Submitted:
16 January 2024
Posted:
16 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Green Synthesis
3. Applications
4. Corrosion Inhibitor
5. Nano fertilizer
6. Heavy metal detection
7. Biofuel
8. Catalytic Reduction of CO2
9. Insecticides & Pesticides
10. Conclusions
Future Perspectives:
Ethical Approval
Abbreviations
| ASTM | American Society for Testing and Materials |
| ZnO | Zinc Oxide |
| NPs | Nanoparticles |
| NFs | Nanofertilizers |
References
- Pearce DW, Markandya A, Barbier ER: Blueprint for a Green Economy. In. London: Earthscan Publications Ltd.; 1989.
- International Energy Agency: World Energy Outlook 2012. In. Paris: International Energy Agency; Available at http://www.iea.org/publications/ freepublications/publication/English.pdf.
- European Environment Agency. Towards a Green Economy in Europe :EU Environmental Policy Targets and Objectives 2010–2050.; Publications Office: LU, 2013. [Google Scholar] [CrossRef]
- United Nations Environment Programme: Green Economy Report. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication. In 2011. http://www.unep.org/greeneconomy/ green economy report/tabid/29846/default.aspx.
- Economic Commission for Latin America and the Caribbean: A Green Economy: Introduction To The Debate And Implications for Latin America and Caribbean. In 2010. http://www.cepal.org/dmaah/noticias/ noticias/4/41684/DraftDiscussionPaper.pdf.
- European Environment Agency: The European Environment—State And Outlook 2010: Synthesis. In State of The Environment Report No 1/2010. http://www.eea.europa.eu/soer/synthesis/.
- Organisation for Economic Co-operation and Development: Interim Report of the Green Growth Strategy: Implementing Our Commitment fora Sustainable Future. In; 2010. http://www.oecd.org/greengrowth/45312720.pdf.
- Dai, L.; Chang, D. W.; Baek, J.; Lu, W. Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small 2012, 8, 1130–1166. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-operation and Development: Nanotechnology for Green Innovation. 2013. In http://search.oecd.org/ official documents/public display documentpdf/?cote=DSTI/STP/NANO (2013)3/FINAL&docLanguage=En.
- Omran, B. A.; Baek, K.-H. Valorization of Agro-Industrial Biowaste to Green Nanomaterials for Wastewater Treatment: Approaching Green Chemistry and Circular Economy Principles. Journal of Environmental Management, 2022, 311, 114806. [Google Scholar] [CrossRef] [PubMed]
- Gubitosa, J.; Rizzi, V.; Laurenzana, A.; Scavone, F.; Frediani, E.; Fibbi, G.; Fanelli, F.; Sibillano, T.; Giannini, C.; Fini, P.; Cosma, P. The “End Life” of the Grape Pomace Waste Become the New Beginning: The Development of a Virtuous Cycle for the Green Synthesis of Gold Nanoparticles and Removal of Emerging Contaminants from Water. Antioxidants 2022, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Alsaiari, N. S.; Alzahrani, F. M.; Amari, A.; Osman, H.; Harharah, H. N.; Elboughdiri, N.; Tahoon, M. A. Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. Molecules 2023, 28, 463. [Google Scholar] [CrossRef] [PubMed]
- Vijayaram, S.; Razafindralambo, H.; Sun, Y.-Z.; Vasantharaj, S.; Ghafarifarsani, H.; Hoseinifar, S. H.; Raeeszadeh, M. Applications of Green Synthesized Metal Nanoparticles — a Review. Biological Trace Element Research, 2023. [CrossRef]
- Gour, A.; Jain, N. K. Advances in Green Synthesis of Nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Nambela, L., Haule, L. V., &Mgani, Q. (2020). A review on source, chemistry, green synthesis and application of textile colorants. Journal of Cleaner Production, 246, 119036. [CrossRef]
- Patil, C. D.; Borase, H. P.; Suryawanshi, R. K.; Patil., S. V. Trypsin Inactivation by Latex Fabricated Gold Nanoparticles: A New Strategy towards Insect Control. Enzyme and Microbial Technology, 2016, 92, 18–25. [CrossRef]
- Singh, P.; Singh, K. R.; Verma, R.; Singh, J.; Singh, R. P. Efficient Electro-Optical Characteristics of Bioinspired Iron Oxide Nanoparticles Synthesized by Terminalia Chebula Dried Seed Extract. Materials Letters, 2022, 307, 131053. [Google Scholar] [CrossRef]
- Abdelmigid, H. M.; Morsi, M. M.; Hussien, N. A.; Alyamani, A. A.; Alhuthal, N. A.; Albukhaty, S. Green Synthesis of Phosphorous-Containing Hydroxyapatite Nanoparticles (nHAP) as a Novel Nano-Fertilizer: Preliminary Assessment on Pomegranate (PunicaGranatum L.). Nanomaterials, 2022, 12, 1527. [Google Scholar] [CrossRef]
- Ali, T.; Warsi, M. F.; Zulfiqar, S.; Sami, A.; Ullah, S.; Rasheed, A.; Alsafari, I. A.; Agboola, P. O.; Shakir, I.; Baig, M. M. Green Nickel/Nickel Oxide Nanoparticles for Prospective Antibacterial and Environmental Remediation Applications. Ceramics International, 2022, 48, 8331–8340. [Google Scholar] [CrossRef]
- Samuel, M. S.; Jose, S.; Selvarajan, E.; Mathimani, T.; Pugazhendhi, A. Biosynthesized Silver Nanoparticles Using Bacillus Amyloliquefaciens; Application for Cytotoxicity Effect on A549 Cell Line and Photocatalytic Degradation of p-Nitrophenol. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111642. [Google Scholar] [CrossRef]
- Jain, P.; Patidar, B.; Bhawsar, J. Potential of Nanoparticles as a Corrosion Inhibitor: A Review. Journal of Bio- and Tribo-Corrosion, 2020, 6. [CrossRef]
- Rathish, R. J., Joany, R. D. R., Pandiarajan, M., & Rajendran, S. (2013). Corrosion resistance of nanoparticle-incorporated nano coatings. European Chemical Bulletin, 2(12), 965-970.
