Submitted:
15 January 2024
Posted:
16 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Study of Heavy-Quark Production Mechanisms
3. Characterising the Fragmentation of Heavy Quarks into Jets
4. Heavy-Quark Energy Loss and Redistribution
5. Small-System Collective-like Effects for Heavy Quarks
6. Summary
References
- Cacciari, M.; Greco, M.; Nason, P. The pT spectrum in heavy-flavour hadroproduction. JHEP 1998, 05, 007, [hep-ph/9803400]. [Google Scholar] [CrossRef]
- Cacciari, M.; Frixione, S.; Nason, P. The p(T) spectrum in heavy flavor photoproduction. JHEP 2001, 03, 006, [hep-ph/0102134]. [Google Scholar] [CrossRef]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Reconciling open charm production at the Fermilab Tevatron with QCD. Phys. Rev. Lett. 2006, 96, 012001, [hep-ph/0508129]. [Google Scholar] [CrossRef]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Finite-mass effects on inclusive B meson hadroproduction. Phys. Rev. D 2008, 77, 014011, arXiv: [hep-ph/0705.4392]. [Google Scholar] [CrossRef]
- Aggarwal, M.M.; et al. Measurement of the Bottom contribution to non-photonic electron production in p+p collisions at s=200 GeV. Phys. Rev. Lett. 2010, 105, 202301, arXiv: [nucl-ex/1007.1200]. [Google Scholar] [CrossRef] [PubMed]
- Adare, A.; et al. Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at s=200 GeV. Phys. Rev. Lett. 2009, 103, 082002, arXiv: [hep-ex/0903.4851]. [Google Scholar] [CrossRef] [PubMed]
- Adare, A.; et al. Measurement of high-pT single electrons from heavy-flavor decays in p+p collisions at s= 200 GeV. Phys. Rev. Lett. 2006, 97, 252002, [hep-ex/0609010]. [Google Scholar] [CrossRef] [PubMed]
- Acosta, D.; et al. Measurement of prompt charm meson production cross sections in pp¯ collisions at s=1.96 TeV. Phys. Rev. Lett. 2003, 91, 241804, [hep-ex/0307080]. [Google Scholar] [CrossRef] [PubMed]
- Cacciari, M.; Nason, P. Charm cross-sections for the Tevatron Run II. JHEP 2003, 09, 006, [hep-ph/0306212]. [Google Scholar] [CrossRef]
- Acosta, D.; et al. Measurement of the J/ψ meson and b-hadron production cross sections in pp¯ collisions at s=1960 GeV. Phys. Rev. D 2005, 71, 032001, [hep-ex/0412071]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at sNN = 5.02 TeV. Phys. Lett. B 2020, 804, 135377, arXiv: [nucl-ex/1910.09110]. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. Nuclear modification factor of D0 mesons in PbPb collisions at sNN=5.02 TeV. Phys. Lett. B 2018, 782, 474–496, arXiv: [nucl-ex/1708.04962]. [Google Scholar] [CrossRef]
- Aaij, R.; et al. Measurements of prompt charm production cross-sections in pp collisions at s=13 TeV. JHEP 2016, 03, 159, arXiv: [hep-ex/1510.01707]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Measurement of inclusive charged-particle b-jet production in pp and p–Pb collisions at sNN = 5.02 TeV. JHEP 2022, 01, 178, arXiv: [nucl-ex/2110.06104]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Measurement of the production of charm jets tagged with D0 mesons in pp collisions at s = 5.02 and 13 TeV 2022. arXiv: [nucl-ex/2204.10167].
- Acharya, S.; et al. Measurement of D0 , D+ , D*+ and Ds+ production in pp collisions at s=5.02TeV with ALICE. Eur. Phys. J. C 2019, 79, 388, arXiv: [nucl-ex/1901.07979]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Production of muons from heavy-flavour hadron decays in pp collisions at s = 5.02 TeV. JHEP 2019, 09, 008, arXiv: [nucl-ex/1905.07207]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Measurement of beauty and charm production in pp collisions at s = 5.02 TeV via non-prompt and prompt D mesons. JHEP 2021, 05, 220, arXiv: [nucl-ex/2102.13601]. [Google Scholar] [CrossRef]
- Abelev, B.; et al. Heavy flavour decay muon production at forward rapidity in pp collisions at s= 7 TeV. Phys. Lett. B 2012, 708, 265–275, arXiv: [hep-ex/1201.3791]. [Google Scholar] [CrossRef]
- Abelev, B.; et al. Measurement of charm production at central rapidity in pp collisions at s=2.76 TeV. JHEP 2012, 07, 191, arXiv: [hep-ex/1205.4007]. [Google Scholar] [CrossRef]
- Abelev, B.; et al. Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at s=7 TeV. Phys. Rev. D 2012, 86, 112007, arXiv: [hep-ex/1205.5423]. [Google Scholar] [CrossRef]
- Aaij, R.; et al. Measurements of prompt charm production cross-sections in pp collisions at s=5 TeV. JHEP 2017, 06, 147, arXiv: [hep-ex/1610.02230]. [Google Scholar] [CrossRef]
- Abelev, B.; et al. Measurement of electrons from beauty hadron decays in pp collisions at s=7 TeV. Phys. Lett. B 2013, 721, 13–23, arXiv: [hep-ex/1208.1902]. [Erratum: Phys. Lett. B 763 (2016) 507–509]. [Google Scholar] [CrossRef]
