Altmetrics
Downloads
102
Views
39
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
15 February 2024
Posted:
16 February 2024
You are already at the latest version
DMU | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
On Yao | 0.075 | 0.032 | 0.059 | 0.075 | 0.069 | 0.120 | 0.151 | 0.104 | 0.033 | 0.033 | 0.168 | 0.155 |
Huayoulian | 0.421 | 0.113 | 0.094 | 1.000 | 1.000 | 0.665 | 0.026 | 1.000 | 1.000 | 1.000 | 0.685 | 0.474 |
Three places | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Mingxuan | 1.000 | 1.000 | 0.393 | 0.923 | 0.665 | 0.610 | 0.611 | 0.932 | 0.717 | 0.664 | 0.735 | 0.633 |
General | 0.058 | 0.073 | 0.026 | 0.125 | 0.221 | 0.410 | 0.363 | 0.437 | 0.310 | 0.199 | 0.315 | 0.268 |
Baolai | 0.038 | 0.120 | 0.083 | 0.094 | 0.078 | 0.173 | 0.132 | 0.155 | 0.108 | 0.093 | 0.171 | 0.047 |
Runlong | 0.257 | 0.397 | 0.299 | 0.282 | 0.385 | 0.255 | 0.361 | 0.382 | 0.407 | 0.121 | 0.648 | 0.446 |
Haiyatt | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
New Meiqi | 0.948 | 0.979 | 0.989 | 0.984 | 0.871 | 0.942 | 0.495 | 0.235 | 0.177 | 0.076 | 0.175 | 0.123 |
Guojian | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.898 | 0.777 | 0.597 | 0.587 | 0.589 | 0.558 |
Guo Yang | 0.146 | 0.345 | 0.474 | 0.354 | 0.363 | 0.218 | 0.437 | 0.377 | 0.354 | 1.000 | 0.317 | 0.370 |
Too Set | 0.017 | 0.038 | 0.064 | 0.037 | 0.062 | 0.073 | 0.058 | 0.181 | 0.049 | 0.033 | 0.125 | 0.106 |
Q- K JP | 0.320 | 0.210 | 0.197 | 0.467 | 0.222 | 0.305 | 0.301 | 0.318 | 0.463 | 0.060 | 0.017 | 0.333 |
Edward | 0.284 | 0.300 | 0.371 | 0.194 | 0.233 | 0.240 | 0.251 | 0.227 | 0.818 | 0.251 | 0.277 | 0.238 |
Long Bang | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Guande | 0.305 | 0.235 | 0.239 | 0.239 | 0.289 | 0.531 | 0.502 | 0.444 | 0.249 | 0.313 | 0.372 | 0.257 |
Capital | 1.000 | 1.000 | 1.000 | 1.000 | 0.731 | 0.897 | 0.884 | 0.839 | 1.000 | 1.000 | 1.000 | 1.000 |
Hong Jing | 0.086 | 0.180 | 0.388 | 0.200 | 0.161 | 0.201 | 0.152 | 0.113 | 0.405 | 0.216 | 1.000 | 0.432 |
Huangpu | 1.000 | 0.187 | 1.000 | 1.000 | 1.000 | 0.823 | 1.000 | 1.000 | 0.771 | 0.834 | 0.474 | 0.328 |
Huajian | 0.571 | 0.162 | 0.316 | 0.661 | 0.413 | 0.484 | 0.711 | 0.632 | 0.019 | 0.172 | 0.009 | 0.758 |
Hongsheng | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 1.000 |
Hongpu | 0.585 | 0.776 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Announcement | 0.218 | 0.159 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.714 | 0.613 | 0.486 | 0.778 | 0.690 |
Kitai | 0.270 | 0.359 | 1.000 | 0.635 | 0.476 | 0.583 | 1.000 | 1.000 | 1.000 | 1.000 | 0.502 | 0.699 |
Sakura BL | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Mountain Forest | 0.141 | 0.010 | 0.018 | 0.030 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.264 |
Hing Fu Fat | 0.373 | 0.502 | 0.491 | 0.488 | 0.766 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 |
King Xiang | 0.407 | 0.484 | 0.663 | 0.587 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.714 | 0.768 |
Nissatsu | 0.333 | 0.251 | 0.550 | 0.393 | 0.236 | 0.395 | 0.315 | 0.263 | 0.079 | 1.000 | 0.188 | 0.108 |
