Submitted:
19 February 2024
Posted:
21 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of herbal coffee infusion
2.3. Measurement of phenolic contents
2.3.1. Total phenolic content
2.3.2. Total flavonoid content
2.3.3. Total condensed tannin
2.4. Biological activties of herbal coffee
2.4.1. Antioxidant potential
2.4.2. Antidiabetic potential measured by alpha-glucosidase inhibition activity
2.5.3. AChE inhibition potential
2.6. LC-MS/MS analysis of herbal coffee infusion
2.7. Bioaccessibility of phenolic compounds
3. Results and discussion
3.1. Quantification of phenolic contents of herbal coffee infusion
3.2. Estimation of antioxidant, anti-diabetic and antu-Alzhemirs potential of herbal coffee infusion
3.3. LC-MS/MS identification of metabolites from herbal coffee infusion
3.3.1. Phenolic Acids
Hydroxybenzoic Acids
Hydroxycinnamic Acids
3.3.2. Flavonoids
Flavanols
Flavonols
Flavones
Isoflavonoids
Dihydroflavonols
Dihydrochalcones
3.3.3. Other compounds
Phenolic terpenes
Tyrosols
3.3.4. Alkaloids
3.3.5. Nutraceutical composition of rosemary coffee infusion
3.4. Effect of in-vitro digestion on TPC, TFC and TEAC of rosemary coffee infusion
3.5. LC-MS/MS quantification of abundant phenolic compounds in rosemary coffee infusion
4. Conclusion
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Collins, A.E.; Saleh, T.M.; Kalisch, B.E. Naturally occurring antioxidant therapy in alzheimer's disease. Antioxidants (Basel) 2022, 11, 213. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008, 4, 89–96. [Google Scholar] [CrossRef]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 2012, 51, 637–663. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. A-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn Rev 2011, 5, 19–29. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Lebelo, S.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review. Oxid Med Cell Longev 2020, 2020, 1356893. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Islam, M.R.; Shohag, S.; Hossain, M.E.; Rahaman, M.S.; Islam, F.; Ahmed, M.; Mitra, S.; Khandaker, M.U.; Idris, A.M.; et al. The multifunctional role of herbal products in the management of diabetes and obesity: A comprehensive review. Molecules 2022, 27, 1713. [Google Scholar] [CrossRef] [PubMed]
- Moya-Alvarado, G.; Gershoni-Emek, N.; Perlson, E.; Bronfman, F.C. Neurodegeneration and alzheimer's disease (ad). What can proteomics tell us about the alzheimer's brain? Mol Cell Proteomics 2016, 15, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr Neuropharmacol 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, J.A.B.; Álvarez-Rivera, G.; Alves, R.C.; Costa, A.S.G.; Machado, S.; Cifuentes, A.; Ibáñez, E.; Oliveira, M. Comprehensive phenolic and free amino acid analysis of rosemary infusions: Influence on the antioxidant potential. Antioxidants (Basel) 2021, 10, 500. [Google Scholar] [CrossRef] [PubMed]
- Ariefandi, N.; Rizki, V.M. Development of cardamom (amomum cardamomum) herbal coffee beverages: A study of physicochemical characteristic and consumer perception towards sensory properties. Pelita Perkebunan (a Coffee and Cocoa Research Journal) 2015, 31, 49–58. [Google Scholar] [CrossRef]
- Naimi, M.; Vlavcheski, F.; Shamshoum, H.; Tsiani, E. Rosemary extract as a potential anti-hyperglycemic agent: Current evidence and future perspectives. Nutrients 2017, 9, 968. [Google Scholar] [CrossRef]
- Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Therapeutic effects of rosemary (rosmarinus officinalis l.) and its active constituents on nervous system disorders. Iran J Basic Med Sci 2020, 23, 1100–1112. [Google Scholar]
- López-Froilán, R.; Ramírez-Moreno, E.; Podio, N.S.; Pérez-Rodríguez, M.L.; Cámara, M.; Baroni, M.V.; Wunderlin, D.A.; Sánchez-Mata, M.C. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples. Food & function 2016, 7, 2706–2711. [Google Scholar]
- Erskine, E.; Gültekin Subaşı, B.s.r.; Vahapoglu, B.; Capanoglu, E. Coffee phenolics and their interaction with other food phenolics: Antagonistic and synergistic effects. ACS omega 2022, 7, 1595–1601. [Google Scholar] [CrossRef]
- Febrianto, N.A.; Sa'diyah, K.; Tejasari, T. Red kidney bean powder substituted milk in cinnamon herbal coffee: Consumer perception, sensory properties and nutrition content. Pelita Perkebunan 2016, 32, 109–119. [Google Scholar] [CrossRef]
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D'Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res Int 2019, 2019, 8748253. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, I.A.; Mena, P.; Calani, L.; Cid, C.; Del Rio, D.; Lean, M.E.; Crozier, A. Variations in caffeine and chlorogenic acid contents of coffees: What are we drinking? Food Funct 2014, 5, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Nowaczewska, M.; Wiciński, M.; Kaźmierczak, W. The ambiguous role of caffeine in migraine headache: From trigger to treatment. Nutrients 2020, 12, 2259. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Identification and characterization of anthocyanins and non-anthocyanin phenolics from australian native fruits and their antioxidant, antidiabetic, and anti-alzheimer potential. Food Research International 2022, 162, 111951. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Wu, H.; Ponnampalam, E.N.; Cottrell, J.J.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive profiling of most widely used spices for their phenolic compounds through lc-esi-qtof-ms(2) and their antioxidant potential. Antioxidants (Basel) 2021, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Kiani, H.S.; Ali, B.; Al-Sadoon, M.K.; Al-Otaibi, H.S.; Ali, A. Lc-ms/ms and gc-ms identification of metabolites from the selected herbs and spices, their antioxidant, anti-diabetic potential, and chemometric analysis. Processes 2023, 11, 2721. [Google Scholar] [CrossRef]