- Abelev, B.; et al. Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at s=2.76 TeV. Phys. Rev. D 2015, 91, 012001, arXiv: [nucl-ex/1405.4117]. [Google Scholar] [CrossRef]
- Aaij, R.; et al. Measurement of the B± production cross-section in pp collisions at s=7 TeV. JHEP 2012, 04, 093, arXiv: [hep-ex/1202.4812]. [Google Scholar] [CrossRef]
- Aad, G.; et al. Measurement of the b-hadron production cross section using decays to D*μ-X final states in pp collisions at s = 7 TeV with the ATLAS detector. Nucl. Phys. B 2012, 864, 341–381, arXiv: [hep-ex/1206.3122]. [Google Scholar] [CrossRef]
- Aad, G.; et al. Measurement of the differential cross-section of B+ meson production in pp collisions at s = 7 TeV at ATLAS. JHEP 2013, 10, 042, arXiv: [hep-ex/1307.0126]. [Google Scholar] [CrossRef]
- Chatrchyan, S.; et al. Measurement of the cross section for production of bb¯X, decaying to muons in pp collisions at s=7 TeV. JHEP 2012, 06, 110, arXiv: [hep-ex/1203.3458]. [Google Scholar] [CrossRef]
- Khachatryan, V.; et al. Measurement of the B+ Production Cross Section in pp collisions at s=7 TeV. Phys. Rev. Lett. 2011, 106, 112001, arXiv: [hep-ex/1101.0131]. [Google Scholar] [CrossRef]
- Chatrchyan, S.; et al. Measurement of the B0 production cross section in pp collisions at s=7 TeV. Phys. Rev. Lett. 2011, 106, 252001, arXiv: [hep-ex/1104.2892]. [Google Scholar] [CrossRef]
- Chatrchyan, S.; et al. Measurement of the Bs0 Production Cross Section with Bs0→J/ψϕ Decays in pp collisions at s=7TeV. Phys. Rev. D 2011, 84, 052008, arXiv: [hep-ex/1106.4048]. [Google Scholar] [CrossRef]
- Khachatryan, V.; et al. Measurement of the total and differential inclusive B+ hadron cross sections in pp collisions at s = 13 TeV. Phys. Lett. B 2017, 771, 435–456, arXiv: [hep-ex/1609.00873]. [Google Scholar] [CrossRef]
- Cacciari, M.; Frixione, S.; Houdeau, N.; Mangano, M.L.; Nason, P.; Ridolfi, G. Theoretical predictions for charm and bottom production at the LHC. JHEP 2012, 10, 137, arXiv: [hep-ph/1205.6344]. [Google Scholar] [CrossRef]
- Kniehl, B.A. Inclusive production of heavy-flavored hadrons at NLO in the GM-VFNS. In Proceedings of the Proceedings, 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008): London, UK, April 7-11, 2008, 2008, p. 195. arXiv: [hep-ph/0807.2215]. [CrossRef]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Inclusive B-Meson Production at the LHC in the GM-VFN Scheme. Phys. Rev. 2011, D84, 094026, arXiv: [hep-ph/1109.2472]. [Google Scholar] [CrossRef]
- Bolzoni, P.; Kramer, G. Inclusive lepton production from heavy-hadron decay in pp collisions at the LHC. Nucl. Phys. B 2013, 872, 253–264, arXiv: [hep-ph/1212.4356][Erratum: Nucl.Phys.B 876, 334–337 (2013)]. [Google Scholar] [CrossRef]
- Bolzoni, P.; Kramer, G. Inclusive charmed-meson production from bottom hadron decays at the LHC. J. Phys. G: Nucl. Part. Phys. 2014, 41, 075006. [Google Scholar] [CrossRef]
- Adare, A.; et al. Heavy Quark Production in p+p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at sNN=200 GeV. Phys. Rev. C 2011, 84, 044905, arXiv: [nucl-ex/1005.1627]. [Google Scholar] [CrossRef]
- Abelev, B.I.; et al. Transverse momentum and centrality dependence of high-pT non-photonic electron suppression in Au+Au collisions at sNN=200\,GeV. Phys. Rev. Lett. 2007, 98, 192301, [nucl-ex/0607012]. [Google Scholar] [CrossRef]
- Adamczyk, L.; et al. Elliptic flow of electrons from heavy-flavor hadron decays in Au + Au collisions at sNN= 200, 62.4, and 39 GeV. Phys. Rev. C 2017, 95, 034907, arXiv: [hep-ex/1405.6348]. [Google Scholar] [CrossRef]
- Adamczyk, L.; et al. Elliptic flow of electrons from heavy-flavor hadron decays in Au + Au collisions at sNN= 200, 62.4, and 39 GeV. Phys. Rev. C 2017, 95, 034907, arXiv: [hep-ex/1405.6348]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Prompt D0, D+, and D*+ production in Pb–Pb collisions at sNN = 5.02 TeV. JHEP 2022, 01, 174, arXiv: [nucl-ex/2110.09420]]. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. Nuclear modification factor of D0 mesons in PbPb collisions at sNN=5.02 TeV. Phys. Lett. B 2018, 782, 474–496, arXiv: [nucl-ex/1708.04962]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Measurement of prompt Ds+-meson production and azimuthal anisotropy in Pb–Pb collisions at sNN=5.02TeV. Phys. Lett. B 2022, 827, 136986, arXiv: [nucl-ex/2110.10006]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at sNN=5.02 TeV. Phys. Rev. Lett. 2018, 120, 102301, arXiv: [nucl-ex/1707.01005]. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; et al. Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at sNN = 5.02 TeV. Phys. Lett. B 2021, 813, 136054, arXiv: [nucl-ex/2005.11131]. [Google Scholar] [CrossRef]
