Preprint
Article

Understanding Atomic Mass Unit, Avogadro Number, Atomic Radii and Electrochemical Equivalents with 4G Model of Final Unification

This version is not peer-reviewed.

Submitted:

08 February 2024

Posted:

08 February 2024

You are already at the latest version

Abstract
Based on three assumptions of our 4G model of final unification, we have developed simple logics for estimating the unified atomic mass unit, atomic electrochemical equivalents, Faraday constant and Avogadro number. We appeal the science community to review the following points. 1) Unified atomic mass or energy unit can be considered as ‘average rest energy of nucleons minus average binding energy per nucleon of all atomic nuclides plus electron rest energy’. 2) Electrochemical equivalent of any atomic ion is nothing but the ratio of its mass to its charge. 3) Faraday charge is nothing but the ratio of elementary charge to unified atomic mass unit. 4) Faraday mass can be considered as the inverse of Faraday charge. 5) Avogadro number is nothing but the inverse of unified atomic mass unit. 6) Number of atoms per kg can be called as Kg-mole and number of atoms per gram can be called as gram-mole. Following our 4G model, starting form A=5 to 340, for isobars, ‘average binding energy per nucleon’ having maximum binding energy can be estimated with a simple relation of the form, BE/A=A-1[1-(0.5+0.000935A2)-A1/3]10.1MeV. It needs a review and fine tuning.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  

1. Introduction

Following Abdus Salam et al.[1] and Roberto Onofrio [2], in our recent and previous published papers [3,4,5,6,7,8,9,10], we proposed the possible existence of three large gravitational constants assumed to be associated with the electromagnetic, strong and weak interactions. By following this idea, in analogy with Planck scale, as an immediate result, it seems possible to have three different characteristic string amplitudes corresponding to electromagnetic, strong and weak interactions. In this way, String theory [11,12] can be shaped to a model of elementary particle physics associated with 3+1 dimensions. As the subject under consideration deals with 4 different gravitational constants, our model can be called as 4G model of final unification or Microscopic Quantum Gravity. By stressing the existence of nuclear elementary charge and highlighting other applications like understanding elementary magnetic moments, understanding quantum constants and radiation constants, fitting Fermi’s weak coupling constant, understanding nuclear binding energy with 4 simple terms and one energy coefficient, understanding quarks’ electromagnetic charges and estimation of electron neutrino rest mass, in this paper, we make an attempt to estimate the unified atomic mass unit, Avogadro number, atomic electrochemical equivalents and atomic radii. It may be noted that, starting from sections 1 to 3 are in review as a ‘short letter’. Parts of sections 3 and 6 are also in review.

2. Three simple assumptions of 4G model of final unification

Our three assumptions are,
1)
There exists a characteristic weak fermion of rest energy, M w f c 2 584.725   GeV . It can be considered as the zygote of all elementary particles [7].
2)
There exists a nuclear elementary charge in such a way that, e e n 2 α s 0.1152 = Strong coupling constant [13] and e n 2.9464 e .
3)
Each atomic interaction is associated with a characteristic large gravitational coupling constant. Their fitted magnitudes are,
G e Electromgnetic   gravitational   constant 2.374335 × 10 37   m 3 kg - 1 sec - 2 G n Nuclear   gravitational   constant 3.329561 × 10 28 m 3 kg - 1 sec - 2 G w Electroweak   gravitational   constant 2.909745 × 10 22   m 3 kg - 1 sec - 2
Unification point of view, most important relation is   c G w M w f 2 . Planck length can be addressed with G N / c 3 G w G N M w f / c 2 . In a unified approach, Newtonian gravitational constant [14] can be addressed with G N G w 21 G e 10 G n 30 6.679851 × 10 11   m 3 kg - 1 sec - 2 . Strange and interesting ratio associated with Avogadro like number is G w G n G N G e G n 31 G w 20 G e 11 6.1085 × 10 23 . Clearly speaking, ratio of the product of short ranges forces and the product of long range forces somehow seems to be connected with the observed Avogadro like number. Proton-electron mass ratio can be addressed with m p m e G n 3 G w 2 G e . High energy physics point of view, we would like to emphasize the point that, currently believed strong coupling constant is inherently connected with ordinary electromagnetic charge and the proposed nuclear charge. It needs a very critical review. It can be addressed with α s e e n 2 G e 4 G w 6 G n 10 G N 1 / 3 G e 2 / 3 G w 0.1151937. Considering weak and electromagnetic gravitational constants, neutron life time [13] can be fitted with a very simple relation of the form, t n G e 2 m n 2 G w m n m p c 3 875.0   sec . Based on the proposed assumptions and with reference to the cosmic force of the form c 4 / G N , for the three atomic interactions, at atomic scale, interaction strength can be defined as,
For weak interaction, c 4 / G w / c 4 / G N G N / G w 2.294 × 10 33 .
For nuclear or strong interaction, c 4 / G n / c 4 / G N G N / G n 2.0 × 10 39 .
For electromagnetic interaction, c 4 / G e / c 4 / G N G N / G e 2 . 811 × 10 48 .
Based on these values, at atomic scale, it seems logical to say that, based on c 4 / G N
a)
Interaction range is inversely proportional to interaction strength.
b)
Effective magnitude of the operating gravitational constant is, G x G N Interaction   strength