- Ituen, E.; Ekemini, E.; Yuanhua, L.; Singh, A. Green Synthesis of Citrus Reticulata Peels Extract Silver Nanoparticles and Characterization of Structural, Biocide and Anticorrosion Properties. Journal of Molecular Structure, 2020, 1207, 127819. [Google Scholar] [CrossRef]
- Fetouh, H. A.; Hefnawy, A.; Attia, A. M.; Ali, E. Facile and Low-Cost Green Synthesis of Eco-Friendly Chitosan-Silver Nanocomposite as Novel and Promising Corrosion Inhibitor for Mild Steel in Chilled Water Circuits. Journal of Molecular Liquids, 2020, 319, 114355. [Google Scholar] [CrossRef]
- Liao, B.; Cen, H.; Xiang, T.; Dai, H.; Wu, H.; Wan, S.; Guo, X. Functionalized Nanocomposites as Corrosion Inhibitors. ACS Symposium Series, 2022, 213–229. [CrossRef]
- Picchio, M. L.; Minudri, D.; Mantione, D.; Criado-Gonzalez, M.; Guzmán-González, G.; Schmarsow, R.; Müller, A. J.; Tomé, L. C.; Minari, R. J.; Mecerreyes, D. Natural Deep Eutectic Solvents Based on Choline Chloride and Phenolic Compounds as Efficient Bioadhesives and Corrosion Protectors. ACS Sustainable Chemistry & Engineering, 2022, 10, 8135–8142. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Lu, H.; Xu, L. Surfactant-Modified Silica Nanoparticles-Stabilized Magnetic Polydimethylsiloxane-in-Water Pickering Emulsions for Lubrication and Anticorrosion. ACS Sustainable Chemistry & Engineering, 2022, 10, 10816–10826. [Google Scholar] [CrossRef]
- Su, W.; Tang, B.; Fu, F.; Huang, S.; Zhao, S.; Bin, L.; Ding, J.; Chen, C. A New Insight into Resource Recovery of Excess Sewage Sludge: Feasibility of Extracting Mixed Amino Acids as an Environment-Friendly Corrosion Inhibitor for Industrial Pickling. Journal of Hazardous Materials, 2014, 279, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Akkalatham, W.; Taghipour, A.; Yongsiri, P.; Ali, S. M. Circular Economy in Materials to Decarbonize Mobility. Renewable Energy in Circular Economy, 2023, 89–112. [CrossRef]
- Thakur, A.; Sharma, S.; Ganjoo, R.; Assad, H.; Kumar, A. Anti-Corrosive Potential of the Sustainable Corrosion Inhibitors Based on Biomass Waste: A Review on Preceding and Perspective Research. Journal of Physics: Conference Series, 2022, 2267, 012079. [Google Scholar] [CrossRef]
- Lateef, A. Cola Nitida: Milestones in Catalysis, Biotechnology and Nanotechnology for Circular Economy and Sustainable Development. Biocatalysis and Agricultural Biotechnology, 2023, 53, 102856. [Google Scholar] [CrossRef]
- Düdükcü, M.; Yazici, B.; Erbil, M. The Effect of Indole on the Corrosion Behaviour of Stainless Steel. Materials Chemistry and Physics, 2004, 87, 138–141. [Google Scholar] [CrossRef]
- Galal, A.; Atta, N. F.; Al-Hassan, M. H. S. Effect of Some Thiophene Derivatives on the Electrochemical Behavior of AISI 316 Austenitic Stainless Steel in Acidic Solutions Containing Chloride Ions. Materials Chemistry and Physics, 2005, 89, 38–48. [Google Scholar] [CrossRef]
- de Souza, F. S.; Spinelli, A. Caffeic Acid as a Green Corrosion Inhibitor for Mild Steel. Corrosion Science, 2009, 51, 642–649. [Google Scholar] [CrossRef]
- Raja, P. B.; Rahim, A. A.; Osman, H.; Awang, K. Inhibitive Effect of XylopiaFerruginea Extract on the Corrosion of Mild Steel in 1M HCl Medium. International Journal of Minerals, Metallurgy, and Materials, 2011, 18, 413–418. [Google Scholar] [CrossRef]
- Ali, T.; Warsi, M. F.; Zulfiqar, S.; Sami, A.; Ullah, S.; Rasheed, A.; Alsafari, I. A.; Agboola, P. O.; Shakir, I.; Baig, M. M. Green Nickel/Nickel Oxide Nanoparticles for Prospective Antibacterial and Environmental Remediation Applications. Ceramics International, 2022, 48, 8331–8340. [Google Scholar] [CrossRef]
- El-Lateef, H. M. A.; Gouda, M. Novel Nanocomposites of Nickel and Copper Oxide Nanoparticles Embedded in a Melamine Framework Containing Cellulose Nanocrystals: Material Features and Corrosion Protection Applications. Journal of Molecular Liquids, 2021, 342, 116960. [Google Scholar] [CrossRef]
- Mrunal, V. K.; Vishnu, A. K.; Momin, N.; Manjanna, J. Cu2O Nanoparticles for Adsorption and Photocatalytic Degradation of Methylene Blue Dye from Aqueous Medium. Environmental Nanotechnology, Monitoring & Management, 2019, 12, 100265. [Google Scholar] [CrossRef]