- Braaten, E.; Thoma, M.H. Energy loss of a heavy fermion in a hot plasma. Phys. Rev. D 1991, 44, 1298–1310. [Google Scholar] [CrossRef] [PubMed]
- Peshier, A. The QCD collisional energy loss revised. Phys. Rev. Lett. 2006, 97, 212301, [hep-ph/0605294]. [Google Scholar] [CrossRef] [PubMed]
- Peigne, S.; Peshier, A. Collisional energy loss of a fast heavy quark in a quark-gluon plasma. Phys. Rev. D 2008, 77, 114017, arXiv: [hep-ph/0802.4364]. [Google Scholar] [CrossRef]
- Gyulassy, M.; Wang, X.n. Multiple collisions and induced gluon Bremsstrahlung in QCD. Nucl. Phys. B 1994, 420, 583–614, [nucl-th/9306003]. [Google Scholar] [CrossRef]
- Baier, R.; Dokshitzer, Y.L.; Peigne, S.; Schiff, D. Induced gluon radiation in a QCD medium. Phys. Lett. B 1995, 345, 277–286, [hep-ph/9411409]. [Google Scholar] [CrossRef]
- Gyulassy, M.; Levai, P.; Vitev, I. NonAbelian energy loss at finite opacity. Phys. Rev. Lett. 2000, 85, 5535–5538, [nucl-th/0005032]. [Google Scholar] [CrossRef] [PubMed]
- Dokshitzer, Y.L.; Kharzeev, D.E. Heavy quark colorimetry of QCD matter. Phys. Lett. B 2001, 519, 199–206, [hep-ph/0106202]. [Google Scholar] [CrossRef]
- Armesto, N.; Salgado, C.A.; Wiedemann, U.A. Low-p(T) collective flow induces high-p(T) jet quenching. Phys. Rev. C 2005, 72, 064910, [hep-ph/0411341]. [Google Scholar] [CrossRef]
- Zhang, B.W.; Wang, E.; Wang, X.N. Heavy quark energy loss in nuclear medium. Phys. Rev. Lett. 2004, 93, 072301, [nucl-th/0309040]. [Google Scholar] [CrossRef] [PubMed]
- Nahrgang, M.; Aichelin, J.; Gossiaux, P.B.; Werner, K. Azimuthal correlations of heavy quarks in Pb + Pb collisions at s=2.76 TeV at the CERN Large Hadron Collider. Phys. Rev. C 2014, 90, 024907, arXiv: [hep-ph/1305.3823]. [Google Scholar] [CrossRef]
- Cao, S.; Qin, G.Y.; Bass, S.A. Modeling of heavy-flavor pair correlations in Au-Au collisions at 200A GeV at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2015, 92, 054909, arXiv: [nucl-th/1505.01869]. [Google Scholar] [CrossRef]
- Eskola, K.J.; Paukkunen, H.; Salgado, C.A. EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions. JHEP 2009, 04, 065, arXiv: [hep-ph/0902.4154]. [Google Scholar] [CrossRef]
- de Florian, D.; Sassot, R. Nuclear parton distributions at next-to-leading order. Phys. Rev. 2004, D69, 074028, arXiv: [hep-ph/hep-ph/0311227]. [Google Scholar] [CrossRef]
- Hirai, M.; Kumano, S.; Nagai, T.H. Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order. Phys. Rev. 2007, C76, 065207, arXiv: [hep-ph/0709.3038]. [Google Scholar] [CrossRef]
- Fujii, H.; Watanabe, K. Heavy quark pair production in high energy pA collisions: Open heavy flavors. Nucl. Phys. 2013, A920, 78–93, arXiv: [hep-ph/1308.1258]. [Google Scholar] [CrossRef]
- Tribedy, P.; Venugopalan, R. QCD saturation at the LHC: Comparisons of models to p + p and A + A data and predictions for p + Pb collisions. Phys. Lett. B 2012, 710, 125–133, arXiv: [hep-ph/1112.2445][Erratum: Phys.Lett.B 718, 1154–1154 (2013)]. [Google Scholar] [CrossRef]
- Albacete, J.L.; Dumitru, A.; Fujii, H.; Nara, Y. CGC predictions for p + Pb collisions at the LHC. Nucl. Phys. 2013, A897, 1–27, arXiv: [hep-ph/1209.2001]. [Google Scholar] [CrossRef]
- Rezaeian, A.H. CGC predictions for p+A collisions at the LHC and signature of QCD saturation. Phys. Lett. 2013, B718, 1058–1069, arXiv: [hep-ph/1210.2385]. [Google Scholar] [CrossRef]
- Accardi, A.; Arleo, F.; Brooks, W.K.; D’Enterria, D.; Muccifora, V. Parton Propagation and Fragmentation in QCD Matter. Riv. Nuovo Cim. 2009, 32, 439–554, arXiv: [nucl-th/0907.3534]. [Google Scholar] [CrossRef]
- Salgado, C.A.; et al. Proton-Nucleus Collisions at the LHC: Scientific Opportunities and Requirements. J. Phys. G 2012, 39, 015010, arXiv: [hep-ph/1105.3919]. [Google Scholar] [CrossRef]
- Vogt, R. Heavy Flavor Azimuthal Correlations in Cold Nuclear Matter. Phys. Rev. C 2018, 98, 034907, arXiv: [hep-ph/1806.01904]. [Google Scholar] [CrossRef]
- Vogt, R. bb¯ kinematic correlations in cold nuclear matter. Phys. Rev. C 2020, 101, 024910, arXiv: [hep-ph/1908.05320]. [Google Scholar] [CrossRef]
- Marquet, C.; Roiesnel, C.; Taels, P. Linearly polarized small-x gluons in forward heavy-quark pair production. Phys. Rev. D 2018, 97, 014004, arXiv: [hep-ph/1710.05698]. [Google Scholar] [CrossRef]
- Aidala, C.; et al. Measurements of μμ pairs from open heavy flavor and Drell-Yan in p+p collisions at s=200 GeV. Phys. Rev. D 2019, 99, 072003, arXiv: [hep-ex/1805.02448]. [Google Scholar] [CrossRef]
- Aaboud, M.; et al. Measurement of b-hadron pair production with the ATLAS detector in proton-proton collisions at s=8 TeV. JHEP 2017, 11, 062, arXiv: [10.1007/JHEP11(2017)062]. [Google Scholar] [CrossRef]