3. Atomic, nuclear and sub-nuclear applications

Clearly speaking gravity associated with weak interaction seems to play a crucial role in exploring the mystery of quantum phenomena. Fermi’s weak coupling constant can be addressed with,
G F m e m p 2 c R 0 2 G w M w f 2 R w 2   1.44021 × 10 62   J . m 3 where   R 0 2 G n m p c 2 1 . 24   × 10 15   m   R w 2 G w M w f c 2 6.75 × 10 19   m
Important relation pertaining to final unification can be expressed as, c G w M w f 2 . With reference to the assumed gravity associated with electron, characteristic radius of electron can be addressed with R e l e 2 G e m e c 2 4 . 813   × 10 10   m 0.48   nm . We are working on understanding the applications of this length at nano-scale. The most puzzling root mean square radius of proton can be addressed with R p 4 π ε 0 2 e n 2 m p m p c α s α m p c 0.835   fm . Quantum of magnetic flux can be addressed [15] with h e e n e μ 0 4 π G e m e 2 . Most fundamental Planck’s radiation constant can be addressed with h e n 2 4 π ε 0 c G e m e 2 c e n e e 2 4 π ε 0 c G e m e 2 c . Reduced Planck’s constant can be addressed with e e n G n m p 2 c . Proton magnetic moment can be expressed as μ p e G n m p 2 c . Bohr magneton can be expressed as μ e e 2 m e e G n m p 2 c e G e m e 2 c e m e ÷ e n m p μ p . Clearly speaking, ratio of Bohr magneton to proton magnetic moment is close to the ratio of specific charge ratio of electron having a charge e and proton having a charge e n 2.9464 e . Electron’s anomalous magnetic moment can be addressed with a factor 1 + α 2 π μ B o h r 1 + e 2 4 π ε 0 h c μ B o h r . Fine structure ratio can be addressed with α e 2 4 π ε 0 c e e n 4 π ε 0 G n m p 2 . Based on these expressions, it seems possible to understand the discreteness of elementary angular momentum with the discrete nature of elementary particle rest masses.
With reference to currently believed Semi Empirical Mass Formula (SEMF), we call our formula as ‘Strong and Electroweak Mass Formula’ (SEWMF).It constitutes 4 simple terms and single binding energy potential or coefficient addressed with e n 2 8 π ε 0 0.62   fm 10.1   MeV where G n m p c 2 0.62   fm   and   α 2 π e 2 4 π ε 0 h c 13.6   eV 10.1   MeV . This is a very interesting observation. Fortunately this energy coefficient is very close to the average rest energy of 3 Up quarks and 3 Down quarks. Simplified formula can be expressed as, B E A A f r e e A r a d A a s y 10.1   MeV
where A f r e e 2 N Z + 0.0016 Z 2 + A 2 2 A r a d A 1 / 3 , A a s y m A s A 2 A s and A s 2 Z + 0.0016 2 Z 2 2 Z + 0.0064 Z 2 m p M w f 938 . 272   MeV 584725   MeV m π c 2 0 m π c 2 ± m z c 2 0 m w c 2 ± 134 . 98 × 139 . 57   MeV 80379 . 0 × 91187 . 6   MeV 0.0016
First term is a volume term, second term is associated with free nucleons pertaining to electroweak interaction, third term is a radial term and fourth one is an asymmetry term about a light house like stable mass number associated with weak interaction coefficient 0.0016. Here it is very important to note that, 0.0016 is the ratio of proton rest energy of 938.272 MeV and the assumed weak fermion of rest energy 584.725 GeV. It is noticed that, the ratio of mean mass of pions to mean mass of weak bosons is accurately matching with 0.0016. Thus, we have clearly established the combined and independent roles of strong and weak interactions in basic nuclear physics [16]. With this kind of approach, cold nuclear fusion like complicated concepts can be understood independent of Coulombic repulsions [17,18].We are working on finding alternative expressions for estimating the number of free nucleons. Approximate new expressions are [19], A f r e e 0.0016 Z 2 + N 2 + Z 2 N 2 A 2 Z 2 2 , A f r e e 0.0016 A N Z + A + A s 2 Z and A f r e e 0.004156 N 1 Z 1 where 10.1   MeV / 584.725   GeV 0.004156. Based on the proposed nuclear charge, nuclear stability can also be understood with A s Z + 2.9464 1.2 1 and   e n e 1 / 6 1.2. This can be confirmed with Green’s beta stability relation [20,21], Z A s 2 0.2 A s 2 A s + 200 . Proceeding further, Myer and Swiatecki’s mass formula energy coefficients can be fixed with a reference potential energy of e n 2 4 π ε 0 0.62   fm 1 20.2   MeV . Volume and surface energy coefficients can be addressed with 1 2 α s 20.2   MeV and 1 α s 20.2   MeV respectively. Interesting point to be noted is that all other minor energy coefficients are interlinked with expressions like 1 2 α s 20.2   MeV , α s 20.2   MeV , 2 α s 20.2   MeV and 3 α s 20.2   MeV . Isospin coefficients of volume and surface energy terms can be fitted with 2 1 + α s 1 α s 2 α s . We have developed the above relations with reference to the following advanced mass formula [22].
B E 1 + 4 k v A 2 T z T z + 1 a v * A + 1 + 4 k s A 2 T z T z + 1 a s * A 2 3 + a c * Z 2 A 1 / 3 + f p * Z 2 A + E p
where, T z 3 rd   component   of   isospin   = 1 2 Z N
a v = 15.4963   MeV ,   a s = 17.7937   MeV k v = 1.8232 ,   k s = 2.2593 a c = 0.7093   MeV ,   f p = 1.2739   MeV d n = 4.6919   MeV ,   d p = 4.7230   MeV d n p = 6.4920   MeV and for   Z ,   N     Odd ,   E p d n N 1 / 3 + d p Z 1 / 3 + d n p A 2 / 3 for   Odd   Z ,   Even   N   ,   E p d p Z 1 / 3 for   Even   Z ,   Odd   N   ,   E p d n N 1 / 3 for   Even   Z ,   Even   N   ,   E p 0
Medium and heavy atomic nuclides’ charge radii [23,24] can be addressed with R   Z , N Z 1 / 3 + N Z 1 / 3 0.62   fm . Considering our proposed e n 2.9464 e as a characteristic quark charge, it seems possible to understand the integral nature [25,26,27] of quarks’ electromagnetic charge. A detailed paper is in review on magnetic and radiation constants, quarks’ electromagnetic charges and other applications [28].
a)
Up, Charm and Top quark’s electromagnetic charge is + 2 3 e n + 2 e .
b)
Down, Strange and Bottom quark’s electromagnetic charge is 1 3 e n e .
c)
Quarks having an electromagnetic charge of ± 2 e and e can be called as integral charge quarks.
d)
There exists no repulsion between any two particles having same kind of nuclear charge.
For example, proton can be assumed to have one up quark pair and one anti down quark. Neutron can be assumed to have two anti down quarks and one anti up quark. Positive and negative pions can be assumed to have one Up quark and one down quark or one anti up quark and anti down quark. Neutral pions can be assumed to have one Up quark pair or one down quark pair. Thus, decay of neutrons, protons and pions can be understood very easily. For the case of neutron decay, one anti up quark transforms to one down quark and releases one electron. For the case of proton decay, one up quark transforms to one anti down quark and releases one positron. In case of charged pions, up quark plays a vital role in the decay process. For positive pion, up quark transforms positive electron or positive muon and generates a neutral pion. For negative pion, anti up quark transforms to electron or negative muon and generates a neutral pion. With reference to Up quark pair, neutral pion can decay into 2 positive particles and two negative particles. With reference to down quark pair, neutral pion can decay into one positive particle and one negative particle. In this way, neutron, proton and pions decay can be understood very easily. In all the cases, up quark of charge ± 2 e seems to play a crucial role in final decay. In the given Table 1, it may be noted that, in the second column, quark charges expressed in ‘( )’ indicate their own internal decay in the third column. This proposal can be applied to all 6 quarks without any difficulty.

