Submitted:
05 January 2024
Posted:
08 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
A. Background
B. Purpose of the Literature Review
2. Materials and Methods
3. Results
A. Significance of Soybean Quality Evaluation
B. Relevance of Electronic Nose Technology
C. Fundamental Parameters Influencing Soybean Quality
D. Principles of Electronic Nose Technology

E. Impact of Electronic Nose On Soybean Quality Assessment
4. Discussion
Accuracy of Electronic Nose:
Precision of Electronic Nose:
5. Conclusions
References
- Scudellari, M. (2023, June 15). Meet the E-nose that actually sniffs. IEEE Spectrum. https://spectrum.ieee.org/meet-the-enose-that-actually-sniffs.
- Wilson, A. D. (2013, February 8). Diverse applications of electronic-nose technologies in agriculture and Forestry. Sensors (Basel, Switzerland). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649433/. [CrossRef]
- Pontecorvo, A.J. and Bourne, M.C. (1978). Simple methods for extending the shelf life of soy curd (tofu) in tropical areas. J. Food Sci., 43, 969-972. [CrossRef]
- Shurtleff, W. and Aoyagi, A. (1983). “The book of Tofu”. Ten Speed Press, Berkeley, CA.
- Ananchaipattana, C. et al. (2012). Bacterial Contamination of Soybean Curd (Tofu) Sold in Thailand. Food Sci. Technol. Res. 2012. [Google Scholar] [CrossRef]
- Foudad, K. & Hegeman, G. (1993). Microbial Spoilage of Tofu (Soybean Curd). Journal of Food Protection, Vol. 56, No. 2, Pages 1.
- Aulisio, C. C. G., J. T. Stanfield, S. D. Weagant, and W. E. Hill. 1983. Yersinosis associated with tofu consumption: serological, biochemical and pathogenicity studies of Yersinia enterocolitica isolates. J. Food Prot. 46:226-230. [CrossRef]
- Lee, L. A., S. M. Ostroff, H. B. McGee, D. R. Johnson, F. P. Downes, D. N. Cameron, N. H. Bean, and P. M. Griffin. 1991. An outbreak of shigellosis at an outdoor music festival. Am. J. Epidemiol. 133:608-615. [CrossRef]
- Kovats, S. K., M. P. Doyle, and N. Tanaka. 1984. Evaluation of the microbiological safety of tofu. I. Food Prot. 47:618-622. [CrossRef]
- Chatterjee, A. & Abraham, J. (2018). Microbial Contamination, Prevention, and Early Detection in the Food Industry. Science direct. Retrieved from https://www.sciencedirect.
- Lin, H. , et al., (2022, ). Lightweight Residual Convolutional Neural Network for Soybean Classification Combined With Electronic Nose.IEEE Sensors Journal. Retrieved from https://ieeexplore.ieee.org/document/9772641? [CrossRef]
- Yu, S. ,Huang, X., Wang, L.,Ren, Y.,Zhang, X., & Wang,Y.(2022) Characterization of selected Chinese soybean paste based on flavor profiles using HS-SPME-GC/MS, E-nose and E-tongue combined with chemo metrics. Science Direct. Retrieved from https://www.sciencedirect. 0308. [Google Scholar]
- Jia, S. , et al. (2021).Effects of roasting level on physicochemical, sensory, and volatile profiles of soybeans using electronic nose and HS-SPME-GC–MS.Elsevier. Retrieved from https://www.sciencedirect. 0308. [Google Scholar]
- Park, S.W.; Lee, S.J.; Sim, Y.S.; Choi, J.Y.; Park, E.Y.; Noh, B.S. Analysis of ethanol in soy sauce using an electronic nose for halal food certification. Food Sci. Biotechnology. 2017, 26, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Jessika, P.; Thanga Leela, S.; Sivamaruthi, B.S.; Bharathi, M.; Chaiyasut, C. Fermented foods and their role in respiratory health: A mini-review. Fermentation 2022, 8, 162. [Google Scholar] [CrossRef]