- Khachatryan, V.; et al. Measurement of BB¯ Angular Correlations based on Secondary Vertex Reconstruction at s=7 TeV. JHEP 2011, 03, 136, arXiv: [hep-ex/1102.3194]. [Google Scholar] [CrossRef]
- Aaij, R.; et al. Observation of double charm production involving open charm in pp collisions at s = 7 TeV. JHEP 2012, 06, 141, arXiv: [hep-ex/1205.0975]. [Google Scholar] [CrossRef]
- Aaij, R.; et al. Study of bb¯ correlations in high energy proton-proton collisions. JHEP 2017, 11, 030, arXiv: [hep-ex/1708.05994]. [Google Scholar] [CrossRef]
- Aaij, R.; et al. Observation of Enhanced Double Parton Scattering in Proton-Lead Collisions at sNN =8.16 TeV. Phys. Rev. Lett. 2020, 125, 212001, arXiv: [hep-ex/2007.06945]. [Google Scholar] [CrossRef] [PubMed]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. PYTHIA 6.4 Physics and Manual. JHEP 2006, 05, 026, [hep-ph/0603175]. [Google Scholar] [CrossRef]
- Frixione, S.; Nason, P.; Ridolfi, G. A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. JHEP 2007, 09, 126, arXiv: [hep-ph/0707.3088]. [Google Scholar] [CrossRef]
- Kom, C.H.; Kulesza, A.; Stirling, W.J. Pair Production of J/psi as a Probe of Double Parton Scattering at LHCb. Phys. Rev. Lett. 2011, 107, 082002, arXiv: [hep-ph/1105.4186]. [Google Scholar] [CrossRef] [PubMed]
- Baranov, S.P.; Snigirev, A.M.; Zotov, N.P. Double heavy meson production through double parton scattering in hadronic collisions. Phys. Lett. B 2011, 705, 116–119, arXiv: [hep-ph/1105.6276]. [Google Scholar] [CrossRef]
- Novoselov, A. Double parton scattering as a source of quarkonia pairs in LHCb 2011. arXiv: [hep-ph/1106.2184].
- Luszczak, M.; Maciula, R.; Szczurek, A. Production of two cc¯ pairs in double-parton scattering. Phys. Rev. D 2012, 85, 094034, arXiv: [hep-ph/1111.3255]. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Lansberg, J.P. Heavy-Quarkonium Production in High Energy Proton-Proton Collisions at RHIC. Phys. Rev. D 2010, 81, 051502, arXiv: [hep-ph/0908.0754]. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Hoyer, P.; Peterson, C.; Sakai, N. The Intrinsic Charm of the Proton. Phys. Lett. B 1980, 93, 451–455. [Google Scholar] [CrossRef]
- Norrbin, E.; Sjostrand, T. Production and hadronization of heavy quarks. Eur. Phys. J. C 2000, 17, 137–161, [hep-ph/0005110]. [Google Scholar] [CrossRef]
- Shao, H.S. Probing impact-parameter dependent nuclear parton densities from double parton scatterings in heavy-ion collisions. Phys. Rev. D 2020, 101, 054036, arXiv: [hep-ph/2001.04256]. [Google Scholar] [CrossRef]
- Miller, M.L.; Reygers, K.; Sanders, S.J.; Steinberg, P. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 2007, 57, 205–243, [nucl-ex/0701025]. [Google Scholar] [CrossRef]
- Cazaroto, E.R.; Goncalves, V.P.; Navarra, F.S. Heavy quark production in pA collisions: the double parton scattering contribution. Mod. Phys. Lett. A 2018, 33, 1850141, arXiv: [hep-ph/1607.04023]. [Google Scholar] [CrossRef]
- Helenius, I.; Paukkunen, H. Double D-meson production in proton-proton and proton-lead collisions at the LHC. Phys. Lett. B 2020, 800, 135084, arXiv: [hep-ph/1906.06971]. [Google Scholar] [CrossRef]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008, 178, 852–867, arXiv: [hep-ph/0710.3820]. [Google Scholar] [CrossRef]
- Bahr, M.; et al. Herwig++ Physics and Manual. Eur. Phys. J. C 2008, 58, 639–707, arXiv: [hep-ph/0803.0883]. [Google Scholar] [CrossRef]
- Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.S.; Stelzer, T.; Torrielli, P.; Zaro, M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 2014, 07, 079, arXiv: [hep-ph/1405.0301]. [Google Scholar] [CrossRef]
- Gleisberg, T.; Hoeche, S.; Krauss, F.; Schonherr, M.; Schumann, S.; Siegert, F.; Winter, J. Event generation with SHERPA 1.1. JHEP 2009, 02, 007, arXiv: [hep-ph/0811.4622]. [Google Scholar] [CrossRef]
- Schumann, S.; Krauss, F. A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 2008, 03, 038, arXiv: [hep-ph/0709.1027]. [Google Scholar] [CrossRef]
- Maltoni, F.; Stelzer, T. MadEvent: Automatic event generation with MadGraph. JHEP 2003, 02, 027, [hep-ph/0208156]. [Google Scholar] [CrossRef]
- Alwall, J.; Demin, P.; de Visscher, S.; Frederix, R.; Herquet, M.; Maltoni, F.; Plehn, T.; Rainwater, D.L.; Stelzer, T. MadGraph/MadEvent v4: The New Web Generation. JHEP 2007, 09, 028, arXiv: [hep-ph/0706.2334]. [Google Scholar] [CrossRef]
- Frixione, S.; Webber, B.R. Matching NLO QCD computations and parton shower simulations. JHEP 2002, 06, 029, [hep-ph/0204244]. [Google Scholar] [CrossRef]
- Frixione, S.; Nason, P.; Webber, B.R. Matching NLO QCD and parton showers in heavy flavor production. JHEP 2003, 08, 007, [hep-ph/0305252]. [Google Scholar] [CrossRef]
- Frixione, S.; Webber, B.R. The MC and NLO 3.4 Event Generator 2008. arXiv: [hep-ph/0812.0770].
