Submitted:
15 February 2024
Posted:
16 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pathophysiology of Peritoneum in Long-Term PD
3. Combating PD-Solution Associated Toxicity
3.1. Commercially Available PD Solutions Alternative to Standard Glucose-Based Solutions
3.2. PD solutions under Development
3.2.1. Full replacement of Glucose with Another Osmotic Agent
3.2.2. Addition of Membrane-Protective Compounds to Glucose-Based PD Solution
3.2.3. Addition of Osmo-Metabolic Agents to PD Solution with Low Glucose Content
3.3. Other Approaches
3.3.1. Sodium-Glucose Co-Transport 2 (SGLT2) Inhibition
3.3.2. Dipeptidyl Peptidase 4 Inhibition
3.3.3. Stem Cells
3.3.4. Indobufen
3.3.5. Roxadustat
3.3.6. Lactobacillus casei Zhang
3.3.7. Tamoxifen
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Howell, M.; Walker, R.C.; Howard, K. Cost effectiveness of dialysis modalities: A systemic review of 723 economic evaluations. Appl. Health Econ. Health Policy 2019, 17, 315–330. [Google Scholar] [CrossRef]
- Smit, W.; Schouten, N.; van den Berg, N.; Langedijk, M.J.; Struijk, D.G.; Krediet, R.T. Analysis of the Prevalence and Causes of Ultrafiltration Failure during Long-Term Peritoneal Dialysis: A Cross-Sectional Study. Perit. Dial. Int. 2004, 24, 562–570. [Google Scholar] [CrossRef]
- Li, P.K.-T.; Szeto, C.C.; Piraino, B.; de Arteaga, J.; Fan, S.; Figueiredo, A.E.; Fish, D.N.; Goffin, E.; Kim, Y.-L.; Salzer, W.; Struijk, D.G.; Teitelbaum, I.; Johnson, D.W. ISPD Peritonitis Recommendations: 2016 Update on Prevention and Treatment. Perit. Dial. Int. 2016, 36, 481–508. [Google Scholar] [CrossRef]
- Hayat, A.; Collins, J.; Saweirs, W. Study of Early Complications Associated with Peritoneal Dialysis Catheters: An Analysis of the New Zealand Peritoneal Dialysis Registry Data. Int. Urol. Nephrol. 2021, 53, 1705–1711. [Google Scholar] [CrossRef]
- Balzer, M.S. Molecular pathways in peritoneal fibrosis. Cell. Signal. 2020, 75, 109778. [Google Scholar] [CrossRef]
- Bartosova, M.; Schmitt, C.P. Biocompatible peritoneal dialysis: The target is still way off. Front. Physiol. 2019, 9, 9. [Google Scholar] [CrossRef]
- Williams, J.D.; Craig, K.J.; Topley, N.; Von Ruhland, C.; Fallon, M.; Newman, G.R.; Mackenzie, R.K.; Williams, G.T. Morphologic Changes in the Peritoneal Membrane of Patients with Renal Disease. J. Am. Soc. Nephrol. 2002, 13, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Terri, M.; Trionfetti, F.; Montaldo, C.; Cordani, M.; Tripodi, M.; Lopez-Cabrera, M.; Strippoli, R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front. Immunol. 2021, 12, 607204. [Google Scholar] [CrossRef]
- Bonomini, M.; Masola, V.; Procino, G.; Zammit, V.; Divino-Filho, J.C.; Arduini, A.; Gambaro, G. How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient’s Health). Int. J. Mol. Sci. 2021, 22, 7955. [Google Scholar] [CrossRef] [PubMed]
- Bajo, M.A.; Del Peso, G.; Teitelbaum, I. Peritoneal Membrane Preservation. Semin. Nephrol. 2017, 37, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Bonomini, M.; Zammit, V.; Divino-Filho, J.C.; Davies, S.J.; Di Liberato, L.; Arduini, A.; Lambie, M. The Osmo-Metabolic Approach: A Novel and Tantalizing Glucose-Sparing Strategy in Peritoneal Dialysis. J. Nephrol. 2021, 34, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.K.; Lin, C.L.; Chen, H.C.; Lin, S.Y.; Chang, C.T.; Yen, T.H.; Sung, F.C. Risk of new-onset diabetes in end-stage renal disease patients undergoing dialysis: Analysis from registry data of Taiwan. Nephrol. Dial. Transplant. 2017, 33, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Lambie, M.; Bonomini, M.; Davies, S.J.; Accili, D.; Arduini, A.; Zammit, V. Insulin resistance in cardiovascular disease, uremia, and peritoneal dialysis. Trends Endocrinol. Metab. 2021, 32, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Masola, V.; Bonomini, M.; Borrelli, S.; Di Liberato, L.; Vecchi, L.; Onisto, M.; Gambaro, G.; Palumbo, R.; Arduini, A. Fibrosis of Peritoneal Membrane as Target of New Therapies in Peritoneal Dialysis. Int. J. Mol. Sci. 2022, 23, 4831. [Google Scholar] [CrossRef]
- Trionfetti, F.; Marchant, V.; González-Mateo, G.T.; Kawka, E.; Márquez-Expósito, L.; Ortiz, A.; López-Cabrera, M.; Ruiz-Ortega, M.; Strippoli, R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int. J. Mol. Sci. 2023, 24, 5763. [Google Scholar] [CrossRef]
- Li Front Physiol 2023 Li, J.; Liu, Y.; Liu, J. A review of research progress on mechanisms of peritoneal fibrosis related to peritoneal dialysis. Front. Physiol. 2023, 14, 1220450. [Google Scholar] [CrossRef]
- Suryantoro, S.D.; Thaha, M.; Sutanto, H.; Firdausa, S. Current Insights into Cellular Determinants of Peritoneal Fibrosis in Peritoneal Dialysis: A Narrative Review. J. Clin. Med. 2023, 12, 4401. [Google Scholar] [CrossRef]
- Garosi, G.; Di Paolo, N. Peritoneal Sclerosis: One or Two Nosological Entities? Semin. Dial. 2000, 13, 297–308. [Google Scholar] [CrossRef]
- Lambie, M.L.; John, B.; Mushahar, L.; Huckvale, C.; Davies, S.J. The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made. Kidney Int. 2010, 78, 611–618. [Google Scholar] [CrossRef]
- Nieto, M.A.; Huang, R.Y.-J.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef]
