Submitted:
17 February 2024
Posted:
19 February 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Perinatal Iron Metabolism
5. Conclusions
Funding
Conflicts of Interest
References
- Stevens, G.A., et al., National, regional, and global estimates of anaemia by severity in women and children for 2000-19: a pooled analysis of population-representative data. Lancet Glob Health, 2022. 10(5): p. e627-e639. [CrossRef]
- Bora, R., et al., Prevalence of anemia in pregnant women and its effect on neonatal outcomes in Northeast India. J Matern Fetal Neonatal Med, 2014. 27(9): p. 887-91. [CrossRef]
- Benson, A.E., et al., The incidence, complications, and treatment of iron deficiency in pregnancy. Eur J Haematol, 2022. 109(6): p. 633-642. [CrossRef]
- O'Brien, K.O. and Y. Ru, Iron status of North American pregnant women: an update on longitudinal data and gaps in knowledge from the United States and Canada. Am J Clin Nutr, 2017. 106(Suppl 6): p. 1647S-1654S. [CrossRef]
- Campbell, R., H. Wang, and R. Ahmed, Risk factors contributing to racial/ethnic disparities in iron deficiency in US women. Current Developments in Nutrition, 2021. 5: p. 725–725. [CrossRef]
- Barton, J.C., et al., Prevalence of iron deficiency in 62,685 women of seven race/ethnicity groups: The HEIRS Study. PLoS One, 2020. 15(4): p. e0232125. [CrossRef]
- Bora, R., et al., Effect of 40-cm segment umbilical cord milking on hemoglobin and serum ferritin at 6 months of age in full-term infants of anemic and non-anemic mothers. J Perinatol, 2015. 35(10): p. 832-6. [CrossRef]
- Bora, R., et al., Effect of iron supplementation from neonatal period on the iron status of6-month-old infants at-risk for early iron deficiency: a randomized interventional trial. J Matern Fetal Neonatal Med, 2021. 34(9): p. 1421-1429. [CrossRef]
- Petry, C.D., et al., Iron deficiency of liver, heart, and brain in newborn infants of diabetic mothers. J Pediatr, 1992. 121(1): p. 109-14. [CrossRef]
- Georgieff, M.K., et al., Reduced neonatal liver iron concentrations after uteroplacental insufficiency. J Pediatr, 1995. 127(2): p. 308-4. [CrossRef]
- Siddappa, A.M., et al., The assessment of newborn iron stores at birth: a review of the literature and standards for ferritin concentrations. Neonatology, 2007. 92(2): p. 73-82. [CrossRef]
- Marell, P.S., et al., Cord Blood-Derived Exosomal CNTN2 and BDNF: Potential Molecular Markers for Brain Health of Neonates at Risk for Iron Deficiency. Nutrients, 2019. 11(10). [CrossRef]
- Algarin, C., et al., Iron-deficiency anemia in infancy and poorer cognitive inhibitory control at age 10 years. Dev Med Child Neurol, 2013. 55(5): p. 453-8. [CrossRef]
- Lukowski, A.F., et al., Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory. Nutr Neurosci, 2010. 13(2): p. 54-70. [CrossRef]
- Lozoff, B., et al., The effects of short-term oral iron therapy on developmental deficits in iron-deficient anemic infants. J Pediatr, 1982. 100(3): p. 351-7. [CrossRef]
- Lozoff, B., et al., Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics, 2000. 105(4): p. E51. [CrossRef]
- Arija, V., et al., Association of Iron Status and Intake During Pregnancy with Neuropsychological Outcomes in Children Aged 7 Years: The Prospective Birth Cohort Infancia y Medio Ambiente (INMA) Study. Nutrients, 2019. 11(12). [CrossRef]
- Wiegersma, A.M., et al., Association of Prenatal Maternal Anemia With Neurodevelopmental Disorders. JAMA Psychiatry, 2019. 76(12): p. 1294-1304. [CrossRef]