- Jung, H.; Salam, G.P. Hadronic final state predictions from CCFM: The Hadron level Monte Carlo generator CASCADE. Eur. Phys. J. C 2001, 19, 351–360, [hep-ph/0012143]. [Google Scholar] [CrossRef]
- Gauld, R.; Rojo, J.; Rottoli, L.; Talbert, J. Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. JHEP 2015, 11, 009, arXiv: [hep-ph/1506.08025]. [Google Scholar] [CrossRef]
- Fries, R.J.; Muller, B.; Nonaka, C.; Bass, S.A. Hadronization in heavy ion collisions: Recombination and fragmentation of partons. Phys. Rev. Lett. 2003, 90, 202303, [nucl-th/0301087]. [Google Scholar] [CrossRef]
- Greco, V.; Ko, C.M.; Levai, P. Parton coalescence at RHIC. Phys. Rev. C 2003, 68, 034904, [nucl-th/0305024]. [Google Scholar] [CrossRef]
- Ravagli, L.; Rapp, R. Quark Coalescence based on a Transport Equation. Phys. Lett. B 2007, 655, 126–131, arXiv: [hep-ph/0705.0021]. [Google Scholar] [CrossRef]
- Adam, J.; et al. Observation of Ds±/D0 enhancement in Au+Au collisions at sNN = 200 GeV. Phys. Rev. Lett. 2021, 127, 092301, arXiv: [hep-ex/2101.11793]. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; et al. Constraining hadronization mechanisms with Λc+/D0 production ratios in Pb–Pb collisions at sNN=5.02 TeV. Phys. Lett. B 2023, 839, 137796, arXiv: [nucl-ex/2112.08156]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Investigating charm production and fragmentation via azimuthal correlations of prompt D mesons with charged particles in pp collisions at s=13 TeV. Eur. Phys. J. C 2022, 82, 335, arXiv: [nucl-ex/2110.10043]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Azimuthal correlations of prompt D mesons with charged particles in pp and p–Pb collisions at sNN = 5.02 TeV. Eur. Phys. J. C 2020, 80, 979, arXiv: [nucl-ex/1910.14403]. [Google Scholar] [CrossRef]
- Adam, J.; et al. Measurement of azimuthal correlations of D mesons and charged particles in pp collisions at s=7 TeV and p-Pb collisions at sNN=5.02 TeV. Eur. Phys. J. C 2017, 77, 245, arXiv: [nucl-ex/1605.06963]. [Google Scholar] [CrossRef] [PubMed]
- Nason, P. A New method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 2004, 11, 040, [hep-ph/0409146]. [Google Scholar] [CrossRef]
- Frixione, S.; Nason, P.; Oleari, C. Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 2007, 11, 070, arXiv: [hep-ph/0709.2092]. [Google Scholar] [CrossRef]
- Bellm, J.; et al. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C 2016, 76, 196, arXiv: [hep-ph/1512.01178]. [Google Scholar] [CrossRef]
- Drescher, H.J.; Hladik, M.; Ostapchenko, S.; Pierog, T.; Werner, K. Parton based Gribov-Regge theory. Phys. Rept. 2001, 350, 93–289, [hep-ph/0007198]. [Google Scholar] [CrossRef]
- Werner, K.; Karpenko, I.; Pierog, T.; Bleicher, M.; Mikhailov, K. Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions. Phys. Rev. C 2010, 82, 044904, arXiv: [nucl-th/1004.0805]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Azimuthal Anisotropy of Heavy-Flavor Decay Electrons in p-Pb Collisions at sNN = 5.02 TeV. Phys. Rev. Lett. 2019, 122, 072301, arXiv: [nucl-ex/1805.04367]. [Google Scholar] [CrossRef] [PubMed]
- Aad, G.; et al. Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in pp collisions at s=13 TeV with the ATLAS detector. Phys. Rev. Lett. 2020, 124, 082301, arXiv: [nucl-ex/1909.01650]. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at sNN= 8.16 TeV. Phys. Rev. Lett. 2018, 121, 082301, arXiv: [hep-ex/1804.09767]. [Google Scholar] [CrossRef] [PubMed]
- Sirunyan, A.M.; et al. Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies. Phys. Lett. B 2021, 813, 136036, arXiv: [hep-ex/2009.07065]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Azimuthal correlations of heavy-flavor hadron decay electrons with charged particles in pp and p–Pb collisions at sNN = 5.02 TeV. Eur. Phys. J. C 2023, 83, 741, arXiv: [nucl-ex/2303.00591]. [Google Scholar] [CrossRef]
- Gyulassy, M.; Plumer, M. Jet Quenching in Dense Matter. Phys. Lett. B 1990, 243, 432–438. [Google Scholar] [CrossRef]
- Baier, R.; Dokshitzer, Y.L.; Mueller, A.H.; Peigne, S.; Schiff, D. Radiative energy loss and p(T) broadening of high-energy partons in nuclei. Nucl. Phys. B 1997, 484, 265–282, [hep-ph/9608322]. [Google Scholar] [CrossRef]
- Thoma, M.H.; Gyulassy, M. Quark Damping and Energy Loss in the High Temperature QCD. Nucl. Phys. B 1991, 351, 491–506. [Google Scholar] [CrossRef]
- Braaten, E.; Thoma, M.H. Energy loss of a heavy quark in the quark - gluon plasma. Phys. Rev. D 1991, 44, R2625. [Google Scholar] [CrossRef] [PubMed]
- Casalderrey-Solana, J.; Milhano, J.G.; Pablos, D.; Rajagopal, K.; Yao, X. Jet Wake from Linearized Hydrodynamics. JHEP 2021, 05, 230, arXiv: [hep-ph/2010.01140]. [Google Scholar] [CrossRef]