- Ali, A.; Ahmadi, F.; Cottrell, J.J.; Dunshea, F.R. Comprehensive metabolite fingerprinting of australian black and green olives and their antioxidant and pharmacokinetics properties. Separations 2023, 10, 354. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Characterization, antioxidant potential, and pharmacokinetics properties of phenolic compounds from native australian herbs and fruits. Plants 2023, 12, 993. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Identification of phenolics profile in freeze-dried apple peel and their bioactivities during in vitro digestion and colonic fermentation. Int J Mol Sci 2023, 24, 1514. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Kim, I.S.; Yang, M.R.; Lee, O.H.; Kang, S.N. Antioxidant activities of hot water extracts from various spices. Int J Mol Sci 2011, 12, 4120–4131. [Google Scholar] [CrossRef]
- Król, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The content of polyphenols in coffee beans as roasting, origin and storage effect. European Food Research and Technology 2020, 246, 33–39. [Google Scholar] [CrossRef]
- Cáceres-Vélez, P.R.; Ali, A.; Fournier-Level, A.; Dunshea, F.R.; Jusuf, P.R. Phytochemical and safety evaluations of finger lime, mountain pepper, and tamarind in zebrafish embryos. In Antioxidants, 2022; Vol. 11.
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Lc-ms/ms-qtof screening and identification of phenolic compounds from australian grown herbs and their antioxidant potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Wanyika, H.N.; Gatebe, E.G.; Gitu, L.M.; Ngumba, E.K.; Maritim, C.W. Determination of caffeine content of tea and instant coffee brands found in the kenyan market. African Journal of Food Science 2010, 4, 353–358. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. Journal of nutritional science 2016, 5, e47. [Google Scholar] [CrossRef]
- Kiani, H.S.; Ahmad, W.; Nawaz, S.; Farah, M.A.; Ali, A. Optimized extraction of polyphenols from unconventional edible plants: Lc-ms/ms profiling of polyphenols, biological functions, molecular docking, and pharmacokinetics study. Molecules 2023, 28, 6703. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Lc-ms/ms characterization of phenolic metabolites and their antioxidant activities from australian native plants. Metabolites 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.; Perestrelo, R.; Câmara, J.S. Bioactive compounds and antioxidant activity from spent coffee grounds as a powerful approach for its valorization. Molecules 2022, 27, 7504. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Lin, Y.-C.; Hsieh, C.-L. Evaluation of antioxidant activity of aqueous extract of some selected nutraceutical herbs. Food Chem 2007, 104, 1418–1424. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. Abts/pp decolorization assay of antioxidant capacity reaction pathways. Int J Mol Sci 2020, 21, 1131. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules (Basel, Switzerland) 2014, 19, 19180–19208. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Subbiah, V.; Wu, H.; Bk, A.; Rauf, A.; Alhumaydhi, F.A.; Suleria, H.A.R. Determination and characterization of phenolic compounds from australia-grown sweet cherries (prunus avium l.) and their potential antioxidant properties. ACS omega 2021, 6, 34687–34699. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Free radicals and antioxidants: A personal view. Nutrition reviews 1994, 52, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev 2011, 2011, 809696. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Chou, O.; Lee, F.Y.; Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Characterization of phenolics in rejected kiwifruit and their antioxidant potential. Processes 2021, 9, 781. [Google Scholar] [CrossRef]
- Daou, M.; Elnaker, N.A.; Ochsenkühn, M.A.; Amin, S.A.; Yousef, A.F.; Yousef, L.F. In vitro α-glucosidase inhibitory activity of tamarix nilotica shoot extracts and fractions. PLoS One 2022, 17, e0264969. [Google Scholar] [CrossRef]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current neuropharmacology 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Ali, A.; Kiloni, S.M.; Cáceres-Vélez, P.R.; Jusuf, P.R.; Cottrell, J.J.; Dunshea, F.R. Phytochemicals, antioxidant activities, and toxicological screening of native australian fruits using zebrafish embryonic model. Foods 2022, 11, 4038. [Google Scholar] [CrossRef]
- Tamfu, A.N.; Kucukaydin, S.; Quradha, M.M.; Ceylan, O.; Ugur, A.; Duru, M.E. Ultrasound-assisted extraction of syringa vulgaris mill., citrus sinensis l. And hypericum perforatum l.: Phenolic composition, enzyme inhibition and anti-quorum sensing activities. Chemistry Africa 2022, 1-13.