- Ardekani, P. S.; Karimi, H.; Ghaedi, M.; Asfaram, A.; Purkait, M. K. Ultrasonic Assisted Removal of Methylene Blue on Ultrasonically Synthesized Zinc Hydroxide Nanoparticles on Activated Carbon Prepared from Wood of Cherry Tree: Experimental Design Methodology and Artificial Neural Network. Journal of Molecular Liquids, 2017, 229, 114–124. [Google Scholar] [CrossRef]
- Razali, S. Z.; Aziz, M. Y.; Edinur, H. A.; Razali Ishak, A. Adsorption of Methylene Blue onto Iron Oxide Magnetic Nanoparticles Coated with Sugarcane Bagasse. IOP Conference Series: Earth and Environmental Science, 2020, 596, 012052. [Google Scholar] [CrossRef]
- Ramesh, A. V.; Rama Devi, D.; Mohan Botsa, S.; Basavaiah, K. Facile Green Synthesis of Fe3O4 Nanoparticles Using Aqueous Leaf Extract of ZanthoxylumArmatum DC. for Efficient Adsorption of Methylene Blue. Journal of Asian Ceramic Societies, 2018, 6, 145–155. [Google Scholar] [CrossRef]
- Kamaraj, M.; Srinivasan, N. R.; Assefa, G.; Adugna, A. T.; Kebede, M. Facile Development of Sunlit ZnO Nanoparticles-Activated Carbon Hybrid from Pernicious Weed as an Operative Nano-Adsorbent for Removal of Methylene Blue and Chromium from Aqueous Solution: Extended Application in Tannery Industrial Wastewater. Environmental Technology & Innovation, 2020, 17, 100540. [Google Scholar] [CrossRef]
- Escribà-Gelonch, M.; Butler, G. D.; Goswami, A.; Tran, N. N.; Hessel, V. Definition of Agronomic Circular Economy Metrics and Use for Assessment for a Nanofertilizer Case Study. Plant Physiology and Biochemistry, 2023, 196, 917–924. [Google Scholar] [CrossRef]
- Rabalao, T. M.; Ndaba, B.; Roopnarain, A.; Vatsha, B. Towards a Circular Economy: The Influence of Extraction Methods on Phytosynthesis of Metallic Nanoparticles and Their Impact on Crop Growth and Protection. JSFA reports, 2022, 2, 208–221. [Google Scholar] [CrossRef]
- Jeet, K.; Kumar, V.; Anushree; Devi, R. Valorization of Agricultural Wastes: A Step Toward Adoption of Smart Green Materials with Additional Benefit of Circular Economy. Handbook of Biomass Valorization for Industrial Applications, 2022, 343–367. [CrossRef]
- Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., Amin, N., ... & Imran, M. (2018). Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (TRITICUMAESTIVUM L.) by seed priming method. Digest Journal of Nanomaterials & Biostructures (DJNB), 13(1).
- Khodakovskaya, M. V.; Kim, B.; Kim, J. N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C. E. Carbon Nanotubes as Plant Growth Regulators: Effects on Tomato Growth, Reproductive System, and Soil Microbial Community. Small, 2012, 9, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Yang, J.; Peng, Q.; Liang, X.; Mao, H. Comparison Study of Zinc Nanoparticles and Zinc Sulphate on Wheat Growth: From Toxicity and Zinc Biofortification. Chemosphere, 2019, 227, 109–116. [Google Scholar] [CrossRef]
- Shebl, A.; Hassan, A. A.; Salama, D. M.; Abd El-Aziz, M. E.; Abd Elwahed, M. S. A. Green Synthesis of Nanofertilizers and Their Application as a Foliar forCucurbitaPepoL. Journal of Nanomaterials, 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Hou, T.; Zhu, S. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (ArachisHypogaea). Frontiers in Plant Science, 2016, 7. [CrossRef]
- Adisa, I. O.; Pullagurala, V. L. R.; Peralta-Videa, J. R.; Dimkpa, C. O.; Elmer, W. H.; Gardea-Torresdey, J. L.; White, J. C. Recent Advances in Nano-Enabled Fertilizers and Pesticides: A Critical Review of Mechanisms of Action. Environmental Science: Nano, 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Ghosh, S. K.; Bera, T. Molecular Mechanism of Nano-Fertilizer in Plant Growth and Development: A Recent Account. Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture, 2021, 535–560. [CrossRef]
- Solanki, P.; Bhargava, A.; Chhipa, H.; Jain, N.; Panwar, J. Nano-Fertilizers and Their Smart Delivery System. Nanotechnologies in Food and Agriculture, 2015, 81–101. [CrossRef]
- Singla, R.; Kumari, A.; Yadav, S. K. Impact of Nanomaterials on Plant Physiology and Functions. Nanomaterials and Plant Potential, 2019, 349–377. [CrossRef]
- Masarovičová, E.; Kráľová, K. Metal Nanoparticles and Plants / NanocząstkiMetaliczne I Rośliny. Ecological Chemistry and Engineering S, 2013, 20, 9–22. [Google Scholar] [CrossRef]