- Wang, S.; Dai, W.; Zhang, B.W.; Wang, E. Diffusion of charm quarks in jets in high-energy heavy-ion collisions. Eur. Phys. J. C 2019, 79, 789, arXiv: [nucl-th/1906.01499]. [Google Scholar] [CrossRef]
- Hambrock, R.; Horowitz, W.A. AdS/CFT predictions for azimuthal and momentum correlations of bb¯ pairs in heavy ion collisions. Nucl. Part. Phys. Proc. 2017, 289-290, 233–236, arXiv: [hep-ph/1703.05845]. [Google Scholar] [CrossRef]
- Dong, X.; Lee, Y.J.; Rapp, R. Open Heavy-Flavor Production in Heavy-Ion Collisions. Ann. Rev. Nucl. Part. Sci. 2019, 69, 417–445, arXiv: [nucl-ex/1903.07709]. [Google Scholar] [CrossRef]
- Adam, J.; et al. Transverse momentum dependence of D-meson production in Pb-Pb collisions at sNN= 2.76 TeV. JHEP 2016, 03, 081, arXiv: [nucl-ex/1509.06888]. [Google Scholar] [CrossRef]
- Adam, J.; et al. Centrality dependence of high-pT D meson suppression in Pb-Pb collisions at sNN=2.76 TeV. JHEP 2015, 11, 205, arXiv: [nucl-ex/1506.06604]. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. Measurement of the B± Meson Nuclear Modification Factor in Pb-Pb Collisions at sNN=5.02TeV. Phys. Rev. Lett. 2017, 119, 152301, arXiv: [hep-ex/1705.04727]. [Google Scholar] [CrossRef] [PubMed]
- Khachatryan, V.; et al. Suppression and azimuthal anisotropy of prompt and nonprompt J/ψ production in PbPb collisions at sNN=2.76TeV. Eur. Phys. J. C 2017, 77, 252, arXiv: [nucl-ex/1610.00613]. [Google Scholar] [CrossRef]
- Abelev, B.B.; et al. Azimuthal anisotropy of D meson production in Pb-Pb collisions at sNN=2.76 TeV. Phys. Rev. C 2014, 90, 034904, arXiv: [nucl-ex/1405.2001]. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. Measurement of prompt D0 meson azimuthal anisotropy in Pb-Pb collisions at sNN = 5.02 TeV. Phys. Rev. Lett. 2018, 120, 202301, arXiv: [nucl-ex/1708.03497]. [Google Scholar] [CrossRef] [PubMed]
- Adare, A.; et al. Azimuthal correlations of electrons from heavy-flavor decay with hadrons in p+p and Au+Au collisions at sNN=200 GeV. Phys. Rev. C 2011, 83, 044912, arXiv: [nucl-ex/1011.1477]. [Google Scholar] [CrossRef]
- Adam, J.; et al. Measurement of D0-meson + hadron two-dimensional angular correlations in Au+Au collisions at sNN = 200 GeV. Phys. Rev. C 2020, 102, 014905, arXiv: [nucl-ex/1911.12168]. [Google Scholar] [CrossRef]
- Sjostrand, T.; van Zijl, M. A Multiple Interaction Model for the Event Structure in Hadron Collisions. Phys. Rev. D 1987, 36, 2019. [Google Scholar] [CrossRef]
- Shi, S.; Dong, X.; Mustafa, M. A study of charm quark correlations in ultra-relativistic p + p collisions with PYTHIA 2015. arXiv: [nucl-th/1507.00614].
- Agakishiev, G.; et al. Anomalous centrality evolution of two-particle angular correlations from Au-Au collisions at sNN = 62 and 200 GeV. Phys. Rev. C 2012, 86, 064902, arXiv: [nucl-ex/1109.4380]. [Google Scholar] [CrossRef]
- Adare, A.; et al. Dihadron azimuthal correlations in Au+Au collisions at sNN= 200 GeV. Phys. Rev. C 2008, 78, 014901, arXiv: [nucl-ex/0801.4545]. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. Studies of charm quark diffusion inside jets using PbPb and pp collisions at sNN= 5.02 TeV. Phys. Rev. Lett. 2020, 125, 102001, arXiv: [hep-ex/1911.01461]. [Google Scholar] [CrossRef]
- Sjöstrand, T.; Ask, S.; Christiansen, J.R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C.O.; Skands, P.Z. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015, 191, 159–177, arXiv: [hep-ph/1410.3012]. [Google Scholar] [CrossRef]
- Tumasyan, A.; et al. Search for medium effects using jets from bottom quarks in PbPb collisions at sNN = 5.02 TeV. Phys. Lett. B 2023, 844, 137849, arXiv: [hep-ex/2210.08547]. [Google Scholar] [CrossRef]
- Dokshitzer, Y.L.; Khoze, V.A.; Troian, S.I. On specific QCD properties of heavy quark fragmentation (’dead cone’). J. Phys. G 1991, 17, 1602–1604. [Google Scholar] [CrossRef]
- Casalderrey-Solana, J.; Teaney, D. Heavy quark diffusion in strongly coupled N=4 Yang-Mills. Phys. Rev. D 2006, 74, 085012, [hep-ph/0605199]. [Google Scholar] [CrossRef]
- Djordjevic, M.; Gyulassy, M. Heavy quark radiative energy loss in QCD matter. Nucl. Phys. A 2004, 733, 265–298, [nucl-th/0310076]. [Google Scholar] [CrossRef]
- Zakharov, B.G. Radiative p⊥-broadening of fast partons in an expanding quark–gluon plasma. Eur. Phys. J. C 2021, 81, 57, arXiv: [hep-ph/2003.10182]. [Google Scholar] [CrossRef]
- Aad, G.; et al. Azimuthal angle correlations of muons produced via heavy-flavor decays in 5.02 TeV Pb+Pb and pp collisions with the ATLAS detector 2023. arXiv: [nucl-ex/2308.16652].