- Shao, J., et al., Contribution of iron status at birth to infant iron status at 9 months: data from a prospective maternal-infant birth cohort in China. Eur J Clin Nutr, 2021. 75(2): p. 364-372. [CrossRef]
- Akkermans, M.D., et al., Predictive factors of iron depletion in late preterm infants at the postnatal age of 6 weeks. Eur J Clin Nutr, 2016. 70(8): p. 941-6. [CrossRef]
- Srai, S.K., A. Bomford, and H.J. McArdle, Iron transport across cell membranes: molecular understanding of duodenal and placental iron uptake. Best Pract Res Clin Haematol, 2002. 15(2): p. 243-59. [CrossRef]
- Sangkhae, V. and E. Nemeth, Placental iron transport: The mechanism and regulatory circuits. Free Radic Biol Med, 2019. 133: p. 254-261. [CrossRef]
- Zaugg, J., F. Solenthaler, and C. Albrecht, Materno-fetal iron transfer and the emerging role of ferroptosis pathways. Biochem Pharmacol, 2022. 202: p. 115141. [CrossRef]
- Widdowson, E.M. and C.M. Spray, Chemical development in utero. Arch Dis Child, 1951. 26: p. 205-214. [CrossRef]
- Josephs, H.W., Iron metabolism and the hypochromic anemia of infancy. Medicine (Baltimore), 1953. 32(2): p. 125-213. [CrossRef]
- Zamora, T.G., et al., Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs. Pediatr Res, 2016. 79(6): p. 922-8. [CrossRef]
- Siddappa, A.M., et al., Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatr Res, 2004. 55(6): p. 1034-41. [CrossRef]
- Carlson, E.S., et al., Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems. J Neurodevelop Disord, 2010. 2: p. 133-143. [CrossRef]
- Fretham, S.J., et al., Temporal manipulation of transferrin-receptor-1-dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus, 2012. 22(8): p. 1691-702. [CrossRef]
- Geguchadze, R.N., et al., CSF proteomic analysis reveals persistent iron deficiency-induced alterations in non-human primate infants. J Neurochem, 2008. 105(1): p. 127-36. [CrossRef]
- Beard, J.L., et al., Early postnatal iron repletion overcomes lasting effects of gestational iron deficiency in rats. J Nutr, 2007. 137(5): p. 1176-82. [CrossRef]
- Siddappa, A.J., et al., Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. J Neurosci Res, 2002. 68(6): p. 761-75. [CrossRef]
- Connor, J.R., Iron acquisition and expression of iron regulatory proteins in the developing brain: manipulation by ethanol exposure, iron deprivation and cellular dysfunction. Dev Neurosci, 1994. 16(5-6): p. 233-47. [CrossRef]
- Basu, S., et al., Effect of maternal iron deficiency anemia on fetal neural development. J Perinatol, 2018. 38(3): p. 233-239. [CrossRef]
- deUngria, M., et al., Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatr Res, 2000. 48(2): p. 169-76. [CrossRef]
- Rao, R., et al., Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr, 2003. 133(10): p. 3215-21. [CrossRef]
- Ward, K.L., et al., Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J Nutr, 2007. 137(4): p. 1043-9. [CrossRef]
- Unger, E.L., et al., Behavior and monoamine deficits in prenatal and perinatal iron deficiency are not corrected by early postnatal moderate-iron or high-iron diets in rats. J. Nutr, 2012. 142(1): p. 2040-9. [CrossRef]
- Schmidt, A.T., et al., Early Iron Deficiency Enhances Stimulus-response Learning of Adult Rats in the Context of Competing Spatial Information. Dev Cogn Neurosci, 2012. 2(1): p. 174-180. [CrossRef]
- Geng, F., et al., Impact of Fetal-Neonatal Iron Deficiency on Recognition Memory at 2 Months of Age. J Pediatr, 2015. 167(6): p. 1226-32. [CrossRef]
- Tamura, T., et al., Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr, 2002. 140(2): p. 165-70. [CrossRef]