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Antioxidant, alpha-glucosidase inhibition activities, in silico molecular docking and pharmacokinetics study of phenolic compounds from native australian fruits and spices. Antioxidants 2023, 12, 254. [Google Scholar] [CrossRef]
- da Silva, A.P.G.; Sganzerla, W.G.; John, O.D.; Marchiosi, R. A comprehensive review of the classification, sources, biosynthesis, and biological properties of hydroxybenzoic and hydroxycinnamic acids. Phytochemistry Reviews 2023, 1–30. [Google Scholar] [CrossRef]
- Srinivasulu, C.; Ramgopal, M.; Ramanjaneyulu, G.; Anuradha, C.M.; Kumar, C.S. Syringic acid (sa)‒a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomedicine & Pharmacotherapy 2018, 108, 547–557. [Google Scholar]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. International journal of molecular sciences 2020, 21, 5712. [Google Scholar] [CrossRef]
- Ou, S.; Kwok, K.C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture 2004, 84, 1261–1269. [Google Scholar] [CrossRef]
- Pandi, A.; Kalappan, V.M. Pharmacological and therapeutic applications of sinapic acid—an updated review. Molecular Biology Reports 2021, 48, 3733–3745. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.E.; Frederiksen, H.; Struntze Krogholm, K.; Poulsen, L. Dietary proanthocyanidins: Occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Molecular nutrition & food research 2005, 49, 159–174. [Google Scholar]
- Nejabati, H.R.; Roshangar, L. Kaempferol as a potential neuroprotector in alzheimer's disease. Journal of Food Biochemistry 2022, 46, e14375. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Guan, Y.-Y.; Zhang, Z.-L.; Rahman, K.; Wang, S.-J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A review of pharmacological effects. Biomedicine & Pharmacotherapy 2020, 128, 110301. [Google Scholar]
- Patel, D.K. Therapeutic potential of a bioactive flavonoids glycitin from glycine max: A review on medicinal importance, pharmacological activities and analytical aspects. Current Traditional Medicine 2023, 9, 33–42. [Google Scholar] [CrossRef]
- Rani, R.; Kumar, A.; Jaggi, A.S.; Singh, N. Pharmacological investigations on efficacy of phlorizin a sodium-glucose co-transporter (sglt) inhibitor in mouse model of intracerebroventricular streptozotocin induced dementia of ad type. Journal of Basic and Clinical Physiology and Pharmacology 2021, 32, 1057–1064. [Google Scholar] [CrossRef]
- Nakhate, K.T.; Badwaik, H.; Choudhary, R.; Sakure, K.; Agrawal, Y.O.; Sharma, C.; Ojha, S.; Goyal, S.N. Therapeutic potential and pharmaceutical development of a multitargeted flavonoid phloretin. Nutrients 2022, 14, 3638. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M. Carvacrol and human health: A comprehensive review. Phytotherapy Research 2018, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bolaños, J.G.; López, Ó.; López-García, M.Á.; Marset, A. Biological properties of hydroxytyrosol and its derivatives. In Olive oil-constituents, quality, health properties and bioconversions, Citeseer: 2012.
- Gan, R.-Y.; Zhang, D.; Wang, M.; Corke, H. Health benefits of bioactive compounds from the genus ilex, a source of traditional caffeinated beverages. Nutrients 2018, 10, 1682. [Google Scholar] [CrossRef]
- Piechowska, P.; Zawirska-Wojtasiak, R.; Mildner-Szkudlarz, S. Bioactive β-carbolines in food: A review. In Nutrients, 2019; Vol. 11.
- Palai, S.; Chandra, S.; Pandey, N.; Singh, R. Theophylline: A bioactive dimethylxanthine alkaloid. 2023.