- Adcox, K.; et al. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 2005, 757, 184–283, [nucl-ex/0410003]. [Google Scholar] [CrossRef]
- Adams, J.; et al. Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102–183, [nucl-ex/0501009]. [Google Scholar] [CrossRef]
- Back, B.B.; et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28–101, [nucl-ex/0410022]. [Google Scholar] [CrossRef]
- Arsene, I.; et al. Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1–27, [nucl-ex/0410020]. [Google Scholar] [CrossRef]
- Aamodt, K.; et al. Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb-Pb Collisions at sNN= 2.76 TeV. Phys. Lett. B 2011, 696, 30–39, arXiv: [nucl-ex/1012.1004]. [Google Scholar] [CrossRef]
- The ALICE experiment – A journey through QCD 2022. arXiv: [nucl-ex/2211.04384].
- Voloshin, S.A.; Poskanzer, A.M.; Snellings, R. Collective phenomena in non-central nuclear collisions. Landolt-Bornstein 2010, 23, 293–333, arXiv: [nucl-ex/0809.2949]. [Google Scholar] [CrossRef]
- Qin, G.Y.; Petersen, H.; Bass, S.A.; Muller, B. Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions. Phys. Rev. 2010, C82, 064903, arXiv: [nucl-th/1009.1847]. [Google Scholar] [CrossRef]
- Voloshin, S.; Zhang, Y. Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions. Z. Phys. C 1996, 70, 665–672, [hep-ph/9407282]. [Google Scholar] [CrossRef]
- Abelev, B.I.; et al. Long range rapidity correlations and jet production in high energy nuclear collisions. Phys. Rev. 2009, C80, 064912, arXiv: [nucl-ex/0909.0191]. [Google Scholar] [CrossRef]
- Abelev, B.; et al. Long-range angular correlations on the near and away side in p-Pb collisions at sNN=5.02 TeV. Phys. Lett. 2013, B719, 29–41, arXiv: [nucl-ex/1212.2001]. [Google Scholar] [CrossRef]
- Aaboud, M.; et al. Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at s=5.02 and 13 TeV and p+Pb collisions at sNN=5.02 TeV with the ATLAS detector. Phys. Rev. 2017, C96, 024908, arXiv: [nucl-ex/1609.06213]. [Google Scholar] [CrossRef]
- Chatrchyan, S.; et al. Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. 2013, B724, 213–240, arXiv: [nucl-ex/1305.0609]. [Google Scholar] [CrossRef]
- Abelev, B.B.; et al. Long-range angular correlations of π, K and p in p-Pb collisions at sNN = 5.02 TeV. Phys. Lett. 2013, B726, 164–177, arXiv: [nucl-ex/1307.3237]. [Google Scholar] [CrossRef]
- Khachatryan, V.; et al. Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies. Phys. Lett. 2015, B742, 200–224, arXiv: [nucl-ex/1409.3392]. [Google Scholar] [CrossRef]
- Khachatryan, V.; et al. Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. JHEP 2010, 09, 091, arXiv: [hep-ex/1009.4122]. [Google Scholar] [CrossRef]
- Adare, A.; et al. Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central d+Au Collisions at sNN=200 GeV. Phys. Rev. Lett. 2013, 111, 212301, arXiv: [nucl-ex/1303.1794]. [Google Scholar] [CrossRef]
- Adamczyk, L.; et al. Long-range pseudorapidity dihadron correlations in d+Au collisions at sNN=200 GeV. Phys. Lett. 2015, B747, 265–271, arXiv: [nucl-ex/1502.07652]. [Google Scholar] [CrossRef]
- Loizides, C. Experimental overview on small collision systems at the LHC. Nucl. Phys. 2016, A956, 200–207, arXiv: [nucl-ex/1602.09138]. [Google Scholar] [CrossRef]
- Werner, K.; Karpenko, I.; Pierog, T. The ’Ridge’ in Proton-Proton Scattering at 7 TeV. Phys. Rev. Lett. 2011, 106, 122004, arXiv: [hep-ph/1011.0375]. [Google Scholar] [CrossRef]
- Deng, W.T.; Xu, Z.; Greiner, C. Elliptic and Triangular Flow and their Correlation in Ultrarelativistic High Multiplicity Proton Proton Collisions at 14 TeV. Phys. Lett. 2012, B711, 301–306, arXiv: [hep-ph/1112.0470]. [Google Scholar] [CrossRef]
- Dusling, K.; Venugopalan, R. Comparison of the color glass condensate to dihadron correlations in proton-proton and proton-nucleus collisions. Phys. Rev. 2013, D87, 094034, arXiv: [hep-ph/1302.7018]. [Google Scholar] [CrossRef]
- Bzdak, A.; Schenke, B.; Tribedy, P.; Venugopalan, R. Initial state geometry and the role of hydrodynamics in proton-proton, proton-nucleus and deuteron-nucleus collisions. Phys. Rev. 2013, C87, 064906, arXiv: [nucl-th/1304.3403]. [Google Scholar] [CrossRef]
- Dumitru, A.; Lappi, T.; McLerran, L. Are the angular correlations in pA collisions due to a Glasmion or Bose condensation? Nucl. Phys. 2014, A922, 140–149, arXiv: [hep-ph/1310.7136]. [Google Scholar] [CrossRef]
- Wong, C.Y. Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV. Phys. Rev. 2011, C84, 024901, arXiv: [hep-ph/1105.5871]. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L.; Shah, H. The Angantyr model for Heavy-Ion Collisions in PYTHIA8. JHEP 2018, 10, 134, arXiv: [hep-ph/1806.10820]. [Google Scholar] [CrossRef]
- Dusling, K.; Li, W.; Schenke, B. Novel collective phenomena in high-energy proton–proton and proton–nucleus collisions. Int. J. Mod. Phys. E 2016, 25, 1630002, arXiv: [nucl-ex/1509.07939]. [Google Scholar] [CrossRef]
- Zhang, C.; Marquet, C.; Qin, G.Y.; Wei, S.Y.; Xiao, B.W. Elliptic Flow of Heavy Quarkonia in pA Collisions. Phys. Rev. Lett. 2019, 122, 172302, arXiv: [hep-ph/1901.10320]. [Google Scholar] [CrossRef]
- Zhang, C.; Marquet, C.; Qin, G.Y.; Shi, Y.; Wang, L.; Wei, S.Y.; Xiao, B.W. Collectivity of heavy mesons in proton-nucleus collisions. Phys. Rev. D 2020, 102, 034010, arXiv: [hep-ph/2002.09878]. [Google Scholar] [CrossRef]
- Adam, J.; et al. Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb–Pb collisions at sNN=2.76 TeV. Phys. Lett. 2016, B753, 41–56, arXiv: [nucl-ex/1507.03134]. [Google Scholar] [CrossRef]
- Adam, J.; et al. Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb-Pb collisions at sNN=2.76 TeV. JHEP 2016, 09, 028, arXiv: [nucl-ex/1606.00321]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. D-meson azimuthal anisotropy in mid-central Pb-Pb collisions at sNN=5.02 TeV 2017. arXiv: [nucl-ex/1707.01005].