- Berglund, S.K., et al., Effects of iron supplementation of low-birth-weight infants on cognition and behavior at 7 years: a randomized controlled trial. Pediatr Res, 2018. 83(1-1): p. 111-118. [CrossRef]
- Radlowski, E.C. and R.W. Johnson, Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci, 2013. 7: p. 585. [CrossRef]
- Riggins, T., et al., Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Dev Neuropsychol, 2009. 34(6): p. 762-79. [CrossRef]
- German, K.R., et al., Enteral Iron Supplementation in Infants Born Extremely Preterm and its Positive Correlation with Neurodevelopment; Post Hoc Analysis of the Preterm Erythropoietin Neuroprotection Trial Randomized Controlled Trial. J Pediatr, 2021. 238: p. 102-109 e8. [CrossRef]
- Ranade, S.C., et al., Spatial memory deficits in maternal iron deficiency paradigms are associated with altered glucocorticoid levels. Horm Behav, 2013. 64(1): p. 26-36. [CrossRef]
- Ranade, S.C., et al., Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze. Neuroscience, 2008. 152(4): p. 859-66. [CrossRef]
- Leyshon, B.J., et al., Postnatal Iron Deficiency Alters Brain Development in Piglets. J Nutr, 2016. 146(7): p. 1420-7. [CrossRef]
- Mudd, A.T., et al., Early-Life Iron Deficiency Reduces Brain Iron Content and Alters Brain Tissue Composition Despite Iron Repletion: A Neuroimaging Assessment. Nutrients, 2018. 10(2). [CrossRef]
- Carlson, E.S., et al., Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr, 2009. 139(4): p. 672-9. [CrossRef]
- Fretham, S.J., E.S. Carlson, and M.K. Georgieff, Neuronal-specific iron deficiency dysregulates mammalian target of rapamycin signaling during hippocampal development in nonanemic genetic mouse models. J Nutr, 2013. 143(3): p. 260-6. [CrossRef]
- Barks, A., et al., Early-Life Neuronal-Specific Iron Deficiency Alters the Adult Mouse Hippocampal Transcriptome. J Nutr, 2018. [CrossRef]
- Wachs, T.D., et al., Relation of neonatal iron status to individual variability in neonatal temperament. Dev Psychobiol, 2005. 46(2): p. 141-53. [CrossRef]
- Santos, D.C.C., et al., Timing, duration, and severity of iron deficiency in early development and motor outcomes at 9 months. Eur J Clin Nutr, 2018. 72(3): p. 332-341. [CrossRef]
- Hua, M., et al., Differentiation between fetal and postnatal iron deficiency in altering brain substrates of cognitive control in pre-adolescence. BMC Med, 2023. 21(1): p. 167. [CrossRef]
- McCarthy, E.K., et al., Behavioral consequences at 5 y of neonatal iron deficiency in a low-risk maternal-infant cohort. Am J Clin Nutr, 2021. 113(4): p. 1032-1041. [CrossRef]
- Armony-Sivan, R., et al., Iron status and neurobehavioral development of premature infants. J Perinatol, 2004. 24(12): p. 757-62. [CrossRef]
- Amin, S.B., et al., In utero iron status and auditory neural maturation in premature infants as evaluated by auditory brainstem response. J Pediatr, 2010. 156(3): p. 377-81. [CrossRef]
- Amin, S.B., M. Orlando, and H. Wang, Latent iron deficiency in utero is associated with abnormal auditory neural myelination in >/= 35 weeks gestational age infants. J Pediatr, 2013. 163(5): p. 1267-71. [CrossRef]
- Lynch, S., et al., Biomarkers of Nutrition for Development (BOND)-Iron Review. J Nutr, 2018. 148(suppl_1): p. 1001S-1067S. [CrossRef]
- Group, F.-N.B.W., BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. 2016, Food and Drug Administration and National Institutes of Health: Silverspring and Bethesda, MD (accessed February 12, 2024).