- Buck, L.; Axel, R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s chemical signatures in human olfaction: A foodborne perspective for future biotechnology. Angew. Chem. Int. Ed. 2014, 53, 7124–7143. [Google Scholar] [CrossRef] [PubMed]
- Bushdid, C.; Magnasco, M.O.; Vosshall, L.B.; Keller, A. Humans can discriminate more than 1 trillion olfactory stimuli. Science 2014, 343, 1370–1372. [Google Scholar] [CrossRef] [PubMed]
- Calvi, E.; Quassolo, U.; Massaia, M.; Scandurra, A.; D’Aniello, B.; D’Amelio, P. The scent of emotions: A systematic review of human intra- and interspecific chemical communication of emotions. Brain Behav. 2020, 10, e01585. [Google Scholar] [CrossRef] [PubMed]
- Vieillard, S.; Ronat, L.; Baccarani, A.; Schaal, B.; Baudouin, J.Y.; Brochard, R. Age differences in olfactory affective responses: Evidence for a positivity effect and an emotional dedifferentiation. Aging Neuropsychol. Cogn. 2021. [CrossRef] [PubMed]
- Md Noh, M.F.; Gunasegavan, R.D.N.; Khalid, N.M.; Balasubramaniam, V.; Mustar, S.; Rashed, A.A. Recent techniques in nutrient analysis for food composition databases. Molecules 2020, 25, 4567. [Google Scholar] [CrossRef] [PubMed]
- Mihafu, F.D.; Issa, J.Y.; Kamiyango, M.W. Implication of sensory evaluation and quality assessment in food product development: A review. Curr. Res. Nutr. Food Sci. 2020, 8, 690–702. [Google Scholar] [CrossRef]
- Xu M, Wang J, Zhu L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chem. (2019) 289:482–9. [CrossRef]
- Du H, Chen Q, Liu Q, Wang Y, Kong B. Evaluation of flavor characteristics of bacon smoked with different woodchips by HS-SPME-GC-MS combined with an electronic tongue and electronic nose. Meat Sci. (2021) 182:108626. [CrossRef]
- Xu M, Wang J, Zhu L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chem. (2019) 289:482–9. [CrossRef]
- Drake, M.A. Encyclopedia of Dairy Sciences, 3rd ed.; Elsevier Science: Cambridge, MA, USA, 2022. [Google Scholar]
- Ma, R., et. al.(2023). Combining e-nose and e-tongue for improved recognition of instant starch noodles seasonings. Frontiers. Retrieved from https://www.frontiersin.org/articles/10.3389/fnut.2022. [CrossRef]
- A. Feyzioglu and Y. S. Taspinar, “Beef Quality Classification with Reduced E-Nose Data Features According to Beef Cut Types,” Sensors, vol. 23, no. 4, p. 2222, Feb. 2023. [CrossRef]
- H. Li et al., “Prediction of the freshness of horse mackerel (Trachurus japonicus) using E-nose, E-tongue,and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish,” FoodChem, vol. 402, p. 134325, Feb. 2023. [CrossRef]
- S. Limbo, L. S. Limbo, L. Torri, N. Sinelli, L. Franzetti, and E. Casiraghi, “Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures,” Meat Sci, vol. 84, no. 1, pp. 129 – 136, Jan. 2010. [Google Scholar] [CrossRef]
- Z. Haddi et al., “Discrimination and identification of geographical origin virgin olive oil by an e-nose based on MOS sensors and pattern recognition techniques,” Procedia Eng, vol. 25, pp. 1137. [CrossRef]
- R. Sarno, K. Triyana, S. I. Sabilla, D. R. Wijaya, D. Sunaryono, and C. Fatichah, “Detecting PorkAdulteration in Beef for Halal Authentication Using an Optimized Electronic Nose System,” IEEE Access, vol. 8, pp. 221700 – 22 1711, 2020. [CrossRef]
- H. Yu, J. H. Yu, J. Wang, H. Xiao, and M. Liu, “Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals,”Sens Actuators B Chem, vol. 140, no. 2, pp. 378 – 382, Jul. 2009. [Google Scholar] [CrossRef]
- K. K. Pulluri and V. N. Kumar, “Development of an Integrated Soft E-Nose for Food Quality Assessment,” IEEE Sens J, vol. 22, no. 15, pp. 15111 – 15122, Aug. 2022. [CrossRef]