4. Understanding the rest mass of electron neutrino

Based on the above applications, we noticed that, there exists an electron neutrino [29,30] or gravitino like a neutral fermion of rest mass, m x f m e 6 / m p 5 4.365 × 10 47   kg . Similar to the proposed, m x f m e 6 / m p 5 , current recommended value of electron neutrino mass can be fitted with, m e 3 m p 2 2.7 × 10 37   kg 0 . 15   eV / c 2 .   Mass ratio of proposed and believed electron neutrino is m e / m p 3 and needs a review. Considering M w f c 2 584.725 GeV as the weak fermion, electron and electron neutrino rest masses can be addressed with m e G w G n M w f and m x f G w G N G n M w f respectively where G w , G n and G N represent electroweak, nuclear and Newtonian gravitational constants respectively. In a verifiable approach with other relations, our adopted procedure is mainly associated with interpreting the large numbers as m p / m e 10 m e / m x f 2 and m p / m e 12 m p / m x f 2 . With reference to strong coupling constant, we noticed that, ln m e / m x f 2 ln G w / G N 1 / α s 2 0.1152 2 . With reference to the proposed electron neutrino rest mass, Planck length can be addressed with a very interesting relation of the form, G N / c 3 G n m x f / c 2 .
Considering nuclear unit charge, unit volume, Fermi’s weak coupling constant and based on proton, electron and proposed neutrino rest masses, neutron life time[13] can be fitted with, t n m p m e m x f m n m p 4 π 3 R 0 3 G F 884.0   sec . By considering the relations, G F m e m p 2 c R 0 2 and R 0 2 G n m p c 2 , neutron life can be fitted with, t n 8 π G n m p 4 3 m x f m e m n m p c 3 4 π m p 3 3 m x f m e m n m p R 0 c . In this way, with our 4G model of final unification electron neutrino rest mass can be inferred and can be confirmed by fitting it with the neutron life time. Accuracy point of view, neutron life time seems to depend on the characteristic nuclear radius and nuclear volume. With further research, rest masses of electron neutrino and gravitino can be understood in a unified approach.

5. Understanding and estimating atomic radii

With reference to 4G model of final unification, we emphasize the point that, there exists 3 different large gravitational constants for weak, strong and electromagnetic interactions. In this paper, by considering the effective behavior of strong and electromagnetic interactions, similar to Rutherford's nuclear radii formula [23], we propose a very simple formula for understanding atomic radii. It can be expressed as, R A A 1 / 3 2 G n G e M u c 2 A 1 / 3 × 32.86   pm where A represents atomic mass number, G n ,   G e represent strong and electromagnetic gravitational constants respectively and M u represents the unified atomic mass unit [14]. Starting from A= (1 to 340), obtained rage of atomic radii is (32.86 to 229.35) pm. It is in line with the measured range of various atomic radii [31,32,33,34,35,36] and needs a fine tuning. In this context, for 3 to 7 periods, we have developed an approximate formula, R A 4 A / Z Z f p / Z 2 A 1 / 3 × 32.86   pm . Here, Z f p represents first element of any period and Z represents any element in that period. For Helium and the 2nd period, R A 4 A / Z Z f p / Z A 1 / 3 × 32.86   pm . We sincerely appeal the field experts to see the possibility of implementing this idea with possible changes for a better understanding at fundamental level. See the following Figure 1.

6. Understanding Unified atomic mass unit, Avogadro number and Electrochemical equivalents

We have noticed a very simple and accurate relation for understanding and estimating the Unified atomic mass unit M u . In terms of energy, it can be considered as ‘average rest energy of nucleons minus average binding energy per nucleon of all atomic nuclides plus electron rest energy’. By considering the ‘binding energy per electron’ of all atomic electrons there is a scope for correction to the estimated M u . It needs a review. It may be noted that, ‘average binding energy per nucleon’ of all atomic nuclides can be estimated in three ways. One simple way is, to consider the average of experimental ‘binding energy per nucleon’ values of all observed 2500 atomic nuclides. Second possible way is, starting from A=4 to 294, selecting all 291 mass numbers having maximum binding energy, finding their binding energy per nucleon and taking the average of 291 values. Alternatively, based on our 4G model of final unification, starting from A= 5 to 340, considering isobars, based on our three assumptions and considering maximum binding energy associated with any stable mass number, we have noticed a very simple relation [37]. It can be expressed as,
B E A s A s 1 2 + 0.000935 A s 2 A s 1 / 3 10.1   MeV B E A s A s A s 1 A s 1 2 + 0.000935 A s 2 A s 1 / 3 10.1   MeV where   G w G n m e c 2 M w f c 2 0.511   MeV 584725   MeV 0.000935
With reference to stability against beta decay, proposed coefficient 0.000935 can be addressed with a relation of the form, m p c 2 M w f c 2 m e c 2 m p c 2 0.00160464 0.0054462 0.000935. It needs a review. See Figure 2 and Figure 3 for the estimated binding energies of A s = 4   to   294 . It may be noted that, with reference to experimental binding energy of isobars having maximum binding energy [38], average error in estimated binding energy seems to be 0.93 MeV for 291 atomic nuclides and corresponding standard deviation is 3.97 MeV. It needs a review with respect to the following relations [20,21], Z A s 1 + 0.0064 A s + 1 A s 2 0.2 A s 2 A s + 200 and the proposed asymmetry term, A a s y A s A 2 A s .  Table 2, Figure 2 and Figure 3 clearly demonstrate the existence of our proposed weak fermion of rest energy 584.725 GeV.
Even though our estimation is on lower side for A=4 and some other atomic nuclides, considering A=5 to 340, average of ‘average binding energy per nucleon’ is around 7.93 MeV. Thus, currently believed unified atomic mass unit [14] can be addressed with,
M u c 2 m n c 2 + m n c 2 2 B E M a x A A v e + m e c 2 931.51   MeV 1 . 6605494 × 10 - 27   kg . c 2 where ,   m n c 2 = Rest   energy   of   neutron ,   m p c 2 = Rest   energy   of   proton m e c 2 = Rest   energy   of   electron
Avogadro number [14,39] can be addressed with ‘inverse of the unified atomic mass unit’ as,
N A M u 1 6.0221034 × 10 26   atoms / kg 6.0221034 × 10 23   atoms / gram
Thus, number of atoms per kg can be called as Kg-mole and number of atoms per gram can be called as gram-mole.
Atomic electrochemical equivalents (ECE) [40] can be expressed as,
E C E A , v A M u v e   kg / C A v M u e   kg / C
where A , v represent Atomic mass number and valency number respectively. It may be noted that, M u e can be called as ‘Faraday mass’.
M F M u e 1.0364334 × 10 8   kg / C 1.0364334 × 10 5   gram / C .
In a very simple view, ECE can be defined as the ratio of mass A M u of the ion to the charge v e carried by the ion. See Table 3 for the estimated electrochemical equivalents. Readers are encouraged to refer and cross check at ‘https://environmentalchemistry.com/yogi/periodic/’.
Inverse of Faraday mass can be called as ‘Faraday charge’,
F C e M u 96484731.7   C / kg 96484.732   C / gram
With reference to Faraday mass, Planck mass M p c / G N and weak coupling angle [13,14] Sin 2 θ W , we noticed a very strange relation,
G N M F 2 c Sin 2 θ W   and   M F 2 M p 2 Sin 2 θ W
  M F M p Sin θ W   and   M F Sin θ W M p
This is a very simple relation and seems to connect gravity, weak interaction, electromagnetic interaction and quantum mechanics. It may be an accidental coincidence also. With reference to the recommended value of the Newtonian gravitational constant, obtained value of the weak coupling angle is Sin 2 θ W 0.2267732. Even though its recommended value is 0.23122, based on the rest masses of neutral and charged weak bosons, its defined value is 0.22339. To a very good approximation, Newtonian gravitational constant can be expressed as,
G N Sin 2 θ W c M F 2 6.574728   to   6 . 8051776 × 10 11   m 3 kg - 1 sec - 2

7. Conclusion

By following our 4G model of final unification, there is a scope for understanding and estimating the values of Unified atomic mass unit, Avogadro number and Electrochemical equivalents. We humbly appeal the science community to recommend our views for further research.