Huagu | 0.381 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.694 | 0.768 | 0.940 |
Scripture | 0.085 | 0.096 | 0.115 | 0.279 | 0.166 | 0.257 | 0.194 | 1.000 | 0.417 | 0.538 | 0.420 | 0.368 |
Master | 0.048 | 0.028 | 0.023 | 0.088 | 0.119 | 0.407 | 0.408 | 0.579 | 0.572 | 0.292 | 0.360 | 0.337 |
Rising Sun | 0.076 | 0.085 | 0.056 | 0.139 | 0.155 | 0.206 | 0.572 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Longda | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.696 | 0.857 | 0.406 | 0.406 | 0.321 |
Farglory | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Suncheon | 0.276 | 0.365 | 0.569 | 0.427 | 0.276 | 0.359 | 0.436 | 0.462 | 0.458 | 0.255 | 0.423 | 0.463 |
Country Forest | 0.183 | 0.289 | 0.310 | 0.544 | 0.299 | 0.483 | 0.371 | 0.324 | 0.406 | 0.231 | 0.364 | 0.260 |
Emperor Ding | 0.388 | 0.275 | 0.249 | 0.528 | 0.486 | 0.852 | 0.519 | 0.612 | 0.399 | 0.129 | 0.433 | 0.354 |
Changhong | 0.399 | 0.487 | 0.893 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Dali | 0.029 | 0.039 | 0.078 | 0.182 | 0.323 | 0.389 | 0.504 | 0.513 | 0.588 | 0.214 | 0.465 | 0.403 |
Shimbaba | 0.024 | 0.015 | 0.016 | 0.028 | 0.036 | 0.023 | 0.027 | 0.150 | 0.361 | 0.152 | 0.030 | 0.213 |
Runtaixin | 0.353 | 0.382 | 0.587 | 0.509 | 0.999 | 0.991 | 0.995 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Sanfa RE | 0.022 | 0.018 | 0.015 | 0.057 | 0.061 | 0.132 | 0.213 | 0.346 | 0.339 | 0.261 | 0.310 | 0.341 |
Studies | The main issue addressed | Region /Country | Decision-making Units | Method |
---|---|---|---|---|
[10] | This study measures technical efficiency and economies of scale for REITs. | US | All REITs as listed in the NAREIT | BCC |
[11] | This paper explores various efficiency aspects of REITs in light of their remarkable growth in the 1990s. | US | 235 equity REITs | CCR、BCC |
[14] | This article gauges and analyses different types of efficiency for the period 1996 to 2000. | Korea | Listed construction firms | CCR |
[19] | This paper measures the productivity changes of the Chinese construction industry from 1997 to 2003. | China | 4 regions construction industry | Malmquist index |
[15] | This study measures the performance and efficiency of the Listed Real Estate Companies. | China | 94 listed real estate companies | CCR、BCC、Super-efficiency DEA |
[12] | This paper is to examine trends in the performance of the construction industry and identify the factors that promote excellence and innovation in the sector. | Portugal | 110 major contractors laboring on public works | CCR |
[33] | This paper explores various efficiency aspects of real estate and construction companies in Iran in light of their remarkable growth in recent years. | Iran | 12 real estate and construction companies | SBM |
[35] | This paper assesses construction companies' efficiency levels, exploring in particular the effect of location and activity in the efficiency levels. | Worldwide | 118 construction companies | CCR、Malmquist index |
[18] | The objectives are to put forward a set of systematic methodologies for selecting a productivity index, to develop a TFP measure for the construction industry. |
China | 31 Chinese provinces | Malmquist index |