- SALAMA, D. M.; ABD EL-AZIZ, M. E.; EL-NAGGAR, M. E.; SHAABAN, E. A.; ABD EL-WAHED, M. S. Synthesis of an Eco-Friendly Nanocomposite Fertilizer for Common Bean Based on Carbon Nanoparticles from Agricultural Waste Biochar. Pedosphere, 2021, 31, 923–933. [Google Scholar] [CrossRef]
- Hussein, H. S.; Shaarawy, H. H.; Hussien, N. H.; Hawash, S. I. Preparation of Nano-Fertilizer Blend from Banana Peels. Bulletin of the National Research Centre, 2019, 43. [CrossRef]
- Abdel-Aziz, H. M. M.; Soliman, M. I.; Abo Al-Saoud, A. M.; El-Sherbeny, G. A. Waste-Derived NPK Nanofertilizer Enhances Growth and Productivity of Capsicum Annuum L. Plants, 2021, 10, 1144. [Google Scholar] [CrossRef] [PubMed]
- Pais, M.; George, S. D.; Rao, P. Glycogen Nanoparticles as a Potential Corrosion Inhibitor. International Journal of Biological Macromolecules, 2021, 182, 2117–2129. [Google Scholar] [CrossRef] [PubMed]
- Surendhiran, S.; Gowthambabu, V.; Balamurugan, A.; Sudha, M.; Senthil Kumar, V. B.; Suresh, K. C. Rapid Green Synthesis of CuO Nanoparticles and Evaluation of Its Photocatalytic and Electrochemical Corrosion Inhibition Performance. Materials Today: Proceedings, 2021, 47, 1011–1016. [Google Scholar] [CrossRef]
- Syed Khadar, Y. A.; Surendhiran, S.; Gowthambabu, V.; Halimabi Alias Shakila Banu, S.; Devabharathi, V.; Balamurugan, A. Enhancement of Corrosion Inhibition of Mild Steel in Acidic Media by Green-Synthesized Nano-Manganese Oxide. Materials Today: Proceedings, 2021, 47, 889–893. [Google Scholar] [CrossRef]
- Ungureanu, C.; Tihan, G. T.; Zgârian, R. G.; Fierascu, I.; Baroi, A. M.; Răileanu, S.; Fierăscu, R. C. Metallic and Metal Oxides Nanoparticles for Sensing Food Pathogens—An Overview of Recent Findings and Future Prospects. Materials, 2022, 15, 5374. [Google Scholar] [CrossRef]
- Ciani, M.; Adessi, A. Cyanoremediation and Phyconanotechnology: Cyanobacteria for Metal Biosorption toward a Circular Economy. Frontiers in Microbiology, 2023, 14. [CrossRef]
- Maddaloni, M.; Alessandri, I.; Vassalini, I. Food-Waste Enables Carboxylated Gold Nanoparticles to Completely Abat Hexavalent Chromium in Drinking Water. Environmental Nanotechnology, Monitoring & Management, 2022, 18, 100686. [Google Scholar] [CrossRef]
- Lokhande, R. S., Singare, P. U., & Pimple, D. S. (2011). Toxicity study of heavy metals pollutants in wastewater effluent samples collected from Taloja industrial estate of Mumbai, India. Resources and Environment, 1(1), 13-19. 1.
- Zhang, S.; Wang, J.; Zhang, Y.; Ma, J.; Huang, L.; Yu, S.; Chen, L.; Song, G.; Qiu, M.; Wang, X. Applications of Water-Stable Metal-Organic Frameworks in the Removal of Water Pollutants: A Review. Environmental Pollution, 2021, 291, 118076. [Google Scholar] [CrossRef]
- Shrivastava, P.; Jain, V. K.; Nagpal, S. Nanoparticle Intervention for Heavy Metal Detection: A Review. Environmental Nanotechnology, Monitoring & Management, 2022, 17, 100667. [Google Scholar] [CrossRef]
- Fu, L.; Li, X.; Yu, J.; Ye, J. Facile and Simultaneous Stripping Determination of Zinc, Cadmium and Lead on Disposable Multiwalled Carbon Nanotubes Modified Screen-Printed Electrode. Electroanalysis, 2013, 25, 567–572. [Google Scholar] [CrossRef]
- Xiao, L.; Wildgoose, G. G.; Compton, R. G. Sensitive Electrochemical Detection of Arsenic (III) Using Gold Nanoparticle Modified Carbon Nanotubes via Anodic Stripping Voltammetry. Analytica Chimica Acta, 2008, 620, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, Y.; Jin, H.; Zhuang, J.; Zhang, W.; Wang, S.; Wang, J. Synthesis of Au-Decorated Tripod-Shaped Te Hybrids for Applications in the Ultrasensitive Detection of Arsenic. ACS Applied Materials & Interfaces, 2013, 5, 5733–5740. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-J.; Tseng, W.-L. Colorimetric Detection of Mercury(II) in a High-Salinity Solution Using Gold Nanoparticles Capped with 3-Mercaptopropionate Acid and Adenosine Monophosphate. Langmuir, 2008, 24, 12717–12722. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Park, S.; Lee, S.; Yang, Y. I.; Song, H. D.; Yi, J. The Sensitive, Anion-Selective Detection of Arsenate with Poly(Allylamine Hydrochloride) by Single Particle Plasmon-Based Spectroscopy. Analytica Chimica Acta, 2011, 694, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Zhang, Y.; Zhou, K.; Yu, Z. Screen Graphene-Printed Electrode for Trace Cadmium Detection in Rice Samples Combing with Portable Potentiostat. International Journal of Electrochemical Science, 2018, 13, 6347–6357. [Google Scholar] [CrossRef]