- Jang, Y.-H.; Shin, H.-S.; Sun Choi, H.; Ryu, E.-S.; Jin Kim, M.; Ki Min, S.; Lee, J.-H.; Kook Lee, H.; Kim, K.-H.; Kang, D.-H. Effects of Dexamethasone on the TGF-Β1-Induced Epithelial-to-Mesenchymal Transition in Human Peritoneal Mesothelial Cells. Lab. Investig. 2013, 93, 194–206. [Google Scholar] [CrossRef]
- Lho, Y.; Do, J. Y.; Heo, J. Y.; Kim, A. Y.; Kim, S. W.; Kang, S. H. Effects of TGF-β1 receptor inhibitor GW788388 on the epithelial to mesenchymal transition of peritoneal mesothelial cells. Int. J. Mol. Sci. 2021, 22, 4739. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Balzer, M. S.; Rong, S.; Menne, J.; von Vietinghoff, S.; Dong, L.; et al. Protein kinase C α inhibition prevents peritoneal damage in a mouse model of chronic peritoneal exposure to high-glucose dialysate. Kidney Int. 2016, 89, 1253–1267. [Google Scholar] [CrossRef] [PubMed]
- Derynck, R.; Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003, 425, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Orr, Z.J.; Desouza, G.K.; Bagi, Z.; Rudic, R.D. GDP in dialysis associates with peritoneal vascular remodeling in kidney disease. Circ. Res. 2021, 129(5), 527–529. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Thornalley, P.J. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018, 93(4), 803–813. [Google Scholar] [CrossRef] [PubMed]
- Ranzinger, J.; Rustom, A.; Schwenger, V. Membrane nanotubes between peritoneal mesothelial cells: functional connectivity and crucial participation during inflammatory reactions. Front. Physiol. 2014, 5, 2014. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Hashizume, M.; Yoshida, H.; Suzuki, M.; Shiina, M.M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin. Sci. 2012, 122(4), 143–159. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.L.; Li, X.J.; Duan, T.T.; Li, Z.H.; Yang, J.Z.; Zhang, Y.M.; Zou, L.; Miao, H.; Zhao, Y.Y. Transforming growth factor-β signaling: from tissue fibrosis to therapeutic opportunities. Chem. Biol. Inter. 2023, 369, 110289. [Google Scholar] [CrossRef]
- Amorim, A.; De Feo, D.; Friebel, E.; Ingelfinger, F.; Anderfuhren, C.D.; Krishnarajah, S.; Andreadou, M.; Welsh, C.A.; Liu, Z.; Ginhoux, F.; Greter, M.; Becher, B. IFNγ and GM-CSF control complementary differentiation programs in the monocyte-to-phagocyte transition during neuroinflammation. Nat. Immunol. 2022, 23(2), 217–228. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.; Zhu, G.; Zhang, Y.; He, M.; Zhang, J. The role of Resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Exp. Cell Res. 2016, 341, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Hu, Q.; Zheng, Q.; Gong, L.; Su, L.; Ren, B.; Ju, Y.; Jia, Z.; Dou, X. Enhanced mPGES-1 Contributes to PD-Related peritoneal fibrosis via activation of the NLRP3 Inflammasome. Front. Med. (Lausanne) 2021, 8, Article 675363. [Google Scholar] [CrossRef]
- Morelle, J.; Sow, A.; Fustin, C.A.; Fillée, C.; Garcia-Lopez, E.; Lindholm, B.; Goffin, E.; Vandemaele, F.; Rippe, B.; Öberg, C.M.; et al. Mechanisms of Crystalloid versus Colloid Osmosis across the Peritoneal Membrane. J. Am. Soc. Nephrol. 2018, 29, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Goossen, K.; Becker, M.; Marshall, M.R.; Bühn, S.; Breuing, J.; Firanek, C.A.; Hess, S.; Nariai, H.; Sloand, J.A.; Yao, Q.; et al. Icodextrin Versus Glucose Solutions for the Once-Daily Long Dwell in Peritoneal Dialysis: An Enriched Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Kidney Dis. 2020, 75, 830–846. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-Y.; Chen, L.; Peng, Y.-S.; Chen, Y.-Y.; Huang, J.-W.; Hung, K.-Y. Icodextrin is Associated with a Lower Mortality Rate in Peritoneal Dialysis Patients. Perit. Dial. Int. 2019, 39, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Velloso, M.S.S.; Otoni, A.; Sabino, A.; de Castro, W.V.; Pinto, S.W.L.; Marinho, M.A.S.; Rios, D.R.A. Peritoneal dialysis and inflammation. Clin. Chim. Acta 2014, 430, 109–114. [Google Scholar] [CrossRef]
- Moriishi, M.; Kawanishi, H. Icodextrin and Intraperitoneal Inflammation. Perit. Dial. Int. 2008, 28, 96–100. [Google Scholar] [CrossRef]
- Higuchi, C.; Kuriyma, J.; Sakura, H. Effect of Neutral pH Icodextrin Peritoneal Dialysis Fluid on Mesothelial Cells. Ther. Apher. Dial. 2018, 22, 656–661. [Google Scholar] [CrossRef]
- Asola, M.; Virtanen, K.; Någren, K.; Helin, S.; Taittonen, M.; Kastarinen, H.; Anderstam, B.; Knuuti, J.; Metsärinne, K.; Nuutila, P. Amino-acid-based peritoneal dialysis solution improves amino-acid transport into skeletal muscle. Kidney Int. 2008, 73, S131–S136. [Google Scholar] [CrossRef]
- Tjiong, H.L.; van den Berg, J.W.; Wattimena, J.L. Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J. Am. Soc. Nephrol. 2005, 16, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Low, S.; Liew, A. Peritoneal dialysis fluids. Semin. Dial. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mortier, S.; Faict, D.; Schalkwijk, C.G.; Lameire, N.H.; De Vriese, A. Long-term exposure to new peritoneal dialysis solutions: Effects on the peritoneal membrane. Kidney Int. 2004, 66, 1257–1265. [Google Scholar] [CrossRef]