[27] | This paper estimates technical efficiency in the construction sector before and after the start of the financial crisis and examines the impact of socio-economic factors on technical efficiency. | Spain | construction industry | BCC |
[36] | This study aims to compare the efficiency and productivity of Chinese, Japanese, and Korean construction firms between 2005 and 2011. | China、 Japan and Korea |
32 Construction firms |
Malmquist index |
[32] | This paper investigates the impact of internationalization and diversification strategies on the financial performance of construction companies. | Spain、 Portugal |
90,875 Construction companies | CCR |
[28] | This paper aims to develop a simultaneous measurement of overall performance and its two dimensions of efficiency and effectiveness. | China | 31 provinces | Two-stage DEA |
[13] | This paper analyzes the CSR efficiency of construction companies from 2012 to 2016. | China | 55 listed construction companies | Three-stage DEA |
[34] | This paper aims to investigate the regional sustainable performance of the real estate industry from 2007 to 2013. | China | 30 provinces | Three-stage network DEA |
[29] | This paper aims to measure the evolution of the destocking performance of the Real Estate Industry. | China | 62 central cities and other regions | Malmquist index |
[30] | This paper evaluates the green productivity of real estate companies statically and dynamically. | China | 15 real estate companies | SBM、 Malmquist index |
[17] | This study mainly investigates the total factor productivity of the real estate industry from 2007 to 2016. | China | 30 provinces | Malmquist index |
[31] | This study measures the innovation efficiency of construction companies and investigates the relationship between innovation efficiency and OSH regulations. | Korea | 90 construction companies | BCC |
Variables | Description | Unit | Reference |
---|---|---|---|
Inputs | |||
Operating expenses | The expenses incurred through each construction company's operating activities within the statistical year. |
1,000 TWD | [10,11,15,33] |
Employee | The human capital of each construction company within the statistical year. | Number of people | [12,13,14,15,17,18,19,28,29,30,33,34,36] |
Outputs | |||
Revenue | The income is received from the operating activities of each construction company within the statistical year. |
1,000 TWD | [12,14,15,17,18,27,30,31,33,34,35,36] |
Market value | The value of each construction company within the statistical year is the total outstanding shares multiplied by the price per share. | 1,000 TWD | [53,54,55,56] |
Carryover | |||
Total asset | The resources controlled or owned by each construction company within the statistical year. | 1,000 TWD | [10,12,15,17,18,19,28,29,30,32,33,34,36] |
Year | Variable Unit | Mean | Max. | Min. | SD. | K-S test p-value |
|
---|---|---|---|---|---|---|---|
2004-2015 | CARRYOVER | Total Asset | 20,399,651 | 513,765,929 | 67,456 | 49,205,101 | p<0.01 |
INPUT | Operating Expenses | 505,458 | 4,362,085 | 8,255 | 677,382 | p<0.01 | |
Employee | 409 | 8,777 | 6 | 1,081 | p<0.01 | ||