References

  1. Salam A, Sivaram C. Strong gravity approach to QCD and confinement. Modern Physics Letters A.8,4,321,1993. [CrossRef]
  2. Onofrio, R. On weak interactions as short-distance manifestations of gravity. Modern Physics Letters A.28,7,1350022, 2013. [CrossRef]
  3. Seshavatharam U.V.S and Lakshminarayana S. Final unification with Schwarzschild’s Interaction. Journal of Applied Physical Science International 3(1): 12-22, 2015.
  4. Seshavatharam, U. V. S, Lakshminarayana S. Understanding the Basics of Final Unification With Three Gravitational Constants Associated With Nuclear, Electromagnetic and Gravitational Interactions. J. Nucl. Phy. Mat. Sci. Rad. A. 4, 355-373, 2017. [CrossRef]
  5. Seshavatharam, U.V.S, Lakshminarayana S. Role of Four Gravitational Constants in Nuclear Structure. Mapana-Journal of Sciences.18,1,21, 2019. [CrossRef]
  6. Seshavatharam, U.V.S, Lakshminarayana S. To Validate the Role of Electromagnetic and Strong Gravitational Constants via the Strong Elementary Charge. Universal Journal of Physics and Application. 9(5): 216-225, 2015. [CrossRef]
  7. Seshavatharam U. V. S, Gunavardhana Naidu T, Lakshminarayana S. To confirm the existence of heavy weak fermion of rest energy 585 GeV. AIP Conf. Proc. 2451, 020003-1–020003-6, 2022.
  8. Seshavatharam U.V.S, Lakshminarayana S. EPR argument and mystery of the reduced Planck’s constant. Algebras, Groups, and Geometries. 36(4), 801-822, 2020,.
  9. Seshavatharam U.V.S, Lakshminarayana S. 4G model of final unification – A brief report. Journal of Physics: Conference Series 2197, 012029, 2022.
  10. Seshavatharam U.V.S and Lakshminarayana S. Is reduced Planck’s constant - an outcome of electroweak gravity? Mapana Journal of Sciences. 19,1,1, 2020.
  11. Mukhi, S. String theory: a perspective over the last 25 years. Classical and Quantum Gravity. 28,15, 153001, 2011. [CrossRef]
  12. Seshavatharam U.V.S and Lakshminarayana S. On the Compactification and Reformation of String Theory with Three Large Atomic Gravitational Constants. International Journal of Physical Research, 9(1), 42-48, 2021.
  13. R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update.
  14. Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys. 93, 025010, 2021. [CrossRef]
  15. Seshavatharam U. V. S and Lakshminarayana S. Understanding the Origins of Quark charges, Quantum of Magnetic Flux, Planck’s radiation constant and celestial magnetic moments with 4G model of nuclear charge. (In review). [CrossRef]
  16. Seshavatharam U.V.S, Lakshminarayana S. H. K. Cherop and K.M. Khanna. Three Unified Nuclear Binding Energy Formulae. World Scientific News, 163, 30-77, 2022.
  17. Seshavatharam U.V.S, Lakshminarayana S. On the Role of Nuclear Binding Energy in Understanding Cold Nuclear Fusion. Mapana Journal of Sciences, 20(3), 29-42, 2021.
  18. Seshavatharam U.V.S, Lakshminarayana, S. IGEC Transactions. To Develop an Eco-friendly Cold Nuclear Thermal Power Plant by Considering Iron-56 as A Fuel. Proceedings of the 15th International Green Energy Conference (IGEC-XV). Springer Nature Switzerland, 2024.
  19. Seshavatharam U. V. S and Lakshminarayana S. Understanding condensed matter physics with refined strong and electroweak mass formula. (In review).
  20. E. S. Green. Nuclear Physics. McGraw Hill Book Co. 1955.
  21. Seshavatharam U.V.S and Lakshminarayana. Understanding nuclear stability range with 4G model of nuclear charge. World scientific news. 177, 118-136, 2023.
  22. Gao Z. P, Wang YJ, Lü HL et al., Machine learning the nuclear mass. NUCL. SCI. TECH. 32, 109, 2021.
  23. Tuncay Bayram, Serkan Akkoyun, S.Okan Kara, Alper Sinan. New Parameters for Nuclear Charge Radius Formulas. Acta Phys.Polon.B 44, 8, 1791-1799, 2013. [CrossRef]
  24. Angeli, K.P. Marinova, Table of experimental nuclear ground state charge radii: An update, Atomic Data and Nuclear Data Tables, 99(1), 69-95, 2013.
  25. Seshavatharam U.V.S, Lakshminarayana S. Super symmetry in strong and weak interactions. International Journal of Modern Physics E. 19,2,263, 2010.
  26. Seshavatharam U.V.S, Lakshminarayana S. Integral charge SUSY in Strong nuclear gravity. Proceedings of the DAE Symp. on Nucl. Phys. 56, 842, 2011.
  27. Seshavatharam U. V. S and Lakshminarayana S. 4G Model of Fractional Charge Strong-Weak Super Symmetry. International Astronomy and Astrophysics Research Journal, 2(1), 31-55, 2020.
  28. Seshavatharam U. V. S and Lakshminarayana S. Understanding the Origins of Quark charges, Quantum of Magnetic Flux, Planck’s radiation constant and celestial magnetic moments with 4G model of nuclear charge. Preprints 2023, 2023102015.