- Abelev, B.B.; et al. Azimuthal anisotropy of D meson production in Pb-Pb collisions at sNN=2.76 TeV. Phys. Rev. 2014, C90, 034904, arXiv: [nucl-ex/1405.2001]. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. Measurement of prompt D0 meson azimuthal anisotropy in PbPb collisions at sNN = 5.02 TeV 2017. arXiv: [nucl-ex/1708.03497].
- Acharya, S.; et al. J/ψ elliptic flow in Pb-Pb collisions at sNN=5.02 TeV. Phys. Rev. Lett. 2017, 119, 242301, arXiv: [nucl-ex/1709.05260]. [Google Scholar] [CrossRef] [PubMed]
- Measurements of azimuthal anisotropy of nonprompt D0 mesons in PbPb collisions at sNN = 5.02 TeV 2022. arXiv: [nucl-ex/2212.01636].
- Acharya, S.; et al. Measurement of Non-prompt D0-meson Elliptic Flow in Pb-Pb Collisions at sNN = 5.02 TeV 2023. arXiv: [nucl-ex/2307.14084]. arXiv:].
- Li, H.; Lin, Z.W.; Wang, F. Charm quarks are more hydrodynamic than light quarks in final-state elliptic flow. Phys. Rev. C 2019, 99, 044911, arXiv: [hep-ph/1804.02681]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p-Pb collisions at sNN = 5.02 and 8.16 TeV. Phys. Lett. B 2018, 780, 7–20, arXiv: [nucl-ex/1709.06807]. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. Observation of prompt J/ψ meson elliptic flow in high-multiplicity pPb collisions at sNN= 8.16 TeV. Phys. Lett. B 2019, 791, 172–194, arXiv: [hep-ex/1810.01473]. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Measurements of azimuthal anisotropies at forward and backward rapidity with muons in high-multiplicity p–Pb collisions at sNN=8.16 TeV. Phys. Lett. B 2023, 846, 137782, arXiv: [nucl-ex/2210.08980]. [Google Scholar] [CrossRef]
- Aad, G.; et al. Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb+Pb collisions at sNN=5.02 TeV with the ATLAS detector. Phys. Lett. B 2020, 807, 135595, arXiv: [10.1016/j.physletb.2020.135595]. [Google Scholar] [CrossRef]
- Nahrgang, M.; Aichelin, J.; Gossiaux, P.B.; Werner, K. Influence of hadronic bound states above Tc on heavy-quark observables in Pb + Pb collisions at at the CERN Large Hadron Collider. Phys. Rev. C 2014, 89, 014905, arXiv: [hep-ph/1305.6544]. [Google Scholar] [CrossRef]
- Ke, W.; Xu, Y.; Bass, S.A. Modified Boltzmann approach for modeling the splitting vertices induced by the hot QCD medium in the deep Landau-Pomeranchuk-Migdal region. Phys. Rev. C 2019, 100, 064911, arXiv: [nucl-th/1810.08177]. [Google Scholar] [CrossRef]
- Katz, R.; Prado, C.A.G.; Noronha-Hostler, J.; Noronha, J.; Suaide, A.A.P. Sensitivity study with a D and B mesons modular simulation code of heavy flavor RAA and azimuthal anisotropies based on beam energy, initial conditions, hadronization, and suppression mechanisms. Phys. Rev. C 2020, 102, 024906, arXiv: [nucl-th/1906.10768]. [Google Scholar] [CrossRef]
- Lin, Z.W.; Ko, C.M.; Li, B.A.; Zhang, B.; Pal, S. A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 2005, 72, 064901, [nucl-th/0411110]. [Google Scholar] [CrossRef]
- Lin, Z.W.; Zheng, L. Further developments of a multi-phase transport model for relativistic nuclear collisions. Nucl. Sci. Tech. 2021, 32, 113, arXiv: [nucl-th/2110.02989]. [Google Scholar] [CrossRef]
- Zhang, B. ZPC 1.0.1: A Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 1998, 109, 193–206, [nucl-th/9709009]. [Google Scholar] [CrossRef]
- He, L.; Edmonds, T.; Lin, Z.W.; Liu, F.; Molnar, D.; Wang, F. Anisotropic parton escape is the dominant source of azimuthal anisotropy in transport models. Phys. Lett. B 2016, 753, 506–510, arXiv: [nucl-th/1502.05572]. [Google Scholar] [CrossRef]
- Du, X.; Rapp, R. Sequential Regeneration of Charmonia in Heavy-Ion Collisions. Nucl. Phys. A 2015, 943, 147–158, arXiv: [hep-ph/1504.00670]. [Google Scholar] [CrossRef]
- Khachatryan, V.; et al. Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 2017, 765, 193–220, arXiv: [nucl-ex/1606.06198]. [Google Scholar] [CrossRef]



















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