- German, K.R. and S.E. Juul, Serum Measures of Brain Iron Status - A Major Barrier to Optimizing Iron Status in Neonates. J Nutr, 2024. [CrossRef]
- Thomas, D.G., et al., Multiple Biomarkers of Maternal Iron Predict Infant Cognitive Outcomes. Dev Neuropsychol, 2017. 42(3): p. 146-159. [CrossRef]
- Vlasova, R.M., et al., Infantile Iron Deficiency Affects Brain Development in Monkeys Even After Treatment of Anemia. Front Hum Neurosci, 2021. 15: p. 624107. [CrossRef]
- Beard, J., et al., Diagnosis of Iron Deficiency in Infants. Lab Med, 2007. 38(2): p. 103-108. doi.org/10.1309/7KJ11RX758UKLXXM.
- Lorenz, L., et al., A review of cord blood concentrations of iron status parameters to define reference ranges for preterm infants. Neonatology, 2013. 104(3): p. 194-202. [CrossRef]
- Sandri, B.J., et al., Prognostic Performance of Hematological and Serum Iron and Metabolite Indices for Detection of Early Iron Deficiency Induced Metabolic Brain Dysfunction in Infant Rhesus Monkeys. J Nutr, 2023. [CrossRef]
- Ennis, K.M., et al., Reticulocyte hemoglobin content as an early predictive biomarker of brain iron deficiency. Pediatr Res, 2018. 84(5): p. 765-769. [CrossRef]
- Gire, C., et al., Impact of Early Hemoglobin Levels on Neurodevelopment Outcomes of Two-Year-Olds in Very Preterm Children. Children (Basel), 2023. 10(2). [CrossRef]
- Rao, R.B., et al., Reticulocyte Hemoglobin Equivalent has Comparable Predictive Accuracy as Conventional Serum Iron Indices for Predicting Iron Deficiency and Anemia in a Nonhuman Primate model of Infantile Iron Deficiency. J Nutr, 2023. 153(1): p. 148-157. [CrossRef]
- Siddappa, A.M., et al., High Prevalence of Iron Deficiency Despite Standardized High-Dose Iron Supplementation During Recombinant Erythropoietin Therapy in Extremely Low Gestational Age Newborns. J Pediatr, 2020. 222: p. 98-105 e3. [CrossRef]
- Widness, J.A., et al., Changing patterns of red blood cell transfusion in very low birth weight infants. J Pediatr, 1996. 129(5): p. 680-7. [CrossRef]
- Mukhopadhyay, K., et al., Iron status at birth and at 4 weeks in preterm-SGA infants in comparison with preterm and term-AGA infants. J Matern Fetal Neonatal Med, 2012. 25(8): p. 1474-8. [CrossRef]
- Shao, J., et al., Maternal serum ferritin concentration is positively associated with newborn iron stores in women with low ferritin status in late pregnancy. J Nutr, 2012. 142(11): p. 2004-9. [CrossRef]
- Bahr, T.M., et al., Reconciling markedly discordant values of serum ferritin versus reticulocyte hemoglobin content. J Perinatol, 2021. 41(3): p. 619-626. [CrossRef]
- German, K., et al., Zinc Protoporphyrin-to-Heme Ratio and Ferritin as Measures of Iron Sufficiency in the Neonatal Intensive Care Unit. J Pediatr, 2018. 194: p. 47-53. [CrossRef]
- Amin, S.B., G. Myers, and H. Wang, Association between neonatal iron overload and early human brain development in premature infants. Early Hum Dev, 2012. 88(8): p. 583-7. [CrossRef]