- Reimann, D.; Dachs, D.; Meye, C.; Gross, P. Amino acid-based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Perit. Dial. Int. 2004, 24, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.J. Glucotoxicity in peritoneal dialysis—Solutions for the solution! Adv. Chronic Kidney Dis. 2007, 14, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Li, P.K.; Culleton, B.F.; Ariza, A.; Do, J.Y.; Johnson, D.W.; Sanabria, M.; Shockley, T.R.; Story, K.; Vatazin, A.; Verrelli, M.; Yu, A.W.; Bargman, J.M.; IMPENDIA and EDEN Study Groups. Randomized, controlled trial of glucose-sparing peritoneal dialysis in diabetic patients. J. Am. Soc. Nephrol. 2013, 24, 1889–1900. [Google Scholar] [CrossRef]
- Htay, H.; Johnson, D.W.; Wiggins, K.J.; Badve, S.V.; Craig, J.C.; Strippoli, G.F.M.; Cho, Y. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst. Rev. 2018, 10, CD007554. [Google Scholar] [CrossRef]
- Kooman, J.P.; Cornelis, T.; van der Sande, F.M.; Leunissen, K.M. Is the effect of low-GDP solutions on residual renal function mediated by fluid state? An enigmatic question which still needs to be solved. Perit. Dial. Int. 2016. 36, 239–242. [CrossRef]
- Elphick, E.H.; Teece, L.; Chess, J.A.; Do, J.Y.; Kim, Y.L.; Lee, H.B.; Davison, S.N.; Topley, N; Davies, S.J.; Lambie, M. Biocompatible solutions and long-term changes in peritoneal solute transport. Clin. J. Am. Soc. Nephrol. 2018, 13, 1526–1533. [Google Scholar] [CrossRef]
- Blake, P.G. Is the peritoneal dialysis biocompatibility hypothesis dead? Kidney Int. 2018, 94, 246–248. [Google Scholar] [CrossRef]
- Schaefer, B.; Bartosova, M.; Macher-Goeppinger, S.; Sallay, P.; Vörös, P.; Ranchin, B.; Vondrak, K.; Ariceta, G.; Zaloszyc, A.; Bayazit, A.K.; Querfeld, u.; Cerkauskiene, R.; Testa, S.; Taylan, C.; VandeWalle, J.; Yap, Y.C.; Krmar, R.T.; Büscher, R.; Mühlig, A.K.; Drozdz, D.; Caliskan, S.; Lasitschka, F.; Fathallah-Shaykh, S.; Verrina, E.; Klaus, G.; Arbeiter, K.; Bhayadia, R.; Melk, A.; Romero, P.; Warady, B.A.; Schaefer, F.; Ujszaszi, A.; Schmitt, C.P. Neutral pH and low–glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis. Kidney Int. 2018, 94, 419–429. [Google Scholar] [CrossRef]
- Shirai, Y.; Miura, K.; Ike, T.; Sasaki, K; Ishizuka, K.; Horita, S.; Taneda, S.; Hirano, D.; Honda, K.; Yamaguchi, Y.; Masaki, T.; Hattori, M. Cumulative Dialytic Glucose Exposure is a Risk Factor for Peritoneal Fibrosis and Angiogenesis in Pediatric Patients Undergoing Peritoneal Dialysis Using Neutral-pH Fluids. Kidney Int. Rep. 2022, 7, 2431–2445. [Google Scholar] [CrossRef]
- Sugiyama, N.; Tawada, M.; Sun, T.; Suzuki, Y.; Kinashi, H.; Yamaguchi, M.; Katsuno, T.; Aten, J.; Vlahu, C.A.; van Kuppevelt, T.H.; Takei, Y.; Ishimoto, T.; Maruyama, S.; Mizuno, M.; Ito, Y. Low-GDP, pH-neutral solutions preserve peritoneal endothelial glycocalyx during long-term peritoneal dialysis. Clin. Exp. Nephrol. 2021, 25, 1035–1046. [Google Scholar] [CrossRef]
- Sieve, I.; Münster-Kühnel, A.K.; Hilfiker-Kleiner, D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vasc. Pharmacol. 2018, 100, 26–33. [Google Scholar] [CrossRef]
- Bartosova, M.; Zhang, C.; Schaefer, B.; Herzog, R.; Ridinger, D.; Damgov, I.; Levai, E.; Marinovic, I.; Eckert, C.; Romero, P.; Sallay, P.; Ujszaszi, A.; Unterwurzacher, M.; Wagner, A.; Hildenbrand, G.; Warady, B.A.; Schaefer, F.; Zarogiannis, S.G.; Kratochwill, K.; Schmitt, C.P. Glucose Derivative Induced Vasculopathy in Children on Chronic Peritoneal Dialysis. Circ. Res. 2021, 129, e102–e118. [Google Scholar] [CrossRef]
- Gokal, R. Osmotic agents in peritoneal dialysis. Contrib. Nephrol. 1990, 85, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Abbina, S.; Vappala, S.; Kumar, P.; Siren, E.M.J.; La, C.C.; Abbasi, U.; Brooks, D.E.; Kizhakkedathu, J.N. Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J. Mater. Chem. B. 2017, 5, 9249–9277. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Mendelson, A.A.; Guan, Q.; Dairi, G.; Chafeeva, I.; Da Roza, G.; Kizhakkedathu, J.N. Hyperbranched polyglycerol is superior to glucose for long-term preservation of peritoneal membrane in a rat model of chronic peritoneal dialysis. J. Transl. Med. 2016, 14, 1–17. [Google Scholar] [CrossRef] [PubMed]
- La Han, B.; Guan, Q.; Chafeeva, I.; Mendelson, A.A.; Da Roza, G.; Liggins, R.; Kizhakkedathu, J.N.; Du, C. Peritoneal and Systemic Responses of Obese Type II Diabetic Rats to Chronic Exposure to a Hyperbranched Polyglycerol-Based Dialysis Solution. Basic Clin. Pharmacol. Toxicol. 2018, 123, 494–503. [Google Scholar] [CrossRef]
- Du, C.; Jayo, R.; Mendelson, A.A.; Chafeeva, I.; Roza, G.D.; Liggins, R.; Kizhakkedathu, J.N. Pharmacokinetics of small hyperbranched polyglycerols as an osmotic agent for peritoneal dialysis: Plasma exposure, organ distribution and excretion in rats. Perit. Dial. Int. 2023, 43, 324–333. [Google Scholar] [CrossRef]