  29. The KATRIN Collaboration. Direct neutrino-mass measurement with sub-electron volt sensitivity. Nat. Phys. 18, 160–166, 2022.
  30. Jyotsna Singh 1 and M. Ibrahim Mirza - Theoretical and Experimental Challenges in the Measurement of Neutrino Mass. Advances in High Energy Physics. 2023, Article ID 8897375, 2023.
  31. https://pubchem.ncbi.nlm.nih.gov/ptable/atomic-radius/.
  32. https://en.wikipedia.org/wiki/Atomic_radii_of_the_elements_(data_page).
  33. Owolabi, Taoreed, Akande Kabiru and Olatunji Sunday. Estimation of the atomic radii of periodic elements using support vector machine. International Journal of Advanced Information Science and Technology. 28, 39-49. 2014.
  34. Martin Rahm, Roald Hoffmann, N. W. Ashcroft. Atomic and Ionic Radii of Elements 1–96. Chemistry (Weinheim an der Bergstrasse, Germany), 22(41):14625-14632,2016.
  35. Krishnamohan G. Prasanna, Sooraj Sunil, Ajith Kumar, James. T. Joseph. Theoretical atomic radii of elements (H-Cm): A non-relativistic study with Gaussian basis set using HF, post-HF and DFT methods. [CrossRef]
  36. Yadav, P., Tandon, H., Malik, B. et al. A quest for the universal atomic radii. Struct Chem 33, 389–394.2022. [CrossRef]
  37. Seshavatharam U.V.S and Lakshminarayana S. A very brief review on strong and electroweak mass formula pertaining to 4G model of final unification. 67th DAE Symposium on Nuclear Physics, Dec’2023, Electroweak Interaction in Nuclei, F11, p. 1173-1174.
  38. ChtMavrodiev S, Deliyergiyev MA. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula. Int. J. Mod. Phys. E 27: 1850015, 2018. [CrossRef]
  39. Y. Azuma et al. Improved measurement results for the Avogadro constant using a 28Si-enriched crystal. Metrologia, 52, 360-375, 2015. [CrossRef]
  40. Farschad Torabi, Pouria Ahmadi, Chapter 2 - Fundamentals of batteries, Editor(s): Farschad Torabi, Pouria Ahmadi, Simulation of Battery Systems, Academic Press, Pages 55-81, 2020.
Figure 1. Estimated atomic radii.
Figure 1. Estimated atomic radii.
Preprints 98493 g001
Figure 2. Assumed stable mass number Vs Maximum Binding Energy.
Figure 2. Assumed stable mass number Vs Maximum Binding Energy.
Preprints 98493 g002
Figure 3. Difference in estimated and experimental binding Energy of As.
Figure 3. Difference in estimated and experimental binding Energy of As.
Preprints 98493 g003
Table 1. Internal and external decay modes of neutron, proton and pions.
Table 1. Internal and external decay modes of neutron, proton and pions.
Particle Integral Quark charges Internal Decay mode Decay Result
Neutron +e, +e, (-2e) -2e → -e, -e [+e, +e, (-e)] = Proton and Electron (-e)
Anti neutron -e, -e, (+2e) +2e → +e,+e [-e,-e,(+e)] = Anti proton and Positron (+e)
Proton (+2e), (-2e), +e
+e, +e, -e
+2e → +e,+e
-2e → -e, -e
[(+e), -2e, +e] = Neutron and Positron (+e)
[+2e, (-e),+e] = (Baryon+2e) and (electron or muon-)
Lepton+ and Gamma or Pion0
Lepton- and meson+2e
Anti proton (-2e), (+2e), -e
-e,-e, +e
-2e → -e, -e
+2e → +e,+e
[(-e), +2e, -e] = Anti neutron and Electron (-e)
[-2e, (+e),-e] = (Baryon-2e) and (positron or muon+)
Lepton- and Gamma or Pion0
Lepton+ and meson-2e
Pion+ (+2e),-e +2e → +e, +e Positron or Muon+ and
[(+e),-e] = Gamma or Pion0
Pion- (-2e),+e -2e → -e,-e Electron or Muon- and
[(-e),+e] = Gamma or Pion0
Pion0 (+2e),(-2e);
-e,+e
(+e,+e),(-e,-e)
-e,+e
Two Gamma
Electron, Positron and Gamma
Two electrons and Two positrons
Electron and positron
One Gamma
Table 2. Assumed stable mass number and its corresponding maximum binding energy.
Table 2. Assumed stable mass number and its corresponding maximum binding energy.
Assumed stable mass number As Estimated Max. Binding energy of As (MeV) Experimental Max. Binding energy of As
(MeV)
(Est.- Exp.) Binding energy
(MeV)
Estimated Binding energy per nucleon (MeV) Experimental Binding energy per nucleon
(MeV)
4 19.2 28.30 -9.13 4.79 7.07
5 27.94 27.56 0.38 5.59 5.51
6 36.86 31.99 4.86 6.14 5.33
7 45.87 39.25 6.62 6.55 5.61
8 54.95 56.50 -1.55 6.87 7.06
9 64.08 58.16 5.91 7.12 6.46
10 73.25 64.98 8.27 7.32 6.50
11 82.45 76.20 6.24 7.50 6.93
12 91.67 92.16 -0.49 7.64 7.68
13 100.91 97.11 3.80 7.76 7.47
14 110.16 105.28 4.87 7.87 7.52
15 119.42 115.49 3.92 7.96 7.70
16 128.68 127.62 1.06 8.04 7.98
17 137.95 131.76 6.19 8.11 7.75
18 147.22 139.81 7.41 8.18 7.77
19 156.49 147.80 8.69 8.24 7.78
20 165.76 160.64 5.11 8.29 8.03
21 175.02 167.41 7.61 8.33 7.97
22 184.28 177.77 6.51 8.38 8.08
23 193.53 186.56 6.97 8.41 8.11
24 202.78 198.26 4.52 8.45 8.26
25 212.02 205.59 6.43 8.48 8.22
26 221.24 216.68 4.56 8.51 8.33
27 230.47 224.95 5.51 8.54 8.33
28 239.68 236.54 3.14 8.56 8.45
29 248.88 245.01 3.87 8.58 8.45
30 258.07 255.62 2.45 8.60 8.52