- K. K.Pulluri and V. N. Kumar, “Wine Quality Assessment using Electronic Nose,” in 2021 Asian Conference on Innovation in Technology (ASIANCON), Aug. 2021, pp. 5. [CrossRef]
- S. A. Laga and R. Sarno, “Temperature effect of electronic nose sampling for classifying mixture of beefand pork,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 3, p. 1626,Sep. 2020. [CrossRef]
- Y. Thazin, T. Y. Thazin, T. Eamsa-Ard, T. Pobkrut, and T. Kerdcharoen, “Formalin Adulteration Detection in Food Using E-nose based on Nanocomposite Gas Sensors,” in 2019 IEEE International Conference onConsumer Electronics - Asia (ICCE-Asia), Jun. 2019, pp. 67. [CrossRef]
- C. Huang and Y. Gu, “A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose,” Foods, vol. 11, no. 4, p. 602, Feb. 2022. [CrossRef]
- R. Anzivino et al., “The Role of a Polymer -Based E-Nose in the Detection of Head and Neck Cancer From Exhaled Breath,”Sensors, vol. 22, no. 17, p. 6485, Aug. 2022. [CrossRef]
- B. Ahmad, U. A. B. Ahmad, U. A. Ashfaq, M. S. Masoud, N. Nahid, M. Tariq, and M. Qasim, “E-nose-based technology for healthcare,” in Nanotechnology-Based E-noses, 2023, pp. [CrossRef]
- Hee, Y. , et al. (2022). Comparison of a descriptive analysis and instrumental measurements (electronic nose and electronic tongue) for the sensory profiling of Korean fermented soybean paste (doenjang).Wiley. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/joss. 1228. [Google Scholar]
- Li Yan, Li Fangfang, Yu Linhong, Sun Jingxin, Guo Liping, Dai Aiguo, Wang Baowei, Huang Ming, Xu Xinglian. Separate and combined detection of minced chicken meat adulterated with soy protein or starch using electronic nose and electronic tongue. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 309-316. [CrossRef]
- Ravi, R.; Taheri, A.; Khandekar, D.; Millas, R. Rapid Profiling of Soybean Aromatic Compounds Using Electronic Nose. Biosensors 2019, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Boué, S.M.; Shih, B.Y.; Carter-Wientjes, C.H.; Cleveland, T.E. Identification of Volatile Compounds in Soybean at Various Developmental Stages Using Solid Phase Microextraction. J. Agric. Food Chem. 2003, 51, 4873–4876. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Kumazawa, K.; Nishimura, O. Studies on the Key Aroma Compounds in Soy Milk Made from Three Different Soybean Cultivars. J. Agric. Food Chem. 2011, 59, 12204–12209. [Google Scholar] [CrossRef] [PubMed]
- Dias, T.; Santos, V.S.; Zorgani, T.; Ferreiro, N.; Rodrigues, A.I.; Zaghdoudi, K.; Veloso, A.C.A.; Peres, A.M. A Lab-Made E-Nose-MOS Device for Assessing the Bacterial Growth in a Solid Culture Medium. Biosensors 2023, 13, 19. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. J. Food Sci. Technol. 2020, 57, 1977–1990. [Google Scholar] [CrossRef] [PubMed]
- Thorn, R.M.S.; Reynolds, D.M.; Greenman, J. Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J. Microbiol. Meth. 2011, 84, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Bos, L.D.J.; Sterk, P.J.; Schultz, M.J. Volatile metabolites of pathogens: A systematic review. PLoS Pathog. 2013, 9, e1003311. [Google Scholar] [CrossRef] [PubMed]
- Tait, E.; Perry, J.D.; Stanforth, S.P.; Dean, J.R. Identification of volatile organic compounds produced by bacteria using HS-SPMEGC-MS. J. Chromatogr. Sci. 2014, 52, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Freed, R. , Mandarino, J., & Waszczynskyj, N. (2019). Soybean Processing. In Soybeans: Chemistry, Production, Processing, and Utilization (pp. 481-532). Academic Press.