OUTPUT | Market Value | 7,591,330 | 68,896,213 | 40,600 | 10,439,035 | p<0.01 | |
Revenue | 5,375,358 | 93,388,930 | 447 | 10,610,906 | p<0.01 | ||
2004 | CARRYOVER | Total Asset | 7,565,555 | 30,612,058 | 357,002 | 8,066,572 | |
INPUT | Operating Expenses | 286,164 | 1,421,472 | 24,278 | 324,750 | ||
Employee | 165 | 1,130 | 9 | 259 | |||
OUTPUT | Market Value | 3,931,228 | 32,467,694 | 144,400 | 5,748,799 | ||
Revenue | 2,564,752 | 14,682,404 | 8,910 | 3,449,044 | |||
2005 | CARRYOVER | Total Asset | 12,099,505 | 190,832,588 | 295,297 | 29,037,141 | |
INPUT | Operating Expenses | 371,649 | 2,113,411 | 14,589 | 497,708 | ||
Employee | 288 | 1,788 | 7 | 498 | |||
OUTPUT | Market Value | 3,517,519 | 24,019,468 | 116,926 | 4,684,949 | ||
Revenue | 4,421,445 | 59,952,117 | 7,288 | 9,589,124 | |||
2006 | CARRYOVER | Total Asset | 14,073,131 | 217,834,482 | 333,846 | 33,196,029 | |
INPUT | Operating Expenses | 440,388 | 2,219,759 | 20,576 | 579,230 | ||
Employee | 320 | 2,308 | 9 | 558 | |||
OUTPUT | Market Value | 7,613,964 | 38,762,451 | 119,799 | 9,224,576 | ||
Revenue | 5,486,979 | 59,084,516 | 6,849 | 10,027,593 | |||
2007 | CARRYOVER | Total Asset | 15,668,296 | 243,932,850 | 377,687 | 37,217,774 | |
INPUT | Operating Expenses | 471,300 | 2,429,040 | 17,486 | 587,736 | ||
Employee | 334 | 2,364 | 9 | 599 | |||
OUTPUT | Market Value | 6,742,407 | 55,630,640 | 102,068 | 9,801,478 | ||
Revenue | 5,905,852 | 71,902,022 | 4,311 | 11,603,301 | |||
2008 | CARRYOVER | Total Asset | 16,704,320 | 256,563,380 | 565,971 | 39,304,494 | |
INPUT | Operating Expenses | 451,394 | 2,461,484 | 18,642 | 582,777 | ||
Employee | 451 | 7,746 | 11 | 1,245 | |||
OUTPUT | Market Value | 3,077,756 | 16,917,873 | 51,310 | 3,785,155 | ||
Revenue | 5,974,117 | 93,388,930 | 6,098 | 14,590,413 | |||
2009 | CARRYOVER | Total Asset | 18,424,987 | 298,661,093 | 314,939 | 45,762,671 | |
INPUT | Operating Expenses | 473,080 | 2,884,978 | 17,404 | 657,306 | ||
Employee | 470 | 8,256 | 9 | 1,325 | |||
OUTPUT | Market Value | 8,338,648 | 50,011,916 | 56,070 | 10,521,434 | ||
Revenue | 5,728,271 | 77,054,529 | 7,145 | 12,238,482 | |||
2010 | CARRYOVER | Total Asset | 20,499,210 | 332,823,105 | 260,662 | 50,962,571 | |
INPUT | Operating Expenses | 522,998 | 2,786,296 | 15,539 | 726,323 | ||
Employee | 463 | 8,777 | 6 | 1,386 | |||
OUTPUT | Market Value | 10,784,411 | 55,451,066 | 67,200 | 13,403,065 | ||
Revenue | 5,577,582 | 50,892,148 | 10,189 | 9,370,187 | |||
2011 | CARRYOVER | Total Asset | 23,802,942 | 363,937,987 | 233,237 | 56,101,951 | |
INPUT | Operating Expenses | 557,832 | 2,953,826 | 11,774 | 751,909 | ||
Employee | 473 | 7,815 | 7 | 1,266 | |||
OUTPUT | Market Value | 6,988,937 | 36,643,068 | 48,090 | 8,818,972 | ||
Revenue | 5,949,557 | 67,769,843 | 10,340 | 11,216,922 | |||
2012 | CARRYOVER | Total Asset | 27,289,835 | 421,631,217 | 67,456 | 65,125,582 | |
INPUT | Operating Expenses | 612,433 | 4,362,085 | 13,233 | 910,910 | ||
Employee | 473 | 7,815 | 6 | 1,266 | |||
OUTPUT | Market Value | 9,701,175 | 59,777,575 | 40,600 | 12,334,021 | ||
Revenue | 5,973,852 | 91,043,785 | 447 | 14,342,822 | |||
2013 | CARRYOVER | Total Asset | 30,907,529 | 455,509,421 | 606,556 | 70,653,851 | |
INPUT | Operating Expenses | 691,194 | 3,793,422 | 11,489 | 844,259 | ||
Employee | 488 | 7,815 | 6 | 1,265 | |||
OUTPUT | Market Value | 11,370,469 | 68,896,213 | 521,272 | 13,316,573 | ||
Revenue | 7,416,686 | 71,023,298 | 60,914 | 12,304,434 | |||
2014 | CARRYOVER | Total Asset | 34,193,889 | 513,765,929 | 609,515 | 79,155,427 | |
INPUT | Operating Expenses | 590,493 | 2,927,776 | 8,255 | 701,977 | ||
Employee | 495 | 7,815 | 6 | 1,265 | |||
OUTPUT | Market Value | 10,454,865 | 60,105,226 | 662,599 | 12,874,811 | ||
Revenue | 4,716,964 | 37,515,171 | 9,850 | 6,783,894 | |||
2015 | CARRYOVER | Total Asset | 23,566,612 | 114,195,943 | 619,937 | 26,650,414 | |
INPUT | Operating Expenses | 596,566 | 2,989,867 | 8,795 | 741,252 | ||
Employee | 491 | 7,815 | 11 | 1,254 | |||
OUTPUT | Market Value | 8,574,579 | 59,707,533 | 471,091 | 11,408,340 | ||
Revenue | 4,788,241 | 34,638,039 | 23,596 | 6,819,592 |
Total Asset | Operating Expenses | Employee | Market Value | Revenue | |
---|---|---|---|---|---|
Total Asset | 1.000 | ||||
Operating Expenses | 0.657** | 1.000 | |||
Employee | 0.807** | 0.647** | 1.000 | ||
Market Value | 0.326** | 0.617** | 0.198** | 1.000 | |
Revenue | 0.807** | 0.795** | 0.720** | 0.400** | 1.000 |
Year | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | Pre QE Mean | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | PostQE Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.445 | 0.442 | 0.526 | 0.571 | 0.585 | 0.628 | 0.535 | 0.625 | 0.670 | 0.641 | 0.589 | 0.587 | 0.559 | 0.612 |
Max | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Min | 0.017 | 0.010 | 0.015 | 0.028 | 0.036 | 0.023 | 0.022 | 0.026 | 0.104 | 0.019 | 0.033 | 0.009 | 0.047 | 0.040 |
SD. | 0.375 | 0.383 | 0.399 | 0.382 | 0.384 | 0.354 | 0.380 | 0.357 | 0.336 | 0.348 | 0.391 | 0.344 | 0.333 | 0.352 |
DSBM in different time effect | BeforeQE | After QE | BeforeQE | AfterQE | BeforeQE | AfterQE | K-S Test (Non-parametric) |
One-Way ANOVA (parametric) |
---|---|---|---|---|---|---|---|---|
Mean | Mean | Std. Dev. | Std. Dev. | Df | df | p-value | p-value | |
QE One year lagging | 0.533 | 0.612 | 0.382 | 0.350 | 258 | 258 | p < .01 | p < .05 |
QE Two years lagging | 0.546 | 0.609 | 0.380 | 0.350 | 301 | 215 | p < .05 | p < .10 |
QE Three years lagging | 0.562 | 0.594 | 0.376 | 0.353 | 344 | 172 | p > .10 | p > .10 |
BP | ||||
---|---|---|---|---|
Variable | Model 1 | Model 2 | Model 3 | Model 4 |
Control variables | ||||
SIZE | 0.224*** | 0.215*** | 0.222*** | 0.245*** |
ROA | 0.045 | 0.041 | 0.039 | 0.029 |
Independent variable | ||||
QE | 0.078* | 0.076* | 0.073* | |
Moderator | ||||
DebtRatio | -0.022 | -0.051 | ||
Interaction term | ||||
QE x DebtRatio | -1.18*** | |||
R-squared |
0.053 0.053*** |
0.059 0.006* |
0.059 0.000 |
0.072 0.013*** |
F-statistic | 14.330*** | 3.225* | 0.228 | 7.078*** |
Simple slope b | Std. Error | t-value | df | p-value | |
---|---|---|---|---|---|
High Debt Ratio | 0.450 | 0.046 | 9.759 | 516 | 0.000 |
Low Debt Ratio | 0.610 | 0.045 | 13.626 | 516 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated