Preprint Article Version 2 Preserved in Portico This version is not peer-reviewed

Water-Filling Characteristics and Water Source of Weakly Rich Water and Weakly Conducting Water Aquifers in the Changxing Formation after Mining Damage

Version 1 : Received: 5 February 2024 / Approved: 5 February 2024 / Online: 6 February 2024 (03:49:11 CET)
Version 2 : Received: 8 May 2024 / Approved: 9 May 2024 / Online: 13 May 2024 (04:30:16 CEST)

A peer-reviewed article of this Preprint also exists.

Shi, X.; Xu, G.; Zhu, S. Water-Filling Characteristics and Water Source of Weakly Rich Water and Weakly Conducting Water Aquifers in the Changxing Formation after Mining Damage. Appl. Sci. 2024, 14, 4018. Shi, X.; Xu, G.; Zhu, S. Water-Filling Characteristics and Water Source of Weakly Rich Water and Weakly Conducting Water Aquifers in the Changxing Formation after Mining Damage. Appl. Sci. 2024, 14, 4018.

Abstract

The escalation of mining activities in the karst regions of Guizhou Province has heightened the occurrence of water-inrush incidents in deep coal mines. This study focused on water-inrush phenomena within the Xinhua mining area of Jinsha County, Guizhou Province, aiming to investigate the sources of these incidents. The findings indicated that the overlying limestone of the Changxing Formation in the coal seam served as a vulnerable aquifer under certain conditions, leading to water inrushes. The analysis of the spatiotemporal distribution patterns of water-inrush incidents at the working face indicated that previous mining operations damaged the shallow Changxing Formation limestone, resulting in the accumulation of goaf water and the formation of numerous mining-induced fractures. These fractures served as rapid conduits for water inrushes from both atmospheric precipitation and underground sources at the deep working face. The examination of surface water and mine water quality demonstrated that both exhibited similar characteristics, predominantly featuring bicarbonate, sulfate, and sodium compositions. Investigation into the relationship between mine water inflow and atmospheric precipitation established that atmospheric precipitation influenced the mine water supply cycle, with a replenishment period of ~10 months during the operational phase of the Jinyuan Coal Mine and about one month post-closure. The fractures induced by mining activities within the Changxing Formation limestone facilitated water flow, with atmospheric precipitation serving as the primary water source for the mine. This study offered a valuable scientific foundation for addressing water-related damage resulting from atmospheric precipitation in mines susceptible to water inrushes under analogous hydrogeological conditions.

Keywords

Changxing Formation limestone; mining-induced fractures; mine water-inrush source; atmospheric precipitation

Subject

Environmental and Earth Sciences, Geophysics and Geology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.