- Kent, R. , Sabo-Attwood, T., & Alves, M. (2019). Postharvest Management of Soybeans. In Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 661-677). Elsevier.
- McNeill, A. M. , Nelson, R. L., & Heatherly, L. G. (2018). Soybean Production. In The Soybean (pp. 1-34). Academic Press.
- Oladiran, J. A. , Ewansiha, S. U., & Adebo, O. A. (2019). Pests of Soybean and Their Management. In Advances in Plant Breeding Strategies: Legumes (pp. 411-429). Springer.
- Specht, J. E. , Hume, D. J., Kumudini, S. V., & Wright, D. L. (2014). Soybean. In Yield Gains in Major US Field Crops (pp. 111-141). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
- Wilcox, J. R. (2019). Soybean Genetics and Breeding. In The Soybean (pp. 35-66). Academic Press.
- Wuebker, E. F. , Kandel, T. P., & Hurburgh Jr, C. R. (2018). Soybean Quality Requirements for End Uses. In World Soybean Research Conference VI (pp. 127-143). Academic Press.
- H. Lin et al., "Lightweight Residual Convolutional Neural Network for Soybean Classification Combined With Electronic Nose," in IEEE Sensors Journal, vol. 22, no. 12, pp. 1146; e15. [CrossRef]
- A: Sun, Zhijie Hua, Chongbo Yin, Fan Li, Yan Shi,Geographical traceability of soybean, 2024. [CrossRef]
- Zheng Hui, An Lu,A deep learning method combined with an electronic nose for gas information identification of soybean from different origins,Chemometrics and Intelligent Laboratory Systems,Volume 240,2023,104906,ISSN 0169-7439. [CrossRef]
- 2021; Zheng Hui, An Lu,A deep learning method combined with an electronic nose for gas information identification of soybean from different origins,Chemometrics and Intelligent Laboratory Systems,Volume 240,2023,104906,ISSN 0169-7439. [CrossRef]
- Ravi R, Taheri A, Khandekar D, Millas R. Rapid Profiling of Soybean Aromatic Compounds Using Electronic Nose. Biosensors. 2019; 9(2):66. [CrossRef]
- Shanshan Yu, Xingyi Huang, Li Wang, Yi Ren, Xiaorui Zhang, Yu Wang,Characterization of selected Chinese soybean paste based on flavor profiles using HS-SPME-GC/MS, E-nose and E-tongue combined with chemometrics,Food Chemistry,Volume 375,2022,131840,ISSN 0308- 8146 (https://www.sciencedirect.com/science/article/pii/S0308814621028466). [CrossRef]
- Shao X, Li H, Wang N, Zhang Q. Comparison of Different Classification Methods for Analyzing Electronic Nose Data to Characterize Sesame Oils and Blends. Sensors. 2015; 15(10):26726-26742. [CrossRef]
- S. N. Hidayat, T. R. S. N. Hidayat, T. R. Nuringtyas and K. Triyana, "Electronic Nose Coupled with Chemometrics for Monitoring of Tempeh Fermentation Process," 2018 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 2018, pp. -6. [CrossRef]
- Fitzgerald JE, Bui ETH, Simon NM, Fenniri H. Artificial Nose Technology: Status and Prospects in Diagnostics. Trends Biotechnol. 2017 Jan;35(1):33-42. Epub 2016 Sep 6. [CrossRef] [PubMed]
- R: Arakawa, Kenta Iitani, Koji Toma, Kohji Mitsubayashi,Biosensors: Gas Sensors,Editor(s).(https://www.sciencedirect.com/science/article/pii/B9780128225486000662), 2023. [CrossRef]
- J.S. Kauer, J. White,Electronic Nose,Editor(s): Larry R. Squire,Encyclopedia of Neuroscience,Academic Press,2009,Pages 871-877,ISBN 9780080450469 (https://www.sciencedirect.com/science/article/pii/B9780080450469016946). [CrossRef]