- Casas-Grajales, S.; Ramos-Tovar, E.; Chávez-Estrada, E.; Alvarez-Suarez, D.; Hernández-Aquino, E.; Reyes-Gordillo, K.; Cerda-García-Rojas, C.M.; Camacho, J.; Tsutsumi, V.; Lakshman, M.R.; Muriel, P. Antioxidant and immunomodulatory activity induced by stevioside in liver damage: In vivo, in vitro and in silico assays. Life Sci. 2019, 224, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Tovar, E.; Flores-Beltrán, R. E.; Galindo-Gómez, S.; Vera-Aguilar, E.; Diaz-Ruiz, A.; Montes, S.; Camacho, J.; Tsutsumi, V.; Muriel, P. Stevia rebaudiana tea prevents experimental cirrhosis via regulation of NF-κB, Nrf2, transforming growth factor beta, Smad7, and hepatic stellate cell activation. Phytother. Res. 2018, 32, 2568–2576. [Google Scholar] [CrossRef] [PubMed]
- Kopytina, V.; Pascual-Antón, L.; Toggweiler, N.; Arriero-País, E.-M.; Strahl, L.; Albar-Vizcaíno, P.; Sucunza, D.; Vaquero, J.J.; Steppan, S.; Piecha, D.; López-Cabrera, M.; González-Mateo, G.-T. Steviol glycosides as an alternative osmotic agent for peritoneal dialysis fluid. Front. Pharmacol. 2022, 13, 868374. [Google Scholar] [CrossRef]
- Macario, A. J.; Conway de Macario, E. Chaperonopathies and chaperonotherapy. FEBS Lett. 2007, 581, 3681–3688. [Google Scholar] [CrossRef] [PubMed]
- Kratochwill, K.; Boehm, M.; Herzog, R.; Lichtenauer, A. M.; Salzer, E.; Lechner, M.; Kuster, L.; Bergmeister, K.; Rizzi, A.; Mayer, B.; Aufricht, C. Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids. Nephrol. Dial. Transplant. 2012, 27, 937–946. [Google Scholar] [CrossRef]
- Ferrantelli, E.; Liappas, G.; Cuenca, M.C.; Keuning, E.D.; Foster, T.L.; Vervloet, M.G.; Lopéz-Cabrera, M.; Beelen, R.H.J. The dipeptide alanyl-glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis. Kidney Int. 2016, 89, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Herzog, R.; Bartosova, M.; Tarantino, S.; Wagner, A.; Unterwurzacher, M.; Sacnun, J.M.; Lichtenauer, A.M.; Kuster, L.; Schaefer, B.; Alper, S.L.; et al. Peritoneal Dialysis Fluid Supplementation with Alanyl-Glutamine Attenuates Conventional Dialysis Fluid-Mediated Endothelial Cell Injury by Restoring Perturbed Cytoprotective Responses. Biomolecules 2020, 10, 1678. [Google Scholar] [CrossRef]
- Kratochwill, K.; Boehm, M.; Herzog, R.; Gruber, K.; Lichtenauer, A.M.; Kuster, L.; Csaicsich, D.; Gleiss, A.; Alper, S.L.; Aufricht, C.; Vychytil, A. Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses—A First-In-Man Trial. PLoS ONE 2016, 11, e0165045. [Google Scholar] [CrossRef]
- Wiesenhofer, F.M.; Herzog, R.; Boehm, M.; Wagner, A.; Unterwurzacher, M.; Kasper, D.C.; Alper, S.L.; Vychytil, A.; Aufricht, C.; Kratochwill, K. Targeted Metabolomic Profiling of Peritoneal Dialysis Effluents Shows Anti-oxidative Capacity of Alanyl-Glutamine. Front. Physiol. 2019, 9, 1961. [Google Scholar] [CrossRef]
- Sacnun, J.M.; Hoogenboom, R.; Eibensteiner, F.; Sobieszek, I.J.; Unterwurzacher, M.; Wagner, A.; Herzog, R.; Kratochwill, K. Proteome-Wide Differential Effects of Peritoneal Dialysis Fluid Properties in an In Vitro Human Endothelial Cell Model. Int. J. Mol. Sci. 2022, 23, 8010. [Google Scholar] [CrossRef]
- Herzog, R.; Boehm, M.; Unterwurzacher, M.; Wagner, A.; Parapatics, K.; Májek, P.; Mueller, A.C.; Lichtenauer, A.; Bennett, K.L.; Alper, S.L.; Vychytil, A.; Aufricht, C.; Kratochwill, K. Effects of Alanyl-Glutamine Treatment on the Peritoneal Dialysis Effluent Proteome Reveal Pathomechanism Associated Molecular Signatures. Mol. Cell. Proteom. 2018, 17, 516–532. [Google Scholar] [CrossRef]
- Bonomini, M.; Borras, F.E.; Troya-Saborido, M.; Carreras-Planella, L.; Di Liberato, L.; Arduini, A. Proteomic research in peritoneal dialysis. Int. J. Mol. Sci. 2020, 21, 5489. [Google Scholar] [CrossRef]
- Vychytil, A.; Herzog, R.; Probst, P.; Ribitsch, W.; Lhotta, K.; Machold-Fabrizii, V.; Wiesholzer, M.; Kaufmann, M.; Salmhofer, H.; Windpessl, M.; Rosenkranz, A.R.; Oberbauer, R.; König, F.; Kratochwill, K.; Aufricht, C. A randomized controlled trial of alanyl-glutamine supplementation in peritoneal dialysis fluid to assess impact on biomarkers of peritoneal health. Kidney Int. 2018, 94, 1227–1237. [Google Scholar] [CrossRef]
- Wilkie, M.; Davies, S. Does alanyl-glutamine supplementation offer potential to improve peritoneal dialysate biocompatibility? Kidney Int. 2018, 94, 1050–1052. [Google Scholar] [CrossRef]
- Bazzato, G.; Fracasso, A.; Gambaro, G.; Baggio, B. Use of glycosaminoglycans to increase efficiency of long-term continuous peritoneal dialysis. Lancet 1995, 346, 740–741. [Google Scholar] [CrossRef]
- Fracasso, A.; Baggio, B.; Masiero, M.; Bonfante, L.; Bazzato, G.; Feriani, M.; Gambaro, G. Effect of oral treatment with the glycosaminoglycan sulodexide on peritoneal transport in CAPD patients. Perit. Dia. Int. 2003, 23, 595–9. [Google Scholar] [CrossRef]
- Misian, M.; Baum, E.; Breborowicz, A. Sulodexide modulates the dialysate effect on the peritoneal mesothelium. J. Physiol. Pharmacol. 2019, 6, 979–984. [Google Scholar] [CrossRef]
- Li, H.; Ma, H.Y.; Hua, W.L.; Zhang, Y.X.; Zhang, L.; Xing, P.F.; Yang, P.F.; Liu, J.M. Trend of research on the medical use of molecular hydrogen: a bibliometric analysis. Med. Gas. Res. 2023, 13, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.-I.; Ichikawa, Y.; Sato, B.; Takefuji, Y.; Satoh, F. Clinical Use and Treatment Mechanism of Molecular Hydrogen in the Treatment of Various Kidney Diseases including Diabetic Kidney Disease. Biomedicines 2023, 11, 2817. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.E.; Passaglia, P.; Mota, C.M.D.; Santos, B.M.; Batalhão, M.E.; Carnio, E.C.; Branco, L.G.S. Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status. Free Radic. Biol. Med. 2018, 129, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.I.; Ichikawa, Y.; Sato, B.; Takefuji, Y.; Satoh, F. Molecular hydrogen as a potential clinically applicable radioprotective agent. Int. J. Mol. Sci. 2021, 22, 4566. [Google Scholar] [CrossRef] [PubMed]