- Ramakrishna, A.; Giridhar, P.; Sankar, K.U.; Ravishankar, G.A. Melatonin and serotonin profiles in beans of coffea species. Journal of pineal research 2012, 52, 470–476. [Google Scholar] [CrossRef]
- Mancini, R.S.; Wang, Y.; Weaver, D.F. Phenylindanes in brewed coffee inhibit amyloid-beta and tau aggregation. Frontiers in neuroscience 2018, 12, 735. [Google Scholar] [CrossRef] [PubMed]
- Corpas, R.; Griñán-Ferré, C.; Palomera-Ávalos, V.; Porquet, D.; García de Frutos, P.; Franciscato Cozzolino, S.M.; Rodríguez-Farré, E.; Pallàs, M.; Sanfeliu, C.; Cardoso, B.R. Melatonin induces mechanisms of brain resilience against neurodegeneration. J Pineal Res 2018, 65, e12515. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols-a non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Cañas, S.; Rebollo-Hernanz, M.; Braojos, C.; Benítez, V.; Ferreras-Charro, R.; Dueñas, M.; Aguilera, Y.; Martín-Cabrejas, M.A. Understanding the gastrointestinal behavior of the coffee pulp phenolic compounds under simulated conditions. Antioxidants (Basel) 2022, 11, 1818. [Google Scholar] [CrossRef]
- Tang, K.S.C.; Konczak, I.; Zhao, J. Identification and quantification of phenolics in australian native mint (mentha australis r. Br.). Food Chemistry 2016, 192, 698–705. [Google Scholar] [CrossRef]
- Wang, H.; Provan, G.J.; Helliwell, K. Determination of rosmarinic acid and caffeic acid in aromatic herbs by hplc. Food Chemistry 2004, 87, 307–311. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agr. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Zhang, Z.; Rai, D.; Sun, D.W.; Tiwari, B.K. Ultrasound-assisted extraction (uae) of bioactive compounds from coffee silverskin: Impact on phenolic content, antioxidant activity, and morphological characteristics. Journal of Food Process Engineering 2019, 42, e13191. [Google Scholar] [CrossRef]
- Ahmed Ali, A.M.; Yagi, S.; Qahtan, A.A.; Alatar, A.A.; Angeloni, S.; Maggi, F.; Caprioli, G.; Abdel-Salam, E.M.; Sinan, K.I.; Zengin, G. Evaluation of the chemical constituents, antioxidant and enzyme inhibitory activities of six yemeni green coffee beans varieties. Food Bioscience 2022, 46, 101552. [Google Scholar] [CrossRef]
- Alnsour, L.; Issa, R.; Awwad, S.; Albals, D.; Al-Momani, I. Quantification of total phenols and antioxidants in coffee samples of different origins and evaluation of the effect of degree of roasting on their levels. Molecules 2022, 27, 1591. [Google Scholar] [CrossRef] [PubMed]
| Variables | Rosemary | coffee | herbal coffee |
| TPC mg GAE/g | 54.2 ± 4.8 b | 14.3 ± 2.2 c | 61.5 ± 5.1 a |
| TFC mg QE/g | 16.1 ± 1.1 b | 3.2 ± 0.1 c | 19.3 ± 0.9 a |
| TCT mg CE/g | 2.3 ± 0.2 b | 3.5 ± 0.3 c | 7.6 ± 0.7 a |
| Variables | ABTS mg AAE /g |
FICA mg EDTA/g |
•OH-RSA mg AAE/g |
Alpha-glucosidase inhibition activity IC50 μg/mL |
AChE inhibition activity (IC50 μg/mL) |
| Rosemary | 101.8 ± 9.2 b | 1.8 ± 0.4 b | 24.3 ± 1.9 b | 15.9 ± 1.5 b | 17.3 ± 1.9 b |