- Ruengpirasiri, P.; Punrat, E.; Chailapakul, O.; Chuanuwatanakul, S. Graphene Oxide-Modified Electrode Coated with In-situ Antimony Film for the Simultaneous Determination of Heavy Metals by Sequential Injection-Anodic Stripping Voltammetry. Electroanalysis, 2016, 29, 1022–1030. [Google Scholar] [CrossRef]
- Chen, K.; Lu, G.; Chang, J.; Mao, S.; Yu, K.; Cui, S.; Chen, J. Hg(II) Ion Detection Using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles. Analytical Chemistry, 2012, 84, 4057–4062. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J. M.; Ariño, C.; Esteban, M. A Screen-Printed Voltammetric Electronic Tongue for the Analysis of Complex Mixtures of Metal Ions. Sensors and Actuators B: Chemical, 2017, 250, 393–401. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S. M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S. D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. Journal of Cleaner Production, 2023, 402, 136815. [Google Scholar] [CrossRef]
- Moreira, J. B.; Santos, T. D.; Duarte, J. H.; Bezerra, P. Q. M.; de Morais, M. G.; Costa, J. A. V. Role of Microalgae in Circular Bioeconomy: From Waste Treatment to Biofuel Production. Clean Technologies and Environmental Policy, 2021. [CrossRef]
- Mena-Cervantes, V. Y.; Hernández-Altamirano, R.; García-Solares, S. M.; Arreola-Valerio, E. Biodiesel in Circular Economy. Biofuels in Circular Economy, 2022, 251–278. [CrossRef]
- Rozina; Chia, S. R.; Ahmad, M.; Sultana, S.; Zafar, M.; Asif, S.; Bokhari, A.; Nomanbhay, S.; Mubashir, M.; Khoo, K. S.; Show, P. L. Green Synthesis of Biodiesel from Citrus Medica Seed Oil Using Green Nanoparticles of Copper Oxide. Fuel, 2022, 323, 124285. [CrossRef]
- Liu, Z.; Lv, F.; Zheng, H.; Zhang, C.; Wei, F.; Xing, X.-H. Enhanced Hydrogen Production in a UASB Reactor by Retaining Microbial Consortium onto Carbon Nanotubes (CNTs). International Journal of Hydrogen Energy, 2012, 37, 10619–10626. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A. P.; Birla, S.; Yadav, A.; Santos, C. A. D. Strategic Role of Selected Noble Metal Nanoparticles in Medicine. Critical Reviews in Microbiology, 2015, 1–24. [CrossRef]
- Shakeel, N.; Ahamed, M. I.; Ahmed, A.; Inamuddin; Rahman, M. M.; Asiri, A. M. Functionalized Magnetic Nanoparticle-Reduced Graphene Oxide Nanocomposite for Enzymatic Biofuel Cell Applications. International Journal of Hydrogen Energy, 2019, 44, 28294–28304. [CrossRef]
- Dantas, J.; Leal, E.; Mapossa, A. B.; Cornejo, D. R.; Costa, A. C. F. M. Magnetic Nanocatalysts of Ni0.5Zn0.5Fe2O4 Doped with Cu and Performance Evaluation in Transesterification Reaction for Biodiesel Production. Fuel, 2017, 191, 463–471. [CrossRef]
- Cherian, E.; Dharmendirakumar, M.; Baskar, G. Immobilization of Cellulase onto MnO2 Nanoparticles for Bioethanol Production by Enhanced Hydrolysis of Agricultural Waste. Chinese Journal of Catalysis, 2015, 36, 1223–1229. [Google Scholar] [CrossRef]
- Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green Synthesis of Fe Nanoparticles Using Eucalyptus Leaf Extracts for Treatment of Eutrophic Wastewater. Science of The Total Environment, 2014, 466–467, 210–213. [CrossRef]
- Hou, J.; Yang, Y.; Wang, P.; Wang, C.; Miao, L.; Wang, X.; Lv, B.; You, G.; Liu, Z. Effects of CeO2, CuO, and ZnO Nanoparticles on Physiological Features of Microcystis Aeruginosa and the Production and Composition of Extracellular Polymeric Substances. Environmental Science and Pollution Research, 2016, 24, 226–235. [Google Scholar] [CrossRef]
- Sai Ram, M.; Singh, L.; Suryanarayana, M. V. S.; Alam, S. I. Water, Air, and Soil Pollution, 2000, 117, 305–312. [CrossRef]
- Hart, A. Circular Economy: Closing the Catalyst Loop with Metal Reclamation from Spent Catalysts, Industrial Waste, Waste Shells and Animal Bones. Biomass Conversion and Biorefinery, 2021, 13, 11483–11498. [Google Scholar] [CrossRef]
- Wrasman, C. J.; Wilson, A. N.; Mante, O. D.; Iisa, K.; Dutta, A.; Talmadge, M. S.; Dayton, D. C.; Uppili, S.; Watson, M. J.; Xu, X.; Griffin, M. B.; Mukarakate, C.; Schaidle, J. A.; Nimlos, M. R. Catalytic Pyrolysis as a Platform Technology for Supporting the Circular Carbon Economy. Nature Catalysis, 2023, 6, 563–573. [Google Scholar] [CrossRef]