- Bahr, T.M., et al., Serum ferritin values in neonates <29 weeks' gestation are highly variable and do not correlate with reticulocyte hemoglobin content. J Perinatol, 2023. 43(11): p. 1368-1373. [CrossRef]
- German, K.R., et al., Comparison of two markers of iron sufficiency and neurodevelopmental outcomes. Early Hum Dev, 2021. 158: p. 105395. [CrossRef]
- Cooke, R.J. and I. Griffin, Iron Balance and Iron Nutritional Status in Preterm Infants During the First Four Months of Life. J Pediatr Gastroenterol Nutr, 2021. 73(3): p. 403-407. [CrossRef]
- Gerday, E., et al., Urinary ferritin; a potential noninvasive way to screen NICU patients for iron deficiency. J Perinatol, 2021. 41(6): p. 1419-1425. [CrossRef]
- Bahr, T.M., et al., Ferritin in serum and urine: A pilot study. Blood Cells Mol Dis, 2019. 76: p. 59-62. [CrossRef]
- Juul, S.E., et al., Zinc protoporphyrin/heme as an indicator of iron status in NICU patients. J Pediatr, 2003. 142(3): p. 273-8. [CrossRef]
- de Waal, C.G., et al., Zinc protoporphyrin/heme ratio as parameter of iron status in moderately preterm infants: natural course and associations in the first 4 months. J Perinatol, 2017. 37(6): p. 690-694. [CrossRef]
- Abd Almonaem, E.R., et al., Effectiveness of zinc protoporphyrin/heme ratio and ferritin for assessing iron status in preterm infants. J Neonatal Perinatal Med, 2023. 16(4): p. 627-638. [CrossRef]
- Blohowiak, S.E., et al., Reticulocyte enrichment of zinc protoporphyrin/heme discriminates impaired iron supply during early development. Pediatr Res, 2008. 64(1): p. 63-7. [CrossRef]
- Cheng, C.F., et al., Zinc protoporphyrin-to-heme ratios in high-risk and preterm infants. J Pediatr, 2012. 161(1): p. 81-7 e1. [CrossRef]
- Lott, D.G., et al., Erythrocyte zinc protoporphyrin is elevated with prematurity and fetal hypoxemia. Pediatrics, 2005. 116(2): p. 414-22. [CrossRef]
- Baumann-Blackmore, N.L., et al., Cord blood zinc protoporphyrin/heme ratio in minority neonates at risk for iron deficiency. J Pediatr, 2008. 153(1): p. 133-6. [CrossRef]
- Phillips, A.K., et al., Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. J Perinatol, 2014. 34(7): p. 513-8. [CrossRef]
- Griffin, I.J., et al., Zinc protoporphyrin/haem ratio and plasma ferritin in preterm infants. Arch Dis Child Fetal Neonatal Ed, 2002. 87(1): p. F49-51. [CrossRef]
- Miller, S.M., R.J. McPherson, and S.E. Juul, Iron sulfate supplementation decreases zinc protoporphyrin to heme ratio in premature infants. J Pediatr, 2006. 148(1): p. 44-8. [CrossRef]
- Piva, E., et al., Clinical utility of reticulocyte parameters. Clin Lab Med, 2015. 35(1): p. 133-63. [CrossRef]
- Ullrich, C., et al., Screening healthy infants for iron deficiency using reticulocyte hemoglobin content. JAMA, 2005. 294(8): p. 924-30. [CrossRef]
- Toki, Y., et al., Reticulocyte hemoglobin equivalent as a potential marker for diagnosis of iron deficiency. Int J Hematol, 2017. 106(1): p. 116-125. [CrossRef]
- Di Pinto, D., et al., Clinical usefulness of the reticulocyte hemoglobin equivalent in children on hemodialysis. Arch Argent Pediatr, 2020. 118(6): p. 411-417.
- Chinudomwong, P., et al., Diagnostic performance of reticulocyte hemoglobin equivalent in assessing the iron status. J Clin Lab Anal, 2020. 34(6): p. e23225. [CrossRef]
- Neef, V., et al., The Reticulocyte Hemoglobin Equivalent as a Screening Marker for Iron Deficiency and Iron Deficiency Anemia in Children. J Clin Med, 2021. 10(16). [CrossRef]
- Shaker, M., et al., An economic analysis of anemia prevention during infancy. J Pediatr, 2009. 154(1): p. 44-9. [CrossRef]
- Honemann, C., et al., Reticulocyte Haemoglobin as a Routine Parameter in Preoperative Iron Deficiency Assessment. Endocrinol Metab, 2021. 5(1): p. 154. [CrossRef]
- Van Wyck, D.B., H. Alcorn, Jr., and R. Gupta, Analytical and biological variation in measures of anemia and iron status in patients treated with maintenance hemodialysis. Am J Kidney Dis, 2010. 56(3): p. 540-6. [CrossRef]
- Christensen, R.D., et al., Reference intervals for reticulocyte parameters of infants during their first 90 days after birth. J Perinatol, 2016. 36(1): p. 61-6. [CrossRef]
- Lorenz, L., et al., Reference Ranges of Reticulocyte Haemoglobin Content in Preterm and Term Infants: A Retrospective Analysis. Neonatology, 2017. 111(3): p. 189-194. [CrossRef]
- Lorenz, L., et al., Reticulocyte Haemoglobin Content Declines More Markedly in Preterm than in Term Infants in the First Days after Birth. Neonatology, 2017. 112(3): p. 246-250. [CrossRef]
- German, K., et al., Trends in reticulocyte hemoglobin equivalent values in critically ill neonates, stratified by gestational age. J Perinatol, 2019. 39(9): p. 1268-1274. [CrossRef]
- Lorenz, L., et al., Reticulocyte haemoglobin content as a marker of iron deficiency. Arch Dis Child Fetal Neonatal Ed, 2015. 100(3): p. F198-202. [CrossRef]
- Cook, J.D., C.H. Flowers, and B.S. Skikne, The quantitative assessment of body iron. Blood, 2003. 101(9): p. 3359-64. [CrossRef]
- McCann, S., et al., Iron status in early infancy is associated with trajectories of cognitive development up to pre-school age in rural Gambia. PLOS Glob Public Health, 2023. 3(11): p. e0002531. [CrossRef]
- German, K.R., et al., Do Extremely Low Gestational Age Neonates Regulate Iron Absorption via Hepcidin? J Pediatr, 2022. 241: p. 62-67 e1. [CrossRef]
- Berglund, S., et al., Effects of iron supplementation on serum hepcidin and serum erythropoietin in low-birth-weight infants. Am J Clin Nutr, 2011. 94(6): p. 1553-61. [CrossRef]
- Berglund, S.K., et al., Hepcidin is a relevant iron status indicator in infancy: results from a randomized trial of early vs. delayed cord clamping. Pediatr Res, 2021. 89(5): p. 1216-1221. [CrossRef]
- Bahr, T.M., et al., Is the erythropoietin-erythroferrone-hepcidin axis intact in human neonates? Blood Cells Mol Dis, 2021. 88: p. 102536. [CrossRef]
- Lorenz, L., et al., Gestational age-specific reference ranges of hepcidin in cord blood. Neonatology, 2014. 106(2): p. 133-9. [CrossRef]
- Muller, K.F., et al., Hepcidin concentrations in serum and urine correlate with iron homeostasis in preterm infants. J Pediatr, 2012. 160(6): p. 949-53 e2. [CrossRef]
- Lorenz, L., et al., Short-Term Effects of Blood Transfusions on Hepcidin in Preterm Infants. Neonatology, 2015. 108(3): p. 205-10. [CrossRef]
- Perez, E.M., et al., Mother-infant interactions and infant development are altered by maternal iron deficiency anemia. J Nutr, 2005. 135(4): p. 850-5. [CrossRef]
- Beard, J.L., et al., Maternal iron deficiency anemia affects postpartum emotions and cognition. J Nutr, 2005. 135(2): p. 267-72. [CrossRef]
- Tran, P.V., et al., Long-term reduction of hippocampal brain-derived neurotrophic factor activity after fetal-neonatal iron deficiency in adult rats. Pediatr Res, 2009. 65(5): p. 493-8. [CrossRef]
- Lubach, G.R. and C.L. Coe, Preconception maternal iron status is a risk factor for iron deficiency in infant rhesus monkeys (Macaca mulatta). J Nutr, 2006. 136(9): p. 2345-9. [CrossRef]
- Patton, S.M., et al., Quantitative proteomic analyses of cerebrospinal fluid using iTRAQ in a primate model of iron deficiency anemia. Dev Neurosci, 2012. 34(4): p. 354-65. [CrossRef]
- Rao, R., et al., Metabolomic analysis of cerebrospinal fluid indicates iron deficiency compromises cerebral energy metabolism in the infant monkey. Neurochem Res, 2013. 38(3): p. 573-80. [CrossRef]
- Bicknese, E.J., et al., Prevalence and risk factors for iron deficiency anemia in weanling rhesus macaques. Lab Anim Sci, 1993. 43(5): p. 434-8.
- Coe, C.L., et al., Optimal iron fortification of maternal diet during pregnancy and nursing for investigating and preventing iron deficiency in young rhesus monkeys. Res Vet Sci, 2013. 94(3): p. 549-54. [CrossRef]
- Coe, C.L., et al., A history of iron deficiency anemia during infancy alters brain monoamine activity later in juvenile monkeys. Dev Psychobiol, 2009. 51(3): p. 301-9. [CrossRef]
- Rao, R., et al., Metabolomic analysis of CSF indicates brain metabolic impairment precedes hematological indices of anemia in the iron-deficient infant monkey. Nutr Neurosci, 2018. 21(1): p. 40-48. [CrossRef]
- Sandri, B.J., et al., Multiomic Profiling of Iron Deficient Infant Monkeys Reveals Alterations in Neurologically Important Biochemicals in Serum and CSF Prior to the Onset of Anemia. Am J Physiol Regul Integr Comp Physiol, 2022. [CrossRef]
- Sandri, B.J., et al., Early-Life Iron Deficiency and Its Natural Resolution Are Associated with Altered Serum Metabolomic Profiles in Infant Rhesus Monkeys. J Nutr, 2020. 150(4): p. 685-693. [CrossRef]
- Sandri, B.J., et al., Correcting iron deficiency anemia with iron dextran alters the serum metabolomic profile of the infant Rhesus Monkey. Am J Clin Nutr, 2021. 113(4): p. 915-923. [CrossRef]
- Cheng, F., et al., A review of pharmacological and pharmacokinetic properties of stachydrine. Pharmacol Res, 2020. 155: p. 104755. [CrossRef]
- Erecinska, M., S. Cherian, and I.A. Silver, Energy metabolism in mammalian brain during development. Prog Neurobiol, 2004. 73(6): p. 397-445. [CrossRef]
- O'Sullivan, A., et al., Metabolomic phenotyping validates the infant rhesus monkey as a model of human infant metabolism. J Pediatr Gastroenterol Nutr, 2013. 56(4): p. 355-63. [CrossRef]
- Baker, R.D., F.R. Greer, and P. Committee on Nutrition American Academy of, Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age). Pediatrics, 2010. 126(5): p. 1040-50. [CrossRef]
- Agostoni, C., et al., Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr, 2010. 50(1): p. 85-91. [CrossRef]
- Domellof, M., et al., Iron requirements of infants and toddlers. J Pediatr Gastroenterol Nutr, 2014. 58(1): p. 119-29. [CrossRef]
- Unger, S.L., et al., Iron requirements in the first 2 years of life. Paediatr Child Health, 2019. 24(8): p. 555-556. [CrossRef]
- Lamport, L., R. Schanler, and B. Weinberger, Optimizing iron supplementation by monitoring serum ferritin levels in premature infants. J Neonatal Perinatal Med, 2022. 15(3): p. 567-574. [CrossRef]
- Garcia, M.R., et al., Iron supplementation and the risk of bronchopulmonary dysplasia in extremely low gestational age newborns. Pediatr Res, 2023. 93(3): p. 701-707. [CrossRef]
- Juul, S.E., et al., A Randomized Trial of Erythropoietin for Neuroprotection in Preterm Infants. N Engl J Med, 2020. 382(3): p. 233-243. [CrossRef]
- Koerper, M.A. and P.R. Dallman, Serum iron concentration and transferrin saturation in the diagnosis of iron deficiency in children: normal developmental changes. J Pediatr, 1977. 91(6): p. 870-4. [CrossRef]
| Etiology of Iron Deficiency | Underlying Maternal/Placental/Fetal Conditions |
|---|---|
| Decreased iron delivery | Maternal iron deficiency Placental dysfunction Maternal obesity Maternal inflammatory conditions Chronic placental or fetal-maternal hemorrhage Preterm birth |
| Tissue iron distribution1 | Maternal diabetes mellitus Intrauterine growth restriction Maternal smoking ESA administration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