31 267.25 262.92 4.33 8.62 8.48
32 276.41 271.78 4.63 8.64 8.49
33 285.57 280.96 4.61 8.65 8.51
34 294.71 291.84 2.87 8.67 8.58
35 303.84 298.82 5.02 8.68 8.54
36 312.96 308.71 4.25 8.69 8.58
37 322.07 317.10 4.97 8.70 8.57
38 331.16 327.34 3.81 8.71 8.61
39 340.24 333.94 6.29 8.72 8.56
40 349.30 343.81 5.49 8.73 8.60
41 358.35 351.62 6.73 8.74 8.58
42 367.38 361.90 5.49 8.75 8.62
43 376.40 369.83 6.58 8.75 8.60
44 385.41 380.96 4.45 8.76 8.66
45 394.40 388.37 6.03 8.76 8.63
46 403.38 398.77 4.61 8.77 8.67
47 412.34 407.26 5.08 8.77 8.67
48 421.29 418.70 2.58 8.78 8.72
49 430.22 426.85 3.37 8.78 8.71
50 439.13 437.78 1.35 8.78 8.76
51 448.03 445.85 2.19 8.78 8.74
52 456.92 456.35 0.57 8.79 8.78
53 465.78 464.29 1.50 8.79 8.76
54 474.64 474.01 0.63 8.79 8.78
55 483.47 482.08 1.40 8.79 8.77
56 492.29 492.26 0.03 8.79 8.79
57 501.10 499.91 1.19 8.79 8.77
58 509.89 509.95 -0.06 8.79 8.79
59 518.66 517.31 1.34 8.79 8.77
60 527.41 526.85 0.57 8.79 8.78
61 536.15 534.67 1.49 8.79 8.77
62 544.87 545.26 -0.39 8.79 8.79
63 553.58 552.10 1.48 8.79 8.76
64 562.27 561.76 0.51 8.79 8.78
65 570.94 569.21 1.73 8.78 8.76
66 579.60 578.14 1.46 8.78 8.76
67 588.24 585.41 2.83 8.78 8.74
68 596.86 595.39 1.47 8.78 8.76
69 605.46 602.00 3.47 8.77 8.72
70 614.05 611.09 2.97 8.77 8.73
71 622.62 618.95 3.67 8.77 8.72
72 631.18 628.69 2.49 8.77 8.73
73 639.71 635.47 4.25 8.76 8.71
74 648.23 645.66 2.57 8.76 8.73
75 656.74 652.57 4.17 8.76 8.70
76 665.22 662.07 3.15 8.75 8.71
77 673.69 669.59 4.10 8.75 8.70
78 682.14 679.99 2.15 8.75 8.72
79 690.58 686.95 3.62 8.74 8.70
80 698.99 696.87 2.13 8.74 8.71
81 707.39 704.37 3.02 8.73 8.70
82 715.77 714.27 1.50 8.73 8.71
83 724.14 721.74 2.39 8.72 8.70
84 732.48 732.27 0.22 8.72 8.72
85 740.81 739.38 1.43 8.72 8.70
86 749.12 749.23 -0.11 8.71 8.71
87 757.42 757.86 -0.44 8.71 8.71
88 765.70 768.47 -2.77 8.70 8.73
89 773.95 775.54 -1.59 8.70 8.71
90 782.20 783.90 -1.70 8.69 8.71
91 790.42 791.09 -0.67 8.69 8.69
92 798.63 799.73 -1.10 8.68 8.69
93 806.81 806.46 0.35 8.68 8.67
94 814.98 814.68 0.30 8.67 8.67
95 823.14 821.63 1.51 8.66 8.65
96 831.27 830.78 0.49 8.66 8.65
97 839.39 837.60 1.79 8.65 8.64
98 847.49 846.25 1.24 8.65 8.64
99 855.57 852.75 2.82 8.64 8.61
100 863.63 861.93 1.70 8.64 8.62
101 871.68 868.73 2.95 8.63 8.60
102 879.71 877.95 1.76 8.62 8.61
103 887.72 884.19 3.53 8.62 8.58
104 895.71 893.09 2.62 8.61 8.59
105 903.69 900.13 3.55 8.61 8.57
106 911.64 909.48 2.16 8.60 8.58
107 919.58 916.02 3.57 8.59 8.56
108 927.50 925.24 2.26 8.59 8.57
109 935.41 931.72 3.68 8.58 8.55
110 943.29 940.64 2.65 8.58 8.55
111 951.16 947.62 3.54 8.57 8.54
112 959.01 957.01 2.00 8.56 8.54
113 966.84 963.55 3.29 8.56 8.53
114 974.65 972.59 2.06 8.55 8.53
115 982.44 979.40 3.04 8.54 8.52
116 990.22 988.68 1.54 8.54 8.52
117 997.98 995.62 2.35 8.53 8.51
118 1005.72 1004.95 0.77 8.52 8.52
119 1013.44 1011.43 2.01 8.52 8.50
120 1021.15 1020.54 0.61 8.51 8.50
121 1028.83 1026.71 2.12 8.50 8.49
122 1036.50 1035.52 0.98 8.50 8.49
123 1044.15 1042.10 2.05 8.49 8.47
124 1051.78 1050.69 1.10 8.48 8.47
125 1059.40 1057.27 2.12 8.48 8.46
126 1066.99 1066.37 0.62 8.47 8.46
127 1074.57 1072.66 1.91 8.46 8.45
128 1082.13 1081.44 0.69 8.45 8.45
129 1089.67 1088.24 1.42 8.45 8.44
130 1097.19 1096.91 0.29 8.44 8.44
131 1104.69 1103.51 1.19 8.43 8.42
132 1112.18 1112.45 -0.27 8.43 8.43
133 1119.65 1118.88 0.77 8.42 8.41
134 1127.10 1127.43 -0.34 8.41 8.41
135 1134.53 1134.18 0.35 8.40 8.40
136 1141.94 1142.77 -0.83 8.40 8.40
137 1149.34 1149.68 -0.34 8.39 8.39
138 1156.71 1158.29 -1.58 8.38 8.39
139 1164.07 1164.55 -0.47 8.37 8.38
140 1171.41 1172.69 -1.27 8.37 8.38
141 1178.74 1178.12 0.62 8.36 8.36
142 1186.04 1185.28 0.75 8.35 8.35
143 1193.32 1191.26 2.06 8.34 8.33
144 1200.59 1199.08 1.51 8.34 8.33
145 1207.84 1204.83 3.01 8.33 8.31
146 1215.07 1212.40 2.67 8.32 8.30
147 1222.28 1217.80 4.48 8.31 8.28
148 1229.47 1225.39 4.09 8.31 8.28
149 1236.65 1231.26 5.39 8.30 8.26
150 1243.81 1239.24 4.56 8.29 8.26
151 1250.95 1244.84 6.11 8.28 8.24
152 1258.07 1253.10 4.97 8.28 8.24
153 1265.17 1258.99 6.18 8.27 8.23
154 1272.25 1266.93 5.32 8.26 8.23
155 1279.32 1273.58 5.73 8.25 8.22
156 1286.36 1281.59 4.77 8.25 8.22
157 1293.39 1287.95 5.44 8.24 8.20
158 1300.40 1295.89 4.51 8.23 8.20
159 1307.39 1302.02 5.37 8.22 8.19
160 1314.37 1309.45 4.92 8.21 8.18
161 1321.32 1316.09 5.23 8.21 8.17
162 1328.26 1324.10 4.16 8.20 8.17
163 1335.17 1330.37 4.80 8.19 8.16
164 1342.07 1338.03 4.05 8.18 8.16
165 1348.95 1344.25 4.71 8.18 8.15
166 1355.82 1351.56 4.25 8.17 8.14
167 1362.66 1358.00 4.66 8.16 8.13
168 1369.49 1365.77 3.71 8.15 8.13
169 1376.29 1371.78 4.52 8.14 8.12
170 1383.08 1379.03 4.05 8.14 8.11