- Chen, Z.; Yun, S.; Wu, L.; Zhang, J.; Shi, X.; Wei, W.; Liu, Y.; Zheng, R.; Han, N.; Ni, B.-J. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy. Nano-Micro Letters, 2022, 15. [CrossRef]
- Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A. A.; Musarrat, J. Understanding the Role of Nanomaterials in Agriculture. Microbial Inoculants in Sustainable Agricultural Productivity, 2016, 271–288. [CrossRef]
- Servin, A.; Elmer, W.; Mukherjee, A.; De la Torre-Roche, R.; Hamdi, H.; White, J. C.; Bindraban, P.; Dimkpa, C. A Review of the Use of Engineered Nanomaterials to Suppress Plant Disease and Enhance Crop Yield. Journal of Nanoparticle Research, 2015, 17. [CrossRef]
- Wang, Y.; Jia, H.; Chen, P.; Fang, X.; Du, T. Synthesis of La and Ce Modified X Zeolite from Rice Husk Ash for Carbon Dioxide Capture. Journal of Materials Research and Technology, 2020, 9, 4368–4378. [Google Scholar] [CrossRef]
- Hsieh, S.-L.; Li, F.-Y.; Lin, P.-Y.; Beck, D. E.; Kirankumar, R.; Wang, G.-J.; Hsieh, S. CaO Recovered from Eggshell Waste as a Potential Adsorbent for Greenhouse Gas CO2. Journal of Environmental Management, 2021, 297, 113430. [Google Scholar] [CrossRef]
- VANATHI, P.; RAJIV, P.; SIVARAJ, R. Synthesis and Characterization of Eichhornia-Mediated Copper Oxide Nanoparticles and Assessing Their Antifungal Activity against Plant Pathogens. Bulletin of Materials Science, 2016, 39, 1165–1170. [Google Scholar] [CrossRef]
- Sharifi-Rad, J., Sharifi-Rad, M., & Teixeira da Silva, J. A. (2018). Morphological, Physiological and Biochemical Responses of Crops (Zea mays L., Phaseolus vulgaris L.), Medicinal Plants (Hyssopus officinalis L., Nigella sativa L.), and Weeds (Amaranthus retroflexus L., Taraxacumofficinale FH Wigg) Exposed to SiO 2 Nanoparticles.
- Intisar, A.; Ramzan, A.; Sawaira, T.; Kareem, A. T.; Hussain, N.; Din, M. I.; Bilal, M.; Iqbal, H. M. N. Occurrence, Toxic Effects, and Mitigation of Pesticides as Emerging Environmental Pollutants Using Robust Nanomaterials—A Review. Chemosphere, 2022, 293, 133538. [Google Scholar] [CrossRef] [PubMed]
- Bindra, H. S.; Singh, B. Nanofertilizers and Nanopesticides: Future of Plant Protection. Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture, 2021, 57–84. [CrossRef]
- Moorthi, P. V.; Balasubramanian, C.; Mohan, S. An Improved Insecticidal Activity of Silver Nanoparticle Synthesized by Using SargassumMuticum. Applied Biochemistry and Biotechnology, 2014, 175, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Devi, G. D. , Murugan, K., & Selvam, C. P. Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpaarmigera (Lepidoptera: Noctuidae). Journal of Biopesticides, 2014, 7, 54. [Google Scholar]
- Madhiyazhagan, P.; Murugan, K.; Kumar, A. N.; Nataraj, T.; Dinesh, D.; Panneerselvam, C.; Subramaniam, J.; Kumar, P. M.; Suresh, U.; Roni, M.; Nicoletti, M.; Alarfaj, A. A.; Higuchi, A.; Munusamy, M. A.; Benelli, G. S ArgassumMuticum-Synthesized Silver Nanoparticles: An Effective Control Tool against Mosquito Vectors and Bacterial Pathogens. Parasitology Research, 2015, 114, 4305–4317. [Google Scholar] [CrossRef] [PubMed]
- Kamil, D., Prameeladevi, T., Ganesh, S., Prabhakaran, N., Nareshkumar, R., & Thomas, S. P. (2017). Green synthesis of silver nanoparticles by entomopathogenic fungus Beauveriabassiana and their bioefficacy against mustard aphid (LipaphiserysimiKalt.).
- Roni, M.; Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Nicoletti, M.; Madhiyazhagan, P.; Dinesh, D.; Suresh, U.; Khater, H. F.; Wei, H.; Canale, A.; Alarfaj, A. A.; Munusamy, M. A.; Higuchi, A.; Benelli, G. Characterization and Biotoxicity of HypneaMusciformis-Synthesized Silver Nanoparticles as Potential Eco-Friendly Control Tool against Aedes Aegypti and PlutellaXylostella. Ecotoxicology and Environmental Safety, 2015, 121, 31–38. [Google Scholar] [CrossRef]
- Siva, C., Kumar, M. S., Nagar, G., Nadu, T., Nagar, G., & Nadu, T. (2015). The pesticidal activity of eco-friendly synthesized silver nanoparticles using Aristolochiaindica extracts against HelicoverpaarmigeraHubner (Lepidoptera: Noctuidae). Int J Adv Sci Tech Res, 2(5), 197-226.
- Zahir, A. A., Bagavan, A., Kamaraj, C., Elango, G., &Rahuman, A. A. (2012). Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. Journal of Biopesticides, 5, 95.