| Coffee | 24.8 ± 2.2 c | 1.3 ± 0.2 c | 8.2 ± 0.5 c | 32.4 ± 2.3 c | 31.1 ± 2.2 c |
| Herbal coffee | 126.3 ± 9.5 a | 3.4 ± 0.3 a | 30.1 ± 1.3 a | 12.4 ± 1.2 a | 9.6 ± 0.7 a |
| No. | Proposed compounds | Molecular Formula | RT (min) | Mode of ionization | Theoretical (m/z) | Observed (m/z) | Mass Error (ppm) | MS2 product ions |
| Phenolic acids | ||||||||
| Hydroxybenzoic acids | ||||||||
| 1 | * Protocatechuic acid | C7H6O4 | 10.346 | [M−H]− | 153.0193 | 153.0197 | 2.6 | 109 |
| 2 | 4-Hydroxybenzoic acid 4-O-glucoside | C13H16O8 | 17.296 | [M−H]− | 299.0772 | 299.0783 | 4.7 | 255, 137 |
| 3 | * Syringic acid | C9H10O5 | 22.003 | [M−H]− | 197.0455 | 197.0463 | 3.6 | 182, 153, 138, 123 |
| 4 | * 2-Hydroxybenzoic acid | C7H6O3 | 28.002 | [M−H]− | 137.0244 | 137.0252 | 5.8 | 93 |
| Hydroxycinnamic acids | ||||||||
| 5 | * 3-Caffeoylquinic acid | C16H18O9 | 8.052 | **[M−H]− | 353.0878 | 353.0878 | 0.0 | 191, 179, 161, 135 |
| 6 | p-Coumaric acid 4-O-glucoside | C15H18O8 | 10.391 | [M−H]− | 325.0929 | 325.0937 | 2.5 | 163 |
| 7 | Methyl chlorogenate | C16H18O9 | 12.624 | [M+H]+ | 369.1180 | 369.1193 | 4.9 | 177, 145 |
| 8 | Dihydroferulic acid | C10H12O4 | 14.611 | [M−H]− | 195.0663 | 195.0664 | 0.5 | 151, 135 |
| 9 | * Caffeic acid | C9H8O4 | 15.013 | [M−H]− | 179.0350 | 179.0356 | 4.5 | 161, 135 |
| 10 | 1-Sinapoyl-2-feruloylgentiobiose | C33H40O18 | 15.290 | [M−H]− | 723.2142 | 723.2123 | -3.0 | 529, 449 |
| 11 | * Rosmarinic acid | C18H16O8 | 15.876 | [M−H]− | 359.0772 | 359.0789 | 4.3 | 197, 179, 161, 135 |
| 12 | 3-p-Coumaroylquinic acid | C16H18O8 | 17.558 | [M−H]− | 337.0929 | 337.0924 | -1.5 | 191, 173, 93 |
| 13 | Feruloyl glucose | C16H20O9 | 18.655 | [M−H]− | 355.1034 | 355.103 | -1.1 | 177, 149, 133, 59 |
| 14 | 1,2-Diferuloylgentiobiose | C32H38O17 | 18.685 | **[M−H]− | 693.2036 | 693.203 | -0.9 | 499, 191 |
| 15 | 3-Sinapoylquinic acid | C18H22O10 | 18.722 | [M-H]- | 397.114 | 397.1128 | -3.0 | 353, 233, 191 |
| 16 | 3-Feruloylquinic acid | C17H20O9 | 18.983 | ** [M-H]- | 367.1034 | 367.1034 | 0.0 | 193, 191, 173, 161 |
| 17 | * Cinnamic acid | C9H8O2 | 19.515 | [M−H]− | 147.0451 | 147.0457 | 4.1 | 103 |
| 18 | 1,5-Dicaffeoylquinic acid | C25H24O12 | 20.336 | [M−H]− | 515.1195 | 515.1179 | -3.1 | 353, 191, 179, 161 |
| 19 | 1-O-Sinapoyl-beta-D-glucose | C17H22O10 | 20.384 | [M−H]− | 385.114 | 385.1132 | -2.1 | 367, 223, 205 |
| 20 | p-Coumaroyl glycolic acid | C11H10O5 | 21.25 | [M−H]− | 221.0455 | 221.0471 | 7.2 | 177, 119, 65 |
| 21 | * Ferulic acid | C10H10O4 | 22.34 | [M−H]− | 193.0506 | 193.0507 | 0.5 | 178, 149, 134 |
| 22 | 1-Sinapoyl-2,2’-diferuloylgentiobiose | C43H48O21 | 23.155 | [M−H]− | 899.2615 | 899.2633 | 5.1 | 675, 193 |
| 23 | 2-Feruloyl-1,2’-disinapoylgentiobiose | C44H50O22 | 23.74 | [M−H]− | 929.2721 | 929.2707 | -1.5 | 223, 205, 193 |
| 24 | * Sinapic acid | C11H12O5 | 24.43 | [M−H]− | 223.0612 | 223.0607 | -2.2 | 205, 163 |
| 25 | 1-Caffeoyl-5-feruloylquinic acid | C26H26O12 | 25.86 | [M−H]− | 529.1351 | 529.1324 | -5.1 | 353, 179, 161, 135 |
| 26 | 1,2,2’-Triferuloylgentiobiose | C42H46O20 | 27.446 | [M−H]− | 869.2509 | 869.25 | -1.0 | 675, 193 |
| 27 | Cinnamoyl glucose | C15H18O7 | 27.504 | [M−H]− | 309.0979 | 309.0986 | 4.4 | 147, 131, 103 |
| 28 | * p-Coumaric acid | C9H8O3 | 27.561 | [M−H]− | 163.04 | 163.0396 | -2.5 | 109 |
| 29 | 3,5-Diferuloylquinic acid | C27H28O12 | 27.896 | [M−H]− | 543.1508 | 543.1495 | -3.2 | 367, 191 |
| 30 | p-Coumaric acid ethyl ester | C11H12O3 | 28.32 | [M+H]+ | 193.0859 | 193.0859 | 0.0 | 191, 145 |
| 31 | Verbascoside A | C31H40O16 | 28.517 | [M−H]− | 667.2243 | 667.2261 | 2.7 | 283, 94 |
| Flavonoids | ||||||||
| Flavanols | ||||||||
| 32 | 3’-O-Methyl-(-)-epicatechin-7-O-glucuronide | C22H24O12 | 4.94 | [M−H]− | 479.1195 | 479.1194 | -0.2 | 149, 121 |
| 33 | (+)-Gallocatechin 3-O-gallate | C22H18O11 | 6.905 | [M+H]+ | 459.0922 | 459.0928 | 1.3 | 289 |
| 34 | * (-)-Epicatechin | C15H14O6 | 9.804 | [M−H]− | 289.0717 | 289.0713 | -1.4 | 245 |
| 35 | * Procyanidin dimer B2 | C30H26O12 | 23.061 | [M−H]− | 577.1351 | 577.1398 | 8.1 | 451, 425 |
| 36 | Epicatechin gallate | C22H18O10 | 24.073 | [M−H]− | 441.0827 | 441.0856 | 6.6 | 289 |
| 37 | Gallocatechin | C15H14O7 | 26.235 | [M−H]− | 305.0667 | 305.0681 | 4.7 | 245 |
| 38 | 3’-O-Methylepicatechin | C16H16O6 | 28.75 | [M−H]− | 303.0874 | 303.0887 | 5.6 | 271, 163 |
| Flavonols | ||||||||
| 39 | Kaempferol 7-O-glucoside | C21H19O11 | 3.369 | [M−H]− | 446.0854 | 446.0873 | 4.3 | 285 |
| 40 | Jaceidin 4’-O-glucuronide | C24H24O14 | 4.141 | [M+H]+ | 537.1239 | 537.1257 | 3.4 | 361 |
| 41 | Myricetin 3-O-rutinoside | C27H30O17 | 4.141 | **[M+H]+ | 627.1556 | 627.1564 | 2.7 | 319 |
| 42 | Isorhamnetin | C16H12O7 | 4.669 | [M+H]+ | 317.0656 | 317.0673 | 4.6 | 302, 229, 152 |
| 43 | Myricetin 3-O-rhamnoside | C21H20O12 | 5.787 | [M+H]+ | 465.1028 | 465.1056 | 6.0 | 319, 301 |
| 44 | Kaempferol-3-O-(2’’-rhamnosyl-galactoside) 7-O-rhamnoside | C33H40O19 | 26.665 | [M−H]− | 739.2091 | 739.2052 | -5.3 | 575, 431, 163 |
| 45 | Kaempferol | C15H10O6 | 34.542 | [M−H]− | 285.0404 | 285.0423 | 6.5 | 267, 151 |
| 46 | Quercetin 3-O-(6’’-acetyl-galactoside) 7-O-rhamnoside | C29H32O17 | 59.628 | [M+H]+ | 653.1713 | 653.1731 | 3.3 | 489, 449, 431, 301, 285 |
| Flavones | ||||||||
| 47 | Tricin 7-neohesperidoside | C29H34O16 | 4.715 | [M−H]− | 637.1774 | 637.174 | -5.3 | 491, 329 |
| 48 | Nobiletin | C21H22O8 | 25.096 | [M−H]− | 401.1242 | 401.1247 | 1.2 | 237, 188, 145, 59 |
| 49 | Apigenin 6,8-di-C-glucoside | C27H30O15 | 47.368 | [M+H]+ | 595.1658 | 595.171 | 8.7 | 577, 383 |
| Flavanones | ||||||||
| 50 | Didymin | C28H34O14 | 4.306 | [M−H]− | 593.1876 | 593.1865 | -1.9 | 431, 285 |
| 51 | Hesperetin 3’-O-glucuronide | C22H22O12 | 4.635 | [M+H]+ | 479.1184 | 479.1204 | 4.2 | 303, 285, 177, 151 |
| 52 | Naringenin 7-O-glucoside | C21H22O10 | 22.752 | [M−H]− | 433.114 | 433.1129 | -2.5 | 271, 151 |
| Isoflavonoids | ||||||||
| 53 | 6’’-O-Malonyldaidzin | C24H22O12 | 3.663 | [M−H]− | 501.1038 | 501.1056 | 3.6 | 253 |
| 54 | 3’-O-Methylviolanone | C18H18O6 | 4.25 | [M−H]− | 329.1030 | 329.1020 | -3.8 | 285, 163 |
| 55 | 6’’-O-Acetylglycitin | C24H24O11 | 5.285 | [M−H]− | 487.1246 | 487.1239 | -1.6 | 283, 267, 59 |
| 56 | 4’-Methoxy-2’,3,7-trihydroxyisoflavanone | C16H14O6 | 6.488 | [M−H]− | 301.0717 | 301.0725 | 2.7 | 177, 135 |
| 57 | Violanone | C17H16O6 | 8.956 | [M−H]− | 315.0874 | 315.0866 | -3.4 | 300, 285, 135 |
| 58 | 3’,4’,5,7-Tetrahydroxyisoflavanone | C15H12O6 | 18.008 | [M−H]− | 287.0561 | 287.057 | 3.1 | 269, 179 |
| 59 | Equol 7-O-glucuronide | C21H22O9 | 21.038 | [M−H]− | 417.1191 | 417.1207 | 3.8 | 399, 241 |
| 60 | Glycitin | C22H22O10 | 23.403 | [M−H]− | 445.114 | 445.1166 | 5.8 | 427, 311, 267 |
| 61 | 3’,4’,7-Trihydroxyisoflavanone | C15H12O5 | 23.494 | [M−H]− | 271.0612 | 271.0631 | 7.0 | 163, 135, 109 |
| 62 | Glycitein 7-O-glucuronide | C22H20O11 | 23.669 | [M−H]− | 459.0933 | 459.0934 | 0.2 | 441, 283, 267 |
| 63 | Dihydrobiochanin A | C16H14O5 | 27.03 | [M−H]− | 285.0768 | 285.0771 | 1.1 | 269, 203, 175 |
| 64 | 3’-O-Methylequol | C16H16O4 | 27.479 | [M+H]+ | 273.1122 | 273.112 | -0.7 | 255, 149, 121 |
| 65 | Daidzin | C21H20O9 | 29.599 | [M−H]− | 415.1034 | 415.1038 | 1.0 | 253 |
| 66 | Formononetin | C16H14O4 | 34.046 | [M−H]− | 269.0819 | 269.0824 | 1.9 | 251, 223 |
| 67 | 6’-Hydroxyangolensin | C16H16O5 | 34.255 | [M−H]− | 287.0925 | 287.0917 | -2.8 | 181, 125 |
| Dihydroflavonols | ||||||||
| 68 | Dihydromyricetin 3-O-rhamnoside | C21H22O12 | 4.141 | [M+H]+ | 467.1184 | 467.1215 | 6.6 | 321, 153 |
| Dihydrochalcones | ||||||||
| 69 | 3-Hydroxyphloretin 2’-O-xylosyl-glucoside | C26H32O15 | 12.086 | [M−H]− | 583.1668 | 583.1684 | 2.7 | 565, 289, 271 |
| 70 | 3-Hydroxyphloretin 2’-O-glucoside | C21H24O11 | 13.591 | [M−H]− | 451.1246 | 451.1252 | 1.3 | 433, 289 |
| 71 | Phloridzin | C21H24O10 | 25.198 | [M−H]− | 435.1297 | 435.1266 | -7.1 | 273, 255 |
| 72 | Phloretin 2’-O-xylosyl-glucoside | C26H32O14 | 29.198 | [M−H]− | 567.1719 | 567.1724 | 0.9 | 273, 149 |
| Tyrosols | ||||||||
| 73 | p-HPEA-EDA | C17H20O5 | 4.141 | [M+H]+ | 305.1384 | 305.1378 | -2.0 | 287, 167, 121 |
| 74 | Hydroxytyrosol | C8H10O3 | 22.684 | [M−H]− | 153.0557 | 153.0555 | -1.3 | 123, 109 |
| 75 | Hydroxytyrosol 4-O-glucoside | C14H20O8 | 28.715 | ** [M+H]+ | 317.1231 | 317.1228 | -0.9 | 155, 137 |
| Phenolic terpenes | ||||||||
| 76 | Carnosol | C20H26O4 | 32.131 | [M−H]− | 329.1758 | 329.1733 | -7.6 | 285 |
| 77 | Carnosic acid | C20H28O4 | 40.483 | [M−H]− | 331.1915 | 331.1919 | 1.2 | 287 |
| 78 | Carvacrol | C10H14O | 49.831 | [M−H]− | 149.0972 | 149.0969 | -2.0 | 133 |
| Other polyphenols | ||||||||
| 79 | Phlorin | C12H16O8 | 4.715 | [M−H]− | 287.0772 | 287.0782 | 3.5 | 125 |
| 80 | Pyrogallol | C6H6O3 | 9.088 | [M−H]− | 125.0244 | 125.0252 | 6.4 | 107, 97, 79 |
| Alkaloids | ||||||||
| 81 | Trigonelline | C7H7NO2 | 4.116 | [M+H]+ | 138.0549 | 138.0561 | 9.3 | 120, 94, 92 |
| 82 | Theophylline | C7H8N4O2 | 4.223 | [M−H]− | 179.0574 | 179.0562 | -5.8 | 164, 161, 129, 83 |
| 83 | ꞵ-Carboline | C11H8N2 | 8.175 | [M+H]+ | 169.0760 | 169.0767 | 5.5 | 142, 117, 115, 70 |
| 84 | Fontanesine B | C23H19N3O2 | 9.02 | [M+H]+ | 370.1550 | 370.1545 | -2.1 | 208, 147 |
| 85 | Caffeine | C8H10N4O2 | 16.828 | [M+H]+ | 195.0877 | 195.0887 | 5.3 | 138, 110 |
| 86 | Vasicine | C11H12N2O | 31.617 | [M+H]+ | 189.1022 | 189.1033 | 5.1 | 171, 161, 147, 121 |
| Organic acids | ||||||||
| 87 | Citric acid | C6H8O7 | 3.769 | [M−H]− | 191.0197 | 191.0196 | -0.5 | 112, 87 |
| 88 | Quinic Acid | C7H12O6 | 4.173 | [M−H]− | 191.0561 | 191.0561 | 0.0 | 173, 127, 85 |
| 89 | Fumaric acid | C4H4O4 | 4.515 | [M−H]− | 133.0036 | 115.0033 | -2.6 | 71 |
| 90 | Mandelic acid | C8H8O3 | 7.156 | [M−H]− | 151.0400 | 151.0412 | 7.9 | 151 |
| 91 | Malic acid | C4H6O5 | 7.216 | [M−H]− | 133.0142 | 133.0140 | -1.5 | 73 |
| Amino acids and hormones | ||||||||
| 92 | L-Tyrosine | C9H11NO3 | 4.425 | [M+H]+ | 182.0811 | 182.0838 | 17.6 | 167, 165, 136, 124, 122 |
| 93 | L-Phenylalanine | C9H11NO2 | 4.643 | [M+H]+ | 166.0862 | 166.0880 | 10.8 | 151, 149, 122, 107 |
| 94 | L-Pyroglutamic acid | C5H7NO3 | 4.751 | [M+H]+ | 130.0498 | 130.0506 | 6.2 | 84 |
| 95 | Melatonin | C13H16N2O2 | 6.820 | [M+H]+ | 233.1284 | 233.1309 | 10.7 | 185, 152, 93 |
| Variables | Before digestion | Gastric digestion | Intestinal stage |
| TPC (mg GAE/g) | 61.5 ± 5.1 c | 67.3 ± 6.2 b | 82.2 ± 5.7 a |
| TFC (mg QE/g) | 19.3 ± 0.9 a | 13.3 ± 1.1 c | 17.5 ± 1.5 b |
| ABTS (mg AAE/g) | 126.3 ± 9.5 b | 124.1 ± 11.2 c | 141.2 ± 12.3 a |
| No. | Compounds | Formula | μg/mL | Proposed structure |
| 1 | Salicylic acid | C7H6O3 | 281.5 ± 14.3 | ![]() |
| 2 | Cinnamic acid | C9H8O2 | 201.3 ± 11.4 | ![]() |
| 3 | p-Coumaric acid | C9H8O3 | 29.3 ± 2.6 | ![]() |
| 4 | 3-p-coumaryolquinic acid | C16H18O8 | 31.4 ± 3.1 | ![]() |
| 5 | Ferulic acid | C10H10O4 | 142.7 ± 9.8 | ![]() |
| 6 | 3-Ferulolquinic acid | C17H20O9 | 194.6 ± 12.4 | ![]() |
| 7 | Chlorogenic acid | C16H18O9 | 18251.5 ± 56.5 | ![]() |
| 8 | Syringic acid | C9H10O5 | 43.2 ± 4.1 | ![]() |
| 9 | Caffeic acid | C9H8O4 | 1124.6 ± 11.3 | ![]() |
| 11 | Protocatechuic acid | C7H6O4 | 45.4 ± 3.9 | ![]() |
| 12 | Epicatechin | C15H14O6 | 21.4 ± 1.7 | ![]() |
| 13 | Kaempferol | C15H10O6 | 17.9 ± 1.4 | ![]() |
| 14 | Procyanidin B2 | C30H26O12 | 11.4 ± 0.7 | ![]() |
| 15 | Pyrogallol | C6H6O3 | 16.9 ± 0.8 | ![]() |
| 17 | Carnosol | C20H26O4 | 545.2 ± 22.9 | ![]() |
| 18 | Quinic acid | C7H12O6 | 1463.6 ± 11.3 | ![]() |
| 19 | Rosmarinic acid | Rosmarinic acid | 16142.4 ± 89.2 | ![]() |
| 20 | Carnosic acid | C20H28O4 | 1341.4 ± 12.1 | ![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).


