- Terawaki, H.; Hayashi, Y.; Zhu, W.J.; Matsuyama, Y.; Terada, T.; Kabayama, S.; Watanabe, T.; Era, S.; Sato, B.; Nakayama, M. Transperitoneal administration of dissolved hydrogen for peritoneal dialysis patients: A novel approach to suppress oxidative stress in the peritoneal cavity. Med. Gas. Res. 2013, 3, 1–7. [Google Scholar] [CrossRef]
- Nakayama, M.; Watanabe, K.; Hayashi, Y.; Terawaki, H.; Zhu, W.-J.; Kabayama, S.; Ito, S. Translational Research of Peritoneal Dialysis Solution with Dissolved Molecular Hydrogen. Contrib. Nephrol. 2018, 196, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Zhu, W.J.; Watanabe, K.; Gibo, A.; Sherif, A.M.; Kabayama, S.; Ito, S. Dissolved molecular hydrogen (H2) in Peritoneal Dialysis (PD) solutions preserves mesothelial cells and peritoneal membrane integrity. BMC Nephrol. 2017, 18, 1–9. [Google Scholar] [CrossRef]
- Novak, M.L.; Koh, T.J. Macrophage phenotypes during tissue repair. J. Leukoc. Biol. 2013, 93, 875–81. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Zhang, J.-G.; Qin, R.-H.; Dai, C.; Shi, P.; Yang, J.-J.; Deng, Z.-Y.; Shi, K.-H. LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. Toxicology 2017, 386, 11–18. [Google Scholar] [CrossRef]
- Lu, H.; Chen, W.; Liu, W.; Si, Y.; Zhao, T.; Lai, X.; Kang, Z.; Sun, X.; Guo, Z. Molecular hydrogen regulates PTEN-AKT-mTOR signaling via ROS to alleviate peritoneal dialysis-related peritoneal fibrosis. The FASEB Journal 2020, 34, 4134–4146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Lu, M.; Li, W.; Li, J.; Meng, P.; Li, Z.; Gao, X.; Zhang, Y. PPARγ alleviates peritoneal fibrosis progression along with promoting GLUT1 expression and suppressing peritoneal mesothelial cell proliferation. Mol. Cell. Biochem. 2022, 477, 1959–1971. [Google Scholar] [CrossRef]
- Kokeny, G.; Calvier, L.; Legchenko, E.; Chouvarine, P.; Mozes, M.M.; Hansmann, G. PPARgamma is a gatekeeper for extracellular matrix and vascular cell homeostasis: beneficial role in pulmonary hypertension and renal/cardiac/pulmonary fibrosis. Curr. Opin. Nephrol. Hypertens. 2020, 9, 171–179. [Google Scholar] [CrossRef]
- Lyu, Z.; Mao, Z.; Li, Q.; Xia, Y.; Liu, Y.; He, Q.; Wang, Y.; Zhao, H.; Lu, Z.; Zhou, Q. PPARgamma maintains the metabolic heterogeneity and homeostasis of renal tubules. EBioMedicine 2018, 38, 178–190. [Google Scholar] [CrossRef]
- Han, W.; Wang, C.; Yang, Z.; Mu, L.; Wu, M.; Chen, N.; Du, C.; Duan, H.; Shi, Y. SRT1720 retards renal fibrosis via inhibition of HIF1alpha /GLUT1 in diabetic nephropathy. J. Endocrinol. 2019. [Google Scholar] [CrossRef]
- Wan, L.; Xia, T.; Du, Y.; Liu, J.; Xie, Y.; Zhang, Y.; Guan, F.; Wu, J.; Wang, X.; Shi, C. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells. FASEB J. 2019, 33, 8530–8542. [Google Scholar] [CrossRef]
- Fischereder, M.; Schroppel, B.; Wiese, P.; Fink, M.; Banas, B.; Schmidbauer, S.; Schlondorff, D. Regulation of glucose transporters in human peritoneal mesothelial cells. J. Nephrol. 2003, 16, 103–109. [Google Scholar]
- Raveendran, A.; Fernandez, C.J.; Jacob, K. Efficacy and cardiovascular safety of thiazolidinediones. Curr. Drug Saf. 2021, 16, 233–249. [Google Scholar] [CrossRef]
- Zhang, H.M.; Zhang, Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014, 57, 131–146. [Google Scholar] [CrossRef]
- Cecon, E.; Oishi, A.; Jockers, R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 2018, 175, 3263–3280. [Google Scholar] [CrossRef]
- Ruan, H.; Li, X.Y.; Yu, S.; Zhang, R.; Cheng, Q.; Sheng, J.; Li, X.; Liu, X.; Yuan, R.; Zhang, X.; Chen, L.; Xu, G.; Guan, Y.; Nie, J.; Qin, H.; Zheng, F. Melatonin decreases GSDME mediated mesothelial cell pyroptosis and prevents peritoneal fibrosis and ultrafiltration failure. Sci. China Life Sci. 2023. [Google Scholar] [CrossRef]
- Zammit, V.A.; Ramsay, R.R.; Bonomini, M.; Arduini, A. Carnitine, mitochondrial function and therapy. Adv. Drug Deliv. Rev. 2009, 61, 1353–1362. [Google Scholar] [CrossRef]
- Bonomini, M.; Di Liberato, L.; Zammit, V.; Arduini, A. Current opinion on usage of L-carnitine in end-stage renal disease patients on peritoneal dialysis. Molecules 2019, 24, 3449. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Van Eys, J. Nutritional significance of fructose and sugar alcohols. Annu. Rev. Nutr. 1981, 1, 437–475. [Google Scholar] [CrossRef] [PubMed]
- Bazzato, G.; Coli, U.; Landini, S.; Fracasso, A.; Morachiello, P.; Righetto, F.; Scanferla, F.; Onesti, G. Xylitol as osmotic agent in CAPD: An alternative to glucose for uremic diabetic patients? Trans. Am. Soc. Artif. Intern. Organs. 1982, 28, 280–286. [Google Scholar]