- Chandrashekharaiah, M.; Kandakoor, S. B.; Basana Gowda, G.; Kammar, V.; Chakravarthy, A. K. Nanomaterials: A Review of Their Action and Application in Pest Management and Evaluation of DNA-Tagged Particles. New Horizons in Insect Science: Towards Sustainable Pest Management, 2015, 113–126. [CrossRef]
- Sahayaraj, K.; Madasamy, M.; Anbu Radhika, S. INSECTICIDAL ACTIVITY OF BIO-SILVER AND GOLD NANOPARTICLES AGAINST PERICALLIA RICINI FAB.(LEPIDAPTERA: ARCHIDAE). Journal of Biopesticides, 2016, 9, 63–72. [Google Scholar] [CrossRef]
- El-Saadony, M. T.; Abd El-Hack, M. E.; Taha, A. E.; Fouda, M. M. G.; Ajarem, J. S.; N. Maodaa, S.; Allam, A. A.; Elshaer, N. Ecofriendly Synthesis and Insecticidal Application of Copper Nanoparticles against the Storage Pest TriboliumCastaneum. Nanomaterials, 2020, 10, 587. [CrossRef]
- Muthamil Selvan, S.; Vijai Anand, K.; Govindaraju, K.; Tamilselvan, S.; Kumar, V. G.; Subramanian, K. S.; Kannan, M.; Raja, K. Green Synthesis of Copper Oxide Nanoparticles and Mosquito Larvicidal Activity against Dengue, Zika and Chikungunya Causing Vector Aedes Aegypti. IET Nanobiotechnology, 2018, 12, 1042–1046. [Google Scholar] [CrossRef]
- Stadler, T.; Buteler, M.; Weaver, D. K. Novel Use of Nanostructured Alumina as an Insecticide. Pest Management Science, 2010, 66, 577–579. [Google Scholar] [CrossRef]
- Hamza, R. Z. M. M. (2015). Larvicidal, antioxidant activities and perturbation of transaminases activities of titanium dioxide nanoparticles synthesized using Moringa oleifera leaves extract against the red palm WEEVIL (Rhynchophorusferrugineus. Innovare academic sciences, 49-54.
- Nair, R.; Varghese, S. H.; Nair, B. G.; Maekawa, T.; Yoshida, Y.; Kumar, D. S. Nanoparticulate Material Delivery to Plants. Plant Science, 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Santiago, E. F.; Pontes, M. S.; Arruda, G. J.; Caires, A. R. L.; Colbeck, I.; Maldonado-Rodriguez, R.; Grillo, R. Understanding the Interaction of Nanopesticides with Plants. Nanopesticides, 2020, 69–109. [CrossRef]
- Patil, C. D.; Borase, H. P.; Suryawanshi, R. K.; Patil., S. V. Trypsin Inactivation by Latex Fabricated Gold Nanoparticles: A New Strategy towards Insect Control. Enzyme and Microbial Technology, 2016, 92, 18–25. [CrossRef]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A Need for Relevant Indicators. Ecological Indicators, 2016, 60, 565–573. [Google Scholar] [CrossRef]


| Plant | Nanoparticles | Applications | Reference |
|---|---|---|---|
| Ficuscarica | Fe3O4 | Antioxidant | [16] |
| Azadirachtaindica | CuO | Anticancer | [16] |
| Peltophorumpterocarpum | Fe3O4 | Degradation of Rhodomine | [17] |
| Terminalia chebula | Fe3O4 | Degradation of MB | [17] |
| Punicagranatum | ZnO | Antibacterial | [18] |
| Lactucaserriols | NiO | Dye Degradation | [19] |
| Vitisrotundifolia | CoO | Acid blue dye degradation | [20] |
| Ziziphus spina-christi | ZnO-SeO | Antimicrobial/ antioxidant activity | [21] |
| Seriphidiumoliverianum | CuO | Photocatalytic dye degradation from water | [22] |
| Punicagranatum | Ag2O | antibiotic removal from wastewater | [23] |
| Jacaranda mimosaefolia | Cu | Corrosion inhibition | [24] |
| Scallion’s peel | ZnO | Nano fertilizer | [25] |
| FicusBenjamina | TiO2 | Heavy metal detection | [26] |
| watermelon | CaO | The catalyst for biofuel production | [27] |
| Cola nitida | FeO | Absorption of MB/MO dye from wastewater | [28] |
| Nanoparticle | Plant | Effect | Efficiency | Reference |
|---|---|---|---|---|
| Glycogen NP | Biogenic sources | Controlled the corrosion of zinc in sulfamic acid (NH2SO3H) | 92% for 0.02 gL-1 | [23] |
| CuO |
Moringa oleifera leaf extract |
Improved overall anticorrosive activity | 56% | [36,59] |
| Manganese oxide | Rose petal (RP) and lotus petal (LP) | Overall anticorrosion behavior of mild steel increased | 72.63% | [23] |
| Ag | Citrus reticulata peels extract | Inhibited steel corrosion from HCl | 93.9% at 303K and 90.3% at 333K | [37] |
| Ag | palm oil leaf extracts | A protective film formed which protected the steel from acid attack | 94.1% | [38] |
| Ag nanocomposite | Red onion peels | A surface protection layer formed against corrosion | 86% | [39] |
| Cellulose nanocrystal | Organic product | Protected AISI360-steel from corrosion in petroleum manufacturing. | 85.3% at 300 mg L-1 | [40] |
| CuO/melamine/cellulose nanocrystals nanocomposite | Organic product | Protected AISI360-steel from corrosion in petroleum manufacturing. | 96.8% at 300 mg L-1 | [41] |
| NiO/melamine/cellulose nanocrystals nanocomposite | Organic product | Protected AISI360 steel from corrosion in petroleum manufacturing. | 98.3% at 300 mg L-1 | [42] |
| Nanoparticle | Plant Affected | Effect | Reference |
|---|---|---|---|
| Hydroxylapatite (Ca5(PO4)3OH) | Soybean (Glycine max) | Increase of 33% growth rate and 20% seed yield | [54] |
| AgNPs | red ginseng shoot | Ginsenoside content increased | [55] |
| TiO2 | aged spinach seeds | Increased germination rate due to increase in nitrogen assimilation | [56] |
| Iron oxide | Soybean | 48% increase in grain yield | [57] |
| Ag | Fusarium solani | Reduced fungal infection | [58] |
| C nanoparticle | Phaseolus vulgaris L. | Improved the quality and constituents of leaves and seeds. | [59] |
| K+, Fe, tryptophan, urea, amino acids | tomato, fenugreek |
Increased germination percentage of tomato from 14% to 97% and fenugreek from 25% to 93.14%. | [60] |
| Nano-NPK | Capsicum annuum leaves | Caused better quality of fruit and increased the yield too. | [61] |
| Nanoparticles | Heavy Metal Detected | Limit of Detection | Reference |
|---|---|---|---|
| Multiwalled carbon nanotube | Zn (II) | 0.3 μgL-1 | [68] |
| Multiwalled carbon nanotube | Pb (II) | 0.07 μgL-1 | [68] |
| Multiwalled carbon nanotube | Cd (II) | 0.1 μgL-1 | [68] |
| CNT/ Pt | As (III) | - | [69] |
| Au-decorated Te hybrids | As (III) | 0.0026 ppb | [70] |
| AuNP | Hg (II) | - | [71] |
| AuNP | As | 0.01 μM | [72] |
| Graphene | Cd (II) | 10-7 M | [73] |
| Graphene oxide | Cd (II) | 0.1-1.5 μM | [74] |
| Graphene oxide | Hg (II) | 2.5 x 10-8 M | [75] |
| AuNP | Cr | 0.01 μM | [75] |
| Carbon nanofibers | Bi (III) | 16.8 μgL-1 | [76] |
| Carbon nanofibers | In (III) | 3 μgL-1 | [76] |
| Nanoparticles | Effect | Reference |
|---|---|---|
| Carbon nanotubes | Used in biosensors and microbial fuel cell fabrication as well as a catalyst in biofuel production also raises the overall concentration of enzymes in biofuel generation as well as helps in enzyme mobilization | [81,82] |
| Aniline incorporated with Fe3O4-NH2 and reduced graphene oxide nanocomposite | Enhanced the process of bio-electrocatalysis of glucose oxidase | [83] |
| magnetic nano ferrites doped with calcium |
Raises biodiesel production yield | [84] |
| MnO2 with sugarcane leaf | Increased bioethanol synthesis | [85] |
| Nano zero-valent iron (nZVI) and Fe2O3 | Improves the production of biogas like methane | [86] |
| CeO2 | Improved the production of biogas | [87] |
| Pt and silica | Raises methane production yield | [88] |
| Ni and silica | Raises methane production yield | [88] |
| Co and silica | Raises methane production yield | [88] |
| Fe and silica | Raises methane production yield | [88] |
| Nanoparticle | Treated along with | Period of experiment | Temperature | reference |
|---|---|---|---|---|
| CoNP-treated cocoa shell | Cocoa shell and 3-aminopropyltriethoxysilane | 25 °C | [94] | |
| magnetite nano capsules nanocomposite | polyaniline | 90 minutes | 28 °C | [94] |
| Porous silica nanoparticle | Polyethyleneimine | 30 minutes | 75 °C | [95] |
| La and Ce | Zeolite | - | 0, 30, 60 °C | [95] |
| CaO | Eggshell waste | 23 minutes | 700-900 °C | [96] |
| MgO | Graphene oxide | - | 60-120 °C | [96] |
| Nanoparticle. | Activity | Pests affected | Reference |
|---|---|---|---|
| ZnO | Blocks the organism. | Fusarium graminearum, Penicillium expansum, Alternaria alternate, F. oxysporum, Rhizopus stolonifer, Mucorplumbeus, Pseudomonas aeruginosa and Aspergillus flavus | [92,93,97] |
| MO | Stops fungal conidiophores and conidia growth on vegetative parts of fungi | Conidia and conidiophores of fungi | [98] |
| C nanotubes | Raises the nutrients and elemental uptake by plants and is also involved in ameliorating the development of plants. | [99,100] | |
| Ag | Is used to control agricultural pests and organisms. | Helicoverpaarmigera, Ariadne merione, Pediculushumanus, Aedesstephensi, Aedes aegypti, Culex quinquefasciatus, Lipaphiserysimiwas, Plutellaxylostella, Helicoverpaarmigera and Sitophilus oryzae. | [101,102,103,104,105,106,107] |
| Cd | Causes larval death of 93.79% at 2400 ppm | Spodopteralitura | [108] |
| TiO2 | Causes larval death of 73.79% at 2400 ppm | Spodopteralitura | [108] |
| Pungam oil based AuNP | Causes high mortality of pests. | Pericalliaricini larvae | [109] |
| Cu | Causes toxicity against pests. | Triboliumcastaneum, Spodopteralittoralis larvae, Aedes aegypti larvae | [110,111] |
| nanostructured alumina (Al2O3) | Causes mortality when exposed to wheat pests. | Sitophilus oryzae, and Rhizopertha Dominica | [112] |
| Al | Kills the pest | S. oryzae | [113] |
| TiO2 | Destroys the pest | S. oryzae | [113] |
| Nanosilica | Enters inside the pest from the cuticle, thus, destroying the pest | Different pests | [114] |
| Nanosphere of silica | Helps bactericides to enter into plant cell sap | - | [115] |
| Bioactive silver | Lags the action of trypsin, hence, makes the pest harmless. | Different pests | [116] |
| AuNPs with protein | Improves catalytic inhibition | - | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