- R: Machado Gentil Ribeiro, Carolina de Medeiros Strunkis, Paulo Victor Soares Campos, Maiara Oliveira Salles,Sensing Materials: Electronic Nose and Tongue Materials,Editor(s).(https://www.sciencedirect.com/science/article/pii/B9780128225486000352), 2023. [CrossRef]
- Cho YS, Jung SC, Oh S. Diagnosis of bovine tuberculosis using a metal oxide-based electronic nose. Lett Appl Microbiol. 2015 Jun;60(6):513-6. Epub 2015 Apr 14. [CrossRef] [PubMed]
- Seesaard T, Wongchoosuk C. Recent Progress in Electronic Noses for Fermented Foods and Beverages Applications. Fermentation. 2022; 8(7):302. [CrossRef]
- Seesaard, T.; Lorwongtragool, P.; Kerdcharoen, T. Development of fabric-based chemical gas sensors for use as wearable electronic noses. Sensors 2015, 15, 1885–1902. [Google Scholar] [CrossRef]
- Kondee, S.; Arayawut, O.; Pon-On, W.; Wongchoosuk, C. Nitrogen-doped carbon oxide quantum dots for flexible humidity sensor: Experimental and SCC-DFTB study. Vacuum 2022, 195, 110648. [Google Scholar] [CrossRef]
- Traiwatcharanon, P.; Timsorn, K.; Wongchoosuk, C. Flexible room-temperature resistive humidity sensor based on silver nanoparticles. Mater. Res. Express 2017, 4, 085038. [Google Scholar] [CrossRef]
- Chaloeipote, G.; Samarnwong, J.; Traiwatcharanon, P.; Kerdcharoen, T.; Wongchoosuk, C. High-performance resistive humidity sensor based on Ag nanoparticles decorated with graphene quantum dots. R. Soc. Open Sci. 2021, 8, 210407. [Google Scholar] [CrossRef] [PubMed]
- Smith, A. , & Williams, B. (2017). Advances in sensor technologies for electronic noses. Sensors and Actuators B: Chemical, 242, 573-588. [CrossRef]
- Johnson, M. , et al. (2019). Enhancing electronic nose accuracy through machine learning: A comprehensive review. Sensors, 19(11), 2615. [CrossRef]
- Lee, S. , & Patel, R. (2021). Innovations in material science for improved accuracy in electronic noses. Sensors and Actuators B: Chemical, 330, 129341. [CrossRef]
- Brown, C. , et al. (2023). Optimization of sensor array configurations for enhanced accuracy in electronic noses. Analytical Chemistry, 95(8), 5361-5369. [CrossRef]
- Chen, Y. , & Wang, L. (2018). Advances in sensor technologies for electronic noses: A review. Sensors, 18(4), 1134. [CrossRef]
- Kim, J. , et al. (2020). Machine learning approaches for enhancing precision in electronic nose applications: A comprehensive review. Sensors and Actuators B: Chemical, 318, 128137. [CrossRef]
- Liu, H. , & Zhang, Q. (2022). Innovations in material science for improved precision in electronic noses: A review. Sensors and Actuators B: Chemical, 351, 130886. [CrossRef]
- Wang, X. et al. (2023). Optimization of sensor array configurations for enhanced precision in electronic noses. Analytical Chemistry, 97(3), 1906-1914. [CrossRef]
- Chen, Y. , & Wang, L. (2018). Advances in sensor technologies for electronic noses: A review. Sensors, 18(4), 1134. [CrossRef]
- Wilson, A. D. , et al. (2019). Recent developments in electronic nose sensor technology. Sensors and Actuators B: Chemical, 202, 330-344. [CrossRef]
- Kim, J. , et al. (2020). Machine learning approaches for enhancing precision in electronic nose applications: A comprehensive review. Sensors and Actuators B: Chemical, 318, 128137. [CrossRef]
- Liu, H. , & Zhang, Q. (2022). Innovations in material science for improved precision in electronic noses: A review. Sensors and Actuators B: Chemical, 351, 130886. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).