171 1389.85 1385.42 4.43 8.13 8.10
172 1396.60 1392.76 3.85 8.12 8.10
173 1403.34 1399.13 4.21 8.11 8.09
174 1410.05 1406.59 3.46 8.10 8.08
175 1416.75 1412.41 4.34 8.10 8.07
176 1423.43 1419.28 4.15 8.09 8.06
177 1430.09 1425.46 4.62 8.08 8.05
178 1436.73 1432.80 3.92 8.07 8.05
179 1443.35 1438.90 4.45 8.06 8.04
180 1449.95 1446.29 3.66 8.06 8.03
181 1456.54 1452.24 4.30 8.05 8.02
182 1463.11 1459.33 3.77 8.04 8.02
183 1469.65 1465.52 4.13 8.03 8.01
184 1476.18 1472.94 3.25 8.02 8.01
185 1482.70 1478.69 4.01 8.01 7.99
186 1489.19 1485.88 3.31 8.01 7.99
187 1495.66 1491.88 3.78 8.00 7.98
188 1502.12 1499.09 3.03 7.99 7.97
189 1508.56 1505.01 3.55 7.98 7.96
190 1514.98 1512.80 2.17 7.97 7.96
191 1521.38 1518.56 2.82 7.97 7.95
192 1527.76 1526.12 1.64 7.96 7.95
193 1534.12 1532.06 2.06 7.95 7.94
194 1540.47 1539.58 0.89 7.94 7.94
195 1546.79 1545.68 1.11 7.93 7.93
196 1553.10 1553.60 -0.50 7.92 7.93
197 1559.39 1559.45 -0.06 7.92 7.92
198 1565.66 1567.00 -1.34 7.91 7.91
199 1571.91 1573.48 -1.57 7.90 7.91
200 1578.14 1581.18 -3.03 7.89 7.91
201 1584.36 1587.41 -3.05 7.88 7.90
202 1590.56 1595.16 -4.61 7.87 7.90
203 1596.73 1601.16 -4.42 7.87 7.89
204 1602.89 1608.65 -5.76 7.86 7.89
205 1609.03 1615.07 -6.04 7.85 7.88
206 1615.16 1622.32 -7.17 7.84 7.88
207 1621.26 1629.06 -7.80 7.83 7.87
208 1627.34 1636.43 -9.09 7.82 7.87
209 1633.41 1640.37 -6.96 7.82 7.85
210 1639.46 1645.55 -6.09 7.81 7.84
211 1645.49 1649.97 -4.48 7.80 7.82
212 1651.50 1655.77 -4.27 7.79 7.81
213 1657.49 1660.13 -2.64 7.78 7.79
214 1663.46 1666.01 -2.55 7.77 7.79
215 1669.42 1670.16 -0.74 7.76 7.77
216 1675.35 1675.90 -0.55 7.76 7.76
217 1681.27 1680.58 0.69 7.75 7.74
218 1687.17 1687.05 0.12 7.74 7.74
219 1693.05 1691.51 1.55 7.73 7.72
220 1698.91 1697.79 1.12 7.72 7.72
221 1704.76 1702.42 2.34 7.71 7.70
222 1710.58 1708.66 1.92 7.71 7.70
223 1716.39 1713.82 2.56 7.70 7.69
224 1722.17 1720.30 1.87 7.69 7.68
225 1727.94 1725.21 2.74 7.68 7.67
226 1733.69 1731.60 2.09 7.67 7.66
227 1739.42 1736.71 2.72 7.66 7.65
228 1745.14 1743.08 2.06 7.65 7.65
229 1750.83 1748.33 2.50 7.65 7.63
230 1756.51 1755.13 1.38 7.64 7.63
231 1762.16 1760.25 1.92 7.63 7.62
232 1767.80 1766.69 1.12 7.62 7.62
233 1773.42 1771.93 1.49 7.61 7.60
234 1779.02 1778.57 0.46 7.60 7.60
235 1784.61 1783.86 0.74 7.59 7.59
236 1790.17 1790.41 -0.24 7.59 7.59
237 1795.71 1795.53 0.18 7.58 7.58
238 1801.24 1801.69 -0.45 7.57 7.57
239 1806.75 1806.97 -0.23 7.56 7.56
240 1812.24 1813.45 -1.21 7.55 7.56
241 1817.71 1818.69 -0.98 7.54 7.55
242 1823.16 1825.00 -1.84 7.53 7.54
243 1828.59 1830.03 -1.44 7.53 7.53
244 1834.01 1836.05 -2.04 7.52 7.52
245 1839.40 1841.36 -1.96 7.51 7.52
246 1844.78 1847.82 -3.04 7.50 7.51
247 1850.14 1852.98 -2.83 7.49 7.50
248 1855.48 1859.19 -3.71 7.48 7.50
249 1860.80 1864.02 -3.22 7.47 7.49
250 1866.11 1869.99 -3.88 7.46 7.48
251 1871.39 1875.09 -3.70 7.46 7.47
252 1876.65 1881.27 -4.61 7.45 7.47
253 1881.90 1886.07 -4.17 7.44 7.45
254 1887.13 1892.10 -4.97 7.43 7.45
255 1892.34 1896.64 -4.30 7.42 7.44
256 1897.53 1902.54 -5.01 7.41 7.43
257 1902.70 1907.50 -4.80 7.40 7.42
258 1907.86 1911.69 -3.84 7.39 7.41
259 1912.99 1906.33 6.66 7.39 7.36
260 1918.11 1909.07 9.04 7.38 7.34
261 1923.20 1923.93 -0.72 7.37 7.37
262 1928.28 1923.39 4.89 7.36 7.34
263 1933.34 1929.63 3.71 7.35 7.34
264 1938.38 1937.23 1.15 7.34 7.34
265 1943.41 1943.25 0.16 7.33 7.33
266 1948.41 1950.31 -1.90 7.32 7.33
267 1953.40 1956.31 -2.91 7.32 7.33
268 1958.36 1963.37 -5.01 7.31 7.33
269 1963.31 1968.54 -5.23 7.30 7.32
270 1968.24 1974.78 -6.54 7.29 7.31
271 1973.15 1979.66 -6.50 7.28 7.31
272 1978.04 1985.87 -7.83 7.27 7.30
273 1982.92 1990.44 -7.53 7.26 7.29
274 1987.77 1994.17 -6.40 7.25 7.28
275 1992.61 2000.08 -7.47 7.25 7.27
276 1997.42 2004.86 -7.44 7.24 7.26
277 2002.22 2009.64 -7.41 7.23 7.26
278 2007.00 2013.00 -6.00 7.22 7.24
279 2011.76 2019.40 -7.64 7.21 7.24
280 2016.50 2023.56 -7.06 7.20 7.23
281 2021.23 2028.82 -7.59 7.19 7.22
282 2025.93 2031.81 -5.88 7.18 7.21
283 2030.62 2038.45 -7.83 7.18 7.20
284 2035.29 2042.53 -7.24 7.17 7.19
285 2039.94 2047.73 -7.79 7.16 7.19
286 2044.57 2050.33 -5.77 7.15 7.17
287 2049.18 2057.22 -8.04 7.14 7.17
288 2053.77 2060.64 -6.87 7.13 7.16
289 2058.34 2066.06 -7.72 7.12 7.15
290 2062.90 2068.28 -5.38 7.11 7.13
291 2067.44 2075.12 -7.69 7.10 7.13
292 2071.95 2078.16 -6.21 7.10 7.12
293 2076.45 2083.52 -7.07 7.09 7.11
294 2080.93 2085.34 -4.41 7.08 7.09
295 2085.39 7.07
296 2089.84 7.06
297 2094.26 7.05
298 2098.67 7.04
299 2103.05 7.03
300 2107.42 7.02
301 2111.77 7.02
302 2116.10 7.01
303 2120.41 7.00
304 2124.71 6.99
305 2128.98 6.98
306 2133.24 6.97
307 2137.48 6.96
308 2141.69 6.95
309 2145.89 6.94
