dependent study of excess conductivity and pseudogap state of single grain GdBa2Cu3O7-δ superconductor. Appl. Phys. A 128, no. 6 (2022): 1-12. [CrossRef]
- A. L. Solovjov, L. V. Omelchenko, E. V. Petrenko, R. V. Vovk, V. V. Khotkevych, A. Chroneos. Peculiarities of pseudogap in Y0.95Pr0-06Ba2Cu3O7-δsingle crystals under pressure up to 1.7 GPa. Sci. Rep. 9, no. 1 (2019): 1-16. [CrossRef]
- Y. Slimani, E. Hannachi, A. Hamrita, M.K. Ben Salem, F. Ben Azzouz, A. Manikandan, M. Ben Salem, Comparative investigation of the ball milling role against hand grinding on microstructure, transport and pinning properties of Y3Ba5Cu8O18±δ and YBa2Cu3O7-δ. Ceram. Int. 44, (2018) 19950-19957. [CrossRef]
- M.A. Almessiere, E. Hannachi, Y. Slimani, Ghulam Yasin, M. Mumtaz, M. R. Koblischka, A. Koblischka-Veneva, A. Manikandan, A. Baykal, Dimensionality and superconducting parameters of YBa2Cu3O7-δ/(WO3 NPs)x composites deduced from excess conductivity analysis. Mater. Chem. Phys. 243, (2020) 122665. [CrossRef]
- A. Sedky, E. Nazarova, K. Nenkov, K. Buchkov, A comparative study between electro and magneto excess conductivities in FeTeSe superconductors. J. Supercond. Nov. Magn. 30, no. 10 (2017): 2751-2762. [CrossRef]
- A.M. Ali, A. Sedky, H. Algarni, M.A. Sayed, Argon annealing and oxygen purity affect structural and critical parameters of YBCO copper oxide system. J. Low Temp Phys. 197 (2019): 445-457. [CrossRef]
- E. Hannachi, Y. Slimani, F.O. Al-qwairi, M.A. Almessiere, F. Ben Azzouz, Comparative study of thermal fluctuation induced conductivity in YBa2Cu3O7-δ containing Nano-Zn0.95Mn0.05O and Nano-Al2O3 particles. Solid State Sciences 105 (2020): 106264. [CrossRef]
- B. Sahoo, D. Behera, Investigation of superconducting and elastic parameters of YBCO/LSMO thick films. J. Mater. Sci.: Mater. in Electron. 30 (2019): 12992-13004. [CrossRef]





for the critical regime (CR), by
for 3D fluctuations,
for 2D fluctuations,
for 1D fluctuations and
for the SWF regime.
for the critical regime (CR), by
for 3D fluctuations,
for 2D fluctuations,
for 1D fluctuations and
for the SWF regime.



| (T) | (K) | (K) | (m cm) | (K) | (K) | (K) | (K) | (K) | (K) |
| 0 | 90.16 | 101.5 | 0.429 | 96.26 | – | 96.9 | 103.10 | 108.79 | 119.67 |
| 1 | 88.01 | 99.47 | 0.405 | 92.86 | – | 95.02 | 100.65 | 107.51 | 117.38 |
| 3 | 84.14 | 96.03 | 0.3789 | 91.85 | 90.60 | 93.66 | 98.09 | 106.95 | 117.27 |
| 5 | 82.42 | 94.85 | 0.3770 | 91.82 | 89.29 | 93.27 | 97.29 | 107.48 | 116.31 |
| 7 | 80.79 | 94.08 | 0.3748 | 90.64 | 87.66 | 92.21 | 96.54 | 106.82 | 115.35 |
| (T) | |||||
| 0 | 0.32 | 0.51 | 0.95 | 1.50 | 2.95 |
| 1 | 0.34 | 0.48 | 0.96 | 1.55 | 3.05 |
| 3 | 0.30 | 0.49 | 0.94 | 1.54 | 2.97 |
| 5 | 0.21 | 0.48 | 0.95 | 1.45 | 3.02 |
| 7 | 0.23 | 0.48 | 0.95 | 1.50 | 3.01 |
| Material | (A/) | reference |
| YBCO foam | 125430 | present work |
| Oxygenated and argon annealed YBCO | 1390 | [54] |
| YBCO polycrystal (solid state reaction) | 89340 | [39] |
| Ball milled YBCO | 130380 | [15] |
| Polycrystalline YBCO/O | 170000 | [55] |
| Polycrystalline YBCO/ | 318560 | [55] |
| YBCO thick film | 350000 | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