- Bonomini, M.; Di Silvestre, S.; Di Tomo, P.; Di Pietro, N.; Mandatori, D.; Di Liberato, L.; Sirolli, V.; Chiarelli, F.; Indiveri, C.; Pandolfi, A.; et al. Effect of peritoneal dialysis fluid containing osmo-metabolic agents on human endothelial cells. Drug Des. Dev. Ther. 2016, 10, 3925–3932. [Google Scholar] [CrossRef] [PubMed]
- Piccapane, F.; Bonomini, M.; Castellano, G.; Gerbino, A.; Carmosino, M.; Svelto, M.; Arduini, A.; Procino, G. A novel formulation of glucose-sparing peritoneal dialysis solutions with L-carnitine improves biocompatibility on human mesothelial cells. Int. J. Mol. Sci. 2020, 22, 123. [Google Scholar] [CrossRef] [PubMed]
- Masola, V.; Bonomini, M.; Onisto, M.; Ferraro, P.M.; Arduini, A.; Gambaro, G. Biological effects of XyloCore, a glucose sparing PD solution, on mesothelial cells: focus on mesothelial-mesenchymal transition, inflammation and angiogenesis. Nutrients 2021, 13, 2282. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Kwan, J.Y.Y.; Yip, K.; Liu, P.; Liu, F.F. Targeting metabolic dysregulation for fibrosis therapy. Nat. Rev. Drug Discov. 2020, 1, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Wang, Q.; Li, Y.; Lin, H.; Luo, D.; Zhao, W.; Dou, X.; Liu, J.; Zhang, H.; Huang, Y.; Lou, T.; Hu, Z.; Peng, H. Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis. Sci. Transl. Med. 2019, 11, eaav5341. [Google Scholar] [CrossRef] [PubMed]
- Pitaraki, E.; Jagirdar, R.M.; Rouka, E.; Bartosova, M.; Sinis, S.I.; Gourgoulianis, K.I.; Eleftheriadis, T.; Stefanidis, I.; Liakopoulos, V.; Hatzoglou, C.; Schmitt, C.P.; Zarogiannis, S.G. 2-Deoxy-glucose ameliorates the peritoneal mesothelial and endothelial barrier function perturbation occurring due to peritoneal dialysis fluids exposure. Biochem. Biophys. Res. Commun. 2024, 693, 149376. [Google Scholar] [CrossRef] [PubMed]
- Rago, C.; Lombardi, T.; Di Fulvio, G.; Di Liberato, L.; Arduini, A.; Divino-Filho, J.C.; Bonomini, M. A new peritoneal dialysis solution containing L-carnitine and xylitol for patients on continuous ambulatory peritoneal dialysis: first clinical experience. Toxins 2021, 13, 174. [Google Scholar] [CrossRef]
- Borkum, M.; Jamal, A.; Singh, R.S.; Levin, A. The rationale for the need to study sodium-glucose co-transport 2 inhibitor usage in peritoneal dialysis patients. Perit. Dial. Int. 2023, 43, 139–144. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, J.; Zheng, C.; Peiran, Y.; Wu, H.; Li, X.; Luo, N.; Yu, X.; Chen, C. SGLT-2 inhibitors reduce glucose absorption from peritoneal dialysis solution by suppressing the activity of SGLT-2. Biomed. Pharmacother. 2019, 109, 1327–1338. [Google Scholar] [CrossRef]
- Balzer, M.S.; Rong, S.; Nordlohne, J.; Zemtsovski, J.D.; Schmidt, S.; Stapel, B.; Bartosova, M.; von Vietinghoff, S.; Haller, H.; Schmitt, C.P.; et al. SGLT2 Inhibition by Intraperitoneal Dapagliflozin Mitigates Peritoneal Fibrosis and Ultrafiltration Failure in a Mouse Model of Chronic Peritoneal Exposure to High-Glucose Dialysate. Biomolecules 2020, 10, 1573. [Google Scholar] [CrossRef]
- Wang, J.; Lv, X.; A-Ni-Wan, A.-S.-J.; Tian, S.-S.; Wang, J.-M.; Liu, H.-Y.; Fan, X.-G.; Zhou, S.-J.; Yu, P. Canagliflozin alleviates high glucose-induced peritoneal fibrosis via HIF-1α inhibition. Front. Pharmacol. 2023, 14, 1152611. [Google Scholar] [CrossRef]
- Manuprasert, W.; Leelahavanichkul, A.; Kanjanabuch, S.; Ruangvejvorachai, P.; Manotham, K.; Sanguanrungsirikul, S.; Kanjanabuch, T. Intermittent hypoxia in rat enhancing peritoneal membrane thickening through HIF-1α-induced cytokines in peritoneum. Asian Pac. J. Allergy Immunol. 2022, 40(2), 177–185. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, L.; Zhang, X.; Liu, D.; Wang, R. GSK343, an inhibitor of EZH2, mitigates fibrosis and inflammation mediated by HIF-1α in human peritoneal mesothelial cells treated with high glucose. Eur. J. Pharmacol. 2020, 80, 173076. [Google Scholar] [CrossRef] [PubMed]
- Shentu, Y.; Li, Y.; Xie, S. : Jiang, H.; Sun, S.; Lin, R.; Chen, C.; Bai, Y.; Zhang, Y.; Zheng, C.; Zhou, Y. Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-beta/smad signaling. Int. Immunopharmacol. 2021, 93, 107374. [Google Scholar] [CrossRef] [PubMed]
- Martus, G.; Bergling, K.; de Arteaga, J.; Oberg, C.M. SGLT2 inhibition does not reduce glucose absorption during experimental peritoneal dialysis. Perit. Dial. Int. 2021, 41, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhan, Z.; Ye, X.; Lu, Y.; Song, K.; Sheng, F.; Shen, H.; Yin, P. The antioxidative effects of empagliflozin on high glucose-induced epithelial-mesenchymal transition in peritoneal mesothelial cells via the Nrf2/HO-1 signaling. Ren. Fail. 2022, 44, 1528–1542. [Google Scholar] [CrossRef]
- Alhwiesh, A.K.; Abdul-Rahman, I.S.; Nasreldin, M.A.; Mohammed, A.M.; Al-Oudah, S.; Al-Thwainy, R.; Awal, A.; Alsenpisi, Z.; Abdulrahman, A.; Al-Warthan, S.; Al-Oudah, N. The Use of SGLT2 Inhibitors in Peritoneal Dialysis Patients: A Shade of Light on Dapagliflozin. Arch. Nephrol. Urol. 2022, 5, 1–8. [Google Scholar] [CrossRef]
- Lai, J.-W.; Lin, H.-J.; Chou, C.-Y. SGLT-2 inhibitors may increase ultrafltration in incident peritoneal dialysis patients: a case report. BMC Nephrol. 2023, 24, 106. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, Z.; Abdel-Hafez, Y.; Enaya, A.; Sarsour, A.; Kharraz, L.; Nazzal, Z. Dapaglifozin in peritoneal dialysis patients: a pilot study evaluating peritoneal membrane function. BMC Nephrol 2024, 25, 37. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefansson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; Sjöström, C.D.; Toto, R.D.; Langkilde, A.M.; Wheeler, D.C.; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Del Vecchio, L.; Beretta, A.; Jovane, C.; Peiti, S.; Genovesi, S. A role for SGLT-2 inhibitors in treating non-diabetic chronic kidney disease. Drugs 2021, 81, 1491–1511. [Google Scholar] [CrossRef]
- Sridhar, V.S.; Fraser, D.J. SGLT2 inhibition, glucose transport and peritoneal dialysis: Finding the sweet spot. Perit. Dial. Int. 2023, 43, 115–118. [Google Scholar] [CrossRef]
- Gallwitz, B. Clinical use of DPP-4 inhibitors. Front. Endocrinol. (Lausanne) 2019, 10, 389. [Google Scholar] [CrossRef]
- Chung, S.; Kim, G.H. Use of anti-diabetic agents in nondiabetic kidney disease: from Bench to bedside. Life (Basel) 2021, 11, 389. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Sung, P.H.; Yang, Y.H.; Chiang, J.Y.; Yip, H.K.; Yang, C.-C. Dipeptidyl peptidase 4 promotes peritoneal fibrosis and its inhibitions prevent failure of peritoneal dialysis. Commun. Biol. 2021, 4, 144. [Google Scholar] [CrossRef]
- Nagai, T.; Doi, S.; Nakashima, A.; Irifuku, T.; Sasaki, K.; Ueno, T.; Masakiet, T. Linagliptin ameliorates methylglyoxal-induced peritoneal fibrosis in mice. PLoS One 2016, 11, e0160993. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Kim, S.; Ha, T.K.; Kang, D.-H.; Kim, G.-H. Effects of sitagliptin on peritoneal membrane: The potential role of mesothelial cell tight junction proteins. Perit. Dial. Int. 2023, 43, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Kim, S.; Kim, G.H. Claudins in kidney health and disease. Kidney Res. Clin. Pract. 2022, 41, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: past, present, and future. et al. Stem. Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Xia, D.; Bi, W.; Lai, X.; Yu, B.; Chen, W. Advances in stem cell therapy for peritoneal fbrosis: from mechanisms to therapeutics. Stem. Cell Res. Ther. 2023, 14, 293. [Google Scholar] [CrossRef]
- Alatab, S.; Najaf, I.; Atlasi, R.; Pourmand, G.; Tabatabaei-Malazy, O.; Ahmadbeigi, N. A systematic review of preclinical studies on therapeutic potential of stem cells or stem cells products in peritoneal fibrosis. Minerva Urol. Nephrol. 2018, 70, 162–78. [Google Scholar] [CrossRef] [PubMed]
- Costalonga, E.C.; Fanelli, C.; Garnica, M.R.; Noronha, I.L. Adipose-derived mesenchymal stem cells modulate fbrosis and infammation in the peritoneal fbrosis model developed in uremic rats. Stem. Cells Int. 2020, 2020, 3768718. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Chang, P.-Y.; Chen, J.-Y.; Wu, B.-S.; Yang, A.-H.; Lee, O.K.S. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem. Cell Res. Ther. 2021, 12, 193. [Google Scholar] [CrossRef]
- Fan, Y.P.; Hsia, C.C.; Tseng, K.W.; Liao, C.K.; Fu, T.W.; Ko, T.L.; Chiu, M.-M.; Shih, Y.-H.; Huang, P.-Y.; Chiang, Y.-C.; Yang, C.-C.; Fu, Y.-F. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat peritoneal ialysis-induced fibrosis. Stem Cells Transl. Med. 2016, 5, 235–47. [Google Scholar] [CrossRef]
- Zhou, L.; Zong, M.; Guan, Q.; da Roza, G.; Wang, H.; Qi, H.; Du, C. Protection of the peritoneal membrane by peritoneal dialysis effluent-derived mesenchymal stromal cells in a rat model of chronic peritoneal dialysis. Stem Cells Int. 2019, 2019, 8793640. [Google Scholar] [CrossRef]
- Liu, B.; Guan, Q.; Li, J.; da Roza, G.; Wang, H.; Du, C. Mesenchymal stroma cells in peritoneal dialysis effluents from patients. Hum. Cell. 2017, 30, 51–9. [Google Scholar] [CrossRef]
- Du, Y.; Zong, M.; Guan, Q.; Huang, Z.; Zhou, L.; Cai, J.; da Roza, G.; Wang, H.; Qi, H.; Lu, Y.; Du, C. Comparison of mesenchymal stromal cells from peritoneal dialysis effluent with those from umbilical cords: characteristics and therapeutic effects on chronic peritoneal dialysis in uremic rats. Stem Cell. Res. Ther. 2021, 12, 398. [Google Scholar] [CrossRef]
- Alatab, S.; Shekarchian, S.; Najaf, I.; Moghadasali, R.; Ahmadbeigi, N.; Pourmand, M.R.; Bolurieh, T.; Jaroughi, N.; Pourmand, G.; Aghdami, N. Systemic infusion of autologous adipose tissue-derived mesenchymal stem cells in peritoneal dialysis patients: feasibility and safety. Cell J. 2019, 20, 483–95. [Google Scholar] [CrossRef]
- Jiang, H.-Y; Wang, J.-P.; Bai, Y.-H.; Yang, M.; Zeng, Y.; Liao, Y.-J.; He, Z.-K. Clinical observation of umbilical cord mesenchymal stem cell transplantation for treating patients receiving peritoneal dialysis. Minerva Urol. Nephrol. 2018, 70, 95–101. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, H.; Wu, H.; Yang, S.; Liu, J.; Wang, J. The Effects of Indobufen on Micro-Inflammation and Peritoneal Transport Function in Patients Undergoing Continuous Ambulate Peritoneal Dialysis: A Prospective Randomized Controlled Study. J. Pharmacol. Exp. Therapeutics 2023, 384, 296–305. [Google Scholar] [CrossRef]
- Liu, J.; Xu, D.; Xia, N.; Hou, K.; Chen, S.; Wang, Y.; Li, Y. Anticoagulant activities of indobufen, an antiplatelet drug. Molecules 2018, 23, 1452. [Google Scholar] [CrossRef]
- Li, F.; Xu, D.; Hou, K.; Gou, X.; Lv, N.; Fang, W.; Li, Y. Pretreatment of indobufen and aspirin and their combinations with clopidogrel or ticagrelor alleviates inflammasome mediated pyroptosis via inhibiting NF-κB/NLRP3 pathway in ischemic stroke. J. Neuroimmune Pharmacol. 2021, 16, 835–853. [Google Scholar] [CrossRef]
- Locatelli, F.; Ravera, M.; Esposito, C.; Grandaliano, G.; Gesualdo, L.; Minutolo, R. A novel scenario in the therapeutic mnagement of anemia of chronic kidney disease: placement and use of roxadustat. Nephrol. 2024, 8. [Google Scholar] [CrossRef]
- Damarlapally, N.; Thimmappa, V.; Irfan, H.; Sikandari, M.; Madhu, K.; Desai, A.; Pavani, P.; Zakir, S.; Gupta, M.; Khosa, M.M.; Kotak, S.; Varrassi, G.; Khatri, M.; Kumar, S. Safety and Efficacy of Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitors vs. Erythropoietin-Stimulating Agents in Treating Anemia in Renal Patients (With or Without Dialysis): A Meta-Analysis and Systematic Review. Cureus 2023, 15, e47430. [Google Scholar] [CrossRef]
- Lombardi, O.; Li, R.; Halim, S.; Choudhry, H.; Ratcliffe, P.J.; Mole, D.R. Pan-cancer analysis of tissue and single-cell HIF-pathway activation using a conserved gene signature. Cell Rep. 2022, 41(7), 111652. [Google Scholar] [CrossRef]
- Schley, G.; Klanke, B.; Kalucka, J.; Schatz, V.; Daniel, C.; Mayer, M.; Goppelt-Struebe, M.; Herrmann, M.; Thorsteinsdottir, M.; Palsson, R.; Beneke, A.; Katschinski, D.M.; Burzlaff, N.; Eckardt, K.-U.; Weidemann, A.; Jantsch, J.; Willam, C. Mononuclear phagocytes orchestrate prolyl hydroxylase inhibition-mediated renoprotection in chronic tubulointerstitial nephritis. Kidney Int. 2019, 96, 378–396. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, P.; Zhao, M.; Wang, J.; Xu, X.; Zhang, C.; Zhang, L. Effect of Roxadustat on factors associated with renal fibrosis and efficacy. Comput. Math. Methods Med. 2022, 4764254. [Google Scholar] [CrossRef]
- Wang, L.; Fan, J.; Yang, T.; Shen, J.; Wang, L.; Ge, W. Investigating the therapeutic effects and mechanisms of Roxadustat on peritoneal fibrosis Based on the TGF-β/Smad pathway. Biochem. Biophys. Res. Commun. 2024, 693, 149387. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer. 2016, 2, 758–70. [Google Scholar] [CrossRef]
- Yang, M.H.; Wu, M.Z.; Chiou, S.H.; Chen, P.M.; Chang, S.Y.; Liu, C.J.; Teng, S.C.; Wu, K.J. Direct regulation of TWIST by hypoxia-inducible factor-1 (HIF-1) promotes metastasis. Nat. Cell Biol. 2008, 10, 295–305. [Google Scholar] [CrossRef]
- Sorbara, M.T.; Pamer, E.G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 2022, 20, 365–380. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Henderson, N.C.; Rieder, F.; Wynn, T.A. Fibrosis: from mechanisms to medicines. Nature 2020, 587, 555–566. [Google Scholar] [CrossRef]
- Zhu, H.; Cao, C.; Wu, Z.; Zhang, H.; Sun, Z.; Wang, M.; Xu, H.; Zhao, Z.; Wang, Y.; Pei, G.; Yang, Q.; Zhu, F.; Yang, J.; Deng, X.; Hong, Y.; Li, Y.; Sun, J.; Zhu, F.; Shi, M.; Qian, K.; Ye, T.; Zuo, X.; Zhao, F.; Guo, J.; Xu, G.; Yao, Y.; Zeng, R. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease. Cell Metab. 2021, 33, 1926–1942. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhong, X.; Yan, J.; Zhou, D.; Qin, D.; Xiao, X.; Zheng, Y.; Liu, Y. High-throughput sequencing analysis of intestinal flora changes in ESRD and CKD patients. BMC Nephrol. 2020, 21, 12. [Google Scholar] [CrossRef]
- Zhongcai, W.; Xuezhi, Z.; Xiuru, W.; Mengxia, S.; Han, Z.; Chujin, C.; Xiaoqin, L.; Wangqun, L.; Ying, Y.; Le, W. The probiotic Lactobacillus casei Zhang-mediated correction of gut dysbiosis ameliorates peritoneal fibrosis by suppressing macrophage-related inflammation via the butyrate/PPAR-γ/NF-κB pathway. Food Funct. 2023, 14, 6840. [Google Scholar] [CrossRef]
- Elliot, S.; Periera-Simon, S.; Xia, X.; Catanuto, P.; Rubio, G.; Shahzeidi, S.; El Salem, F.; Shapiro, J.; Briegel, K.; Korach, K.S.; Glassberg, M.K. MicroRNA let-7 downregulates ligand-independent estrogen receptor-mediated male-predominant pulmonary fbrosis. Am. J. Respir. Crit. Care Med. 2019, 200, 246–57. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.B.; Archid, R.; Reymond, M.A. Reprogramming of mesothelial-mesenchymal transition in chronic peritoneal diseases by estrogen receptor modulation and TGF -β1 inhibition. Int. J. Mol. Sci. 2020. [CrossRef] [PubMed]
- Zhao, T.; Sun, Z.; Lai, X.; Lu, H.; Liu, L.; Li, S.; Yuan, J.-H.; Guo, Z. Tamoxifen exerts anti-peritoneal fbrosis efects by inhibiting H19-activated VEGFA transcription. J. Transl. Med. 2023, 21, 614. [Google Scholar] [CrossRef] [PubMed]
| pH | Low GDPs | Glucose load |
Glucose sparing |
Biopsies of peritoneum | Potential systemic advantage |
Potential peritoneal advantage |
|
|---|---|---|---|---|---|---|---|
| Glucose-based | 5.2-5.5 | NO | YES | NO | YES | Nutritional | Osmotic |
| Biocompatible lactate and/or bicarbonate buffer | 7.0-7.4 | YES | YES | NO | YES | Nutritional | Osmotic and pH |
| Icodextrin | 5-6 | YES | NO | YES | NA | Volume control | Long-dwell UF |
| Aminoacids | 6.6 | NA | NO | YES | NA | Protein synthesis | Osmotic |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