310 2150.07 6.94
311 2154.24 6.93
312 2158.38 6.92
313 2162.50 6.91
314 2166.61 6.90
315 2170.70 6.89
316 2174.77 6.88
317 2178.82 6.87
318 2182.85 6.86
319 2186.86 6.86
320 2190.85 6.85
321 2194.83 6.84
322 2198.78 6.83
323 2202.72 6.82
324 2206.64 6.81
325 2210.54 6.80
326 2214.42 6.79
327 2218.28 6.78
328 2222.13 6.77
329 2225.95 6.77
330 2229.76 6.76
331 2233.54 6.75
332 2237.31 6.74
333 2241.06 6.73
334 2244.79 6.72
335 2248.51 6.71
336 2252.20 6.70
337 2255.88 6.69
338 2259.53 6.69
339 2263.17 6.68
340 2266.79 6.67
Table 3. Estimated atomic electrochemical equivalents.
Table 3. Estimated atomic electrochemical equivalents.
Atomic No Symbol Element Atomic Mass Valence Estimated ECE
(kg/C)
Estimated ECE
(gram/amp-hr)
1 H Hydrogen 1.00797 1 1.04469E-08 0.03761
3 Li Lithium 6.941 1 7.19388E-08 0.25898
4 Be Beryllium 9.01218 2 4.67026E-08 0.16813
5 B Boron 10.81 1 1.12038E-07 0.40334
6 C Carbon 12.011 2 6.22430E-08 0.22407
7 N Nitrogen 14.0067 3 4.83900E-08 0.17420
8 O Oxygen 15.9994 2 8.29116E-08 0.29848
9 F Fluorine 18.998403 1 1.96906E-07 0.70886
11 Na Sodium 22.98977 1 2.38274E-07 0.85779
12 Mg Magnesium 24.305 2 1.25953E-07 0.45343
13 Al Aluminum 26.98154 3 9.32152E-08 0.33557
14 Si Silicon 28.0855 4 7.27719E-08 0.26198
15 P Phosphorus 30.97376 5 6.42045E-08 0.23114
16 S Sulfur 32.06 4 8.30701E-08 0.29905
17 Cl Chlorine 35.453 1 3.67447E-07 1.32281
19 K Potassium 39.0983 1 4.05228E-07 1.45882
20 Ca Calcium 40.08 2 2.07701E-07 0.74772
21 Sc Scandium 44.9559 3 1.55313E-07 0.55913
22 Ti Titanium 47.9 4 1.24113E-07 0.44681
23 V Vanadium 50.9415 5 1.05595E-07 0.38014
24 Cr Chromium 51.996 6 8.98173E-08 0.32334
25 Mn Manganese 54.938 7 8.13423E-08 0.29283
26 Fe Iron 55.847 2 2.89408E-07 1.04187
27 Co Cobalt 58.7 2 3.04193E-07 1.09510
28 Ni Nickel 58.6934 2 3.04159E-07 1.09497
29 Cu Copper 63.546 2 3.29306E-07 1.18550
30 Zn Zinc 65.38 2 3.38810E-07 1.21972
31 Ga Gallium 69.72 3 2.40867E-07 0.86712
32 Ge Germanium 72.59 4 1.88087E-07 0.67711
33 As Arsenic 74.9216 3 2.58837E-07 0.93181
34 Se Selenium 78.96 4 2.04592E-07 0.73653
35 Br Bromine 79.904 1 8.28152E-07 2.98135
37 Rb Rubidium 85.4678 1 8.85817E-07 3.18894
38 Sr Strontium 87.62 2 4.54061E-07 1.63462
39 Y Yttrium 88.9059 3 3.07150E-07 1.10574
40 Zr Zirconium 91.22 4 2.36359E-07 0.85089
41 Nb Niobium 92.9064 5 1.92583E-07 0.69330
42 Mo Molybdenum 95.94 4 2.48589E-07 0.89492
43 Tc Technetium 98 7 1.45101E-07 0.52236
44 Ru Ruthenium 101.07 3 3.49174E-07 1.25703
45 Rh Rhodium 102.9055 3 3.55516E-07 1.27986
46 Pd Palladium 106.4 2 5.51383E-07 1.98498
47 Ag Silver 107.868 1 1.11798E-06 4.02473
48 Cd Cadmium 112.41 2 5.82527E-07 2.09710
49 In Indium 114.82 3 3.96678E-07 1.42804
50 Sn Tin 118.69 4 3.07536E-07 1.10713
51 Sb Antimony 121.75 3 4.20619E-07 1.51423
52 Te Tellurium 126.9045 4 3.28820E-07 1.18375
53 I Iodine 127.6 1 1.32249E-06 4.76096
55 Cs Cesium 132.9054 1 1.37748E-06 4.95891
56 Ba Barium 137.33 2 7.11667E-07 2.56200
57 La Lanthanum 138.9055 3 4.79888E-07 1.72760
58 Ce Cerium 140.12 3 4.84083E-07 1.74270
59 Pr Praseodymium 140.9077 3 4.86805E-07 1.75250
60 Nd Neodymium 144.24 3 4.98317E-07 1.79394
61 Pm Promethium 145 3 5.00943E-07 1.80339
62 Sm Samarium 150.4 3 5.19599E-07 1.87056
63 Eu Europium 151.96 3 5.24988E-07 1.88996
64 Gd Gadolinium 157.25 3 5.43264E-07 1.95575
65 Tb Terbium 158.9254 3 5.49052E-07 1.97659
66 Dy Dysprosium 162.5 3 5.61401E-07 2.02105
67 Ho Holmium 164.9304 3 5.69798E-07 2.05127
68 Er Erbium 167.26 3 5.77846E-07 2.08025
69 Tm Thulium 168.9342 3 5.83630E-07 2.10107
70 Yb Ytterbium 173.04 3 5.97815E-07 2.15213
71 Lu Lutetium 174.967 3 6.04472E-07 2.17610
72 Hf Hafnium 178.49 4 4.62482E-07 1.66494
73 Ta Tantalum 180.9479 5 3.75081E-07 1.35029
74 W Tungsten 183.85 6 3.17580E-07 1.14329
75 Re Rhenium 186.207 7 2.75702E-07 0.99253
76 Os Osmium 190.2 4 4.92824E-07 1.77417
77 Ir Iridium 192.22 4 4.98058E-07 1.79301
78 Pt Platinum 195.09 4 5.05494E-07 1.81978
79 Au Gold 196.9665 3 6.80476E-07 2.44971
80 Hg Mercury 200.59 2 1.03949E-06 3.74217
81 Tl Thallium 204.37 1 2.11816E-06 7.62537
82 Pb Lead 207.2 2 1.07375E-06 3.86548
83 Bi Bismuth 208.9804 3 7.21981E-07 2.59913
84 Po Polonium 208.9824 2 1.08298E-06 3.89873
85 At Astatine 209.9871 1 2.17638E-06 7.83496
87 Fr Francium 223 1 2.31125E-06 8.32049
88 Ra Radium 226.0254 2 1.17130E-06 4.21668
89 Ac Actinium 227.0278 3 7.84331E-07 2.82359
90 Th Thorium 232.0381 4 6.01230E-07 2.16443
91 Pa Protactinium 231.0359 5 4.78907E-07 1.72406
92 U Uranium 238.0289 6 4.11169E-07 1.48021
93 Np Neptunium 237.0482 5 4.91369E-07 1.76893
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

100

Views

45

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated