Submitted:
19 June 2024
Posted:
20 June 2024
You are already at the latest version
Abstract

Keywords:
1. Background
2. Modification Strategies from CH3NH3PbI3 into Cs2AgBiBr6 and Cs2TiBr6 Halide Double Perovskites
3. Origin of Electronic and Optical Property Variations
4.1. Effect of Polarization and Molecular Dipoles on the Dynamics of the Photo-Excitations
4.2. Effects of Tilting on the Band Structure and Electron-Hole Transport
5. Energy Applications of Halide Double Perovskites
6. Challenges in Lead and Tin Free All-Inorganic Halide Double Perovskite Solar Cell
6.1. Discouraging Power Conversion Efficiency
6.2. Mismatch among Various Interfacial Layers of the Device Architecture
6.3. Unclear Charge-Transport Properties of These Materials
6.4. Quantum Confinement Effect
6.5. Low Electronic Dimensionality
6.6. Indirect and Wide Band Gap
6.7. Energetic Disorder
6.8. Geometrical Constraints
6.9. High Processing Temperature
6.10. Shortage of a Broad-Spectrum of Speculative Guidelines
6.11. Lack of Stoichiometric Design and Compatibility of Various Layers
6.12. Incomplete Order
6.13. Challenges in Achieving High Quality Films
7. Suggested Research Roadmap Engineering Strategies for Material and Device Performance Improvement
7.1. Engineering Materials Microstructure, Surface and Bulk Properties
7.2. Engineering Domain Wall and Grain Boundaries
7.3. Polar Order Engineering
7.4. Band Gap and Band Structure Engineering
7.5. Crystallization Process and Colloidal Engineering
7.6. Composition Engineering
7.7. Engineering Electronic Properties
7.8. Interface and Defect Engineering
7.9. Device Architectural Engineering
7.10. Doping Engineering
7.11. Equilibrium and non-Equilibrium Quantum Transport
8. Promising Candidate Properties to Substitute Pb Metal
9. Issue of Sustainability
10. Concluding Remark
Funding
Acknowledgments
Conflicts of Interest
References
- Xing, G. M., N.; Lim, S.; Yantara, N.; Liu, X.; Sabba, D.; Graetzel, M.; Mhaisalkar, S.; Sum, T. . Nat. Mater. 13, 476−480 (2014).
- Tan, Z.-K. M., R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. . Nat. Nanotechnol. 9, 687−692 (2014).
- Chin, X. Y. C., D.; Yin, J.; Bruno, A.; Soci, C. . Nat. Commun. 6, 7383 (2015).
- Boix, P. P. N., K.; Mathews, N.; Mhaisalkar, S. G. . Mater. Today 17, 16−23 (2014).
- Xin-Gang Zhao, 4 Dongwen Yang,1,4 Ji-Chang Ren,2,4 Yuanhui Sun,1 Zewen Xiao,3,* and Lijun Zhang1,*. Rational Design of Halide Double Perovskites for Optoelectronic Applications. Joule 2018. [CrossRef]
- Li, Z. & Yin, W. Recent progress in Pb-free stable inorganic double halide perovskites. Journal of Semiconductors 39, 071003, 2018. [CrossRef]
- Kumar, M. H. D., S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N. . Adv. Mater. 26, 1−6 (2014).
- Hao, F. S., C. C.; Cao, D. H.; Chang, R. P. H.;Kanatzidis, M. G. . Nat. Photonics 8, 489−494 (2014).
- Chung, I. L., B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. . Nature 485, 486−489 (2012).
- Harikesh PC, M. H., Ghosh B, et al. . Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. . Chem Mater. 28, 7496-7504 (2016).
- Matthew R. Linaburg, E. T. M., Jackson D. Majher, and Patrick M. Woodward*. Cs1−xRbxPbCl3 and Cs1−xRbxPbBr3 Solid Solutions: Understanding Octahedral Tilting in Lead Halide Perovskites. Chem. Mater. 29, 3507−3514 (2017).
- Volonakis, G. et al. Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. The Journal of Physical Chemistry Letters 8, 772-778, 2017. [CrossRef]
- Zhao XG, Y. D., Sun YH, et al. . Cu-In halide perovskite solar absorbers. . J Am Chem Soc. 139, 6718-6725 (2017).
- Ming-Gang Ju, § Min Chen,‡,§ Yuanyuan Zhou,*,‡ Hector F. Garces,‡ Jun Dai,† Liang Ma,† Nitin P. Padture,*,‡ and Xiao Cheng Zeng*,†. Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications. ACS Energy Lett. 3, 297−304 (2018).
- Pazoki M, J. M., Zhu HM, et al. . Bismuth iodide perovskite materials for solar cell applications: Electronic structure, optical transitions, and directional charge transport. . J Phys Chem C. 120, 29039-29046 (2016).
- Eline M. Hutter, †,‡ María C. Gelvez-Rueda, ́ ‡ Davide Bartesaghi,‡ Ferdinand C. Grozema,‡ and Tom J. Savenije*,‡. Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony−Bismuth Cs2AgBi1−xSbxBr6 Halide Double Perovskites. ACS Omega 3, 11655−11662 (2018).
- Gray, M. B., McClure, E. T. & Woodward, P. M. Cs2AgBiBr6−xClx solid solutions – band gap engineering with halide double perovskites. Journal of Materials Chemistry C 7, 9686-9689, 2019. [CrossRef]
- Hong, K.-H., Kim, J., Debbichi, L., Kim, H. & Im, S. H. Band Gap Engineering of Cs3Bi2I9 Perovskites with Trivalent Atoms Using a Dual Metal Cation. The Journal of Physical Chemistry C 121, 969-974, 2017. [CrossRef]
- Karmakar, A., Dodd, M. S., Agnihotri, S., Ravera, E. & Michaelis, V. K. Cu(II)-Doped Cs2SbAgCl6 Double Perovskite: A Lead-Free, Low-Bandgap Material. Chemistry of Materials 30, 8280-8290, 2018. [CrossRef]
- Zhou, J. et al. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. Journal of Materials Chemistry A 5, 15031-15037, 2017. [CrossRef]
- Chu, L. et al. Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications. Nano-Micro Letters 11, 16, 2019. [CrossRef]
- Tang, Y. et al. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. Journal of Materials Chemistry C 7, 3369-3374, 2019. [CrossRef]
- Luo, J. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541-545, 2018. [CrossRef]
- Meyer, E., Mutukwa, D., Zingwe, N. & Taziwa, R. Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites. Metals 8, 667 (2018).
- Filip, M. R., Liu, X., Miglio, A., Hautier, G. & Giustino, F. Phase Diagrams and Stability of Lead-Free Halide Double Perovskites Cs2BB′X6: B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I. The Journal of Physical Chemistry C 122, 158-170, 2018. [CrossRef]
- I.N. Flerova, M.V. Goreva , K.S. Aleksandrova , A. Tressaudb , J. Grannecb , M. Couzic. Phase transitions in elpasolites (ordered perovskites). Mater. Sci. Eng., R, 24, 81-151 (1998).
- Morss, L. R., Siegal, M., Stenger, L. & Edelstein, N. Preparation of cubic chloro complex compounds of trivalent metals: Cs2NaMCl6. Inorganic chemistry 9, 1771-1775, 1970. [CrossRef]
- Sasha Khalfin, Y. B., 2. Advances in Lead-Free Double Perovskite Nanocrystals, Engineering Band-gaps and Enhancing Stability Through Composition Tunabilty. Nanoscale, 2019. [CrossRef]
- Femi Igbari, Z.-K. W., * and Liang-Sheng Liao. Progress of Lead-Free Halide Double Perovskites. Adv. Energy Mater. , 1803150 (2019).
- Adam H. Slavney, L. L., Abraham Saldivar Valdes, Davide Bartesaghi, Tom J. Savenije, Jeffrey B. Neaton, and Hemamala Karunadasa. Small-Bandgap Halide Double Perovskites. Angew. Chem. Int. Ed. 10.1002/anie.201807421 (2018).
- NREL Efficiency Chart. This Plot Is Courtesy of the National Renewable Energy Laboratory, Golden, CO. Available online: https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.20190411.pdf (accessed on 14 April 2019).
- Chen, B. et al. Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4%. Joule 3, 177-190, 2019. [CrossRef]
- Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300-1309, 2020. [CrossRef]
- Chen, M. et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nature Communications 10, 16, 2019. [CrossRef]
- Nalianya, M. A. et al. Numerical study of lead free CsSn0.5Ge0.5I3 perovskite solar cell by SCAPS-1D. Optik 248, 168060, 2021. [CrossRef]
- Liu, X. et al. Lead free CsSn0.5Ge0.5I3 perovskite solar cell with different layer properties via SCAPS-1D simulation. The Canadian Journal of Chemical Engineering 101, 6792-6806, 2023. [CrossRef]
- Singh, N. K. & Agarwal, A. Performance assessment of sustainable highly efficient CsSn0.5Ge0.5I3/FASnI3 based Perovskite Solar Cell: A numerical modelling approach. Optical Materials 139, 113822, 2023. [CrossRef]
- Ju, M.-G. et al. Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications. ACS Energy Letters 3, 297-304, 2018. [CrossRef]
- Saparov, B. et al. Thin-Film Deposition and Characterization of a Sn-Deficient Perovskite Derivative Cs2SnI6. Chem.mater. 28, 2315-2322, 2016. [CrossRef]
- Greul, E., Petrus, Michiel L., Binek, A., Docampo, P. & Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A 5, 19972-19981, 2017. [CrossRef]
- Xiaoqing Yang, Y. C., Pengyun Liu, Huimin Xiang, Wei Wang,* Ran Ran, Wei Zhou, and Zongping Shao*. Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs2AgBiBr6 Lead-Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer. Adv. Funct. Mater. 2001557 (2020).
- Zhang, Z. et al. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nature Communications 13, 3397, 2022. [CrossRef]
- Min Chen, M.-G. J., 2 Alexander D. Carl,3 Yingxia Zong,1 Ronald L. Grimm,3 Jiajun Gu,4 Xiao Cheng Zeng,2 Yuanyuan Zhou,1,* and Nitin P. Padture1,5,*. Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells. Joule 2, 1-13 (2018).
- Ahmed, S., Jannat, F., Khan, M. A. K. & Alim, M. A. Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik 225, 165765, 2021. [CrossRef]
- Mercy, P. A. M. & Wilson, K. S. J. Development of environmental friendly high performance Cs2TiBr6 based perovskite solar cell using numerical simulation. Applied Surface Science Advances 15, 100394, 2023. [CrossRef]
- Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050-6051, 2009. [CrossRef]
- Ghanshyam Pilania1*, P. V. B., Chiho Kim3 and Turab Lookman2. Finding New Perovskite Halides via Machine Learning. Frontiers in Materials (2016).
- Gonzalez-Pedro, V. et al. General Working Principles of CH3NH3PbX3 Perovskite Solar Cells. Nano Letters 14, 888-893, 2014. [CrossRef]
- Uddin, M. A., Calabro, R. L., Kim, D.-Y. & Graham, K. R. Halide exchange and surface modification of metal halide perovskite nanocrystals with alkyltrichlorosilanes. Nanoscale 10, 16919-16927, 2018. [CrossRef]
- Protesescu, L. et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 15, 3692-3696, 2015. [CrossRef]
- Nedelcu, G. et al. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters 15, 5635-5640, 2015. [CrossRef]
- N.J. Jeon, J. H. N., W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, . Compositional engineering of perovskite materials for high-performance solar cells, . Nature 517, 476-480, 2015. [CrossRef]
- Jin-Wook Lee , D.-H. K., Hui-Seon Kim , Seung-Woo Seo , Sung Min Cho, and Nam-Gyu Park *. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 5, 1501310 (2015).
- Yun Hee Park, I. J., Seunghwan Bae, Hae Jung Son, Phillip Lee, Jinwoo Lee, Chul-Ho Lee,* and Min Jae Ko*. Inorganic Rubidium Cation as an Enhancer for Photovoltaic Performance and Moisture Stability of HC(NH2)2PbI3 Perovskite Solar Cells. Adv. Funct. Mater., 1605988 (2017).
- Dmitry Baranov2 , Z. D., Mirko Prato3 , Filippo Drago2, Maurizio Ferretti1, Valerio Pinchetti4, Marco Fanciulli4, Sergio Brovelli4, Luca De Trizio2*, Liberato Manna2* Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 Nanocrystals Federico Locardi1,2, Matilde Cirignano2. J. Am. Chem. Soc., (2018).
- Stoumpos, C. C. F., L.; Clark, D. J.; Kim, Y. S.; Rhim, S. H.; Freeman, A. J.; Ketterson, J. B.; Jang, J. I.; Kanatzidis, M. G. . Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties. . J. Am. Chem. Soc., 137, 6804−6819 (2015).
- Volonakis, G. F., M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. . J. Phys.Chem. Lett. 7, 1254−1259 (2016).
- Slavney, A. H. H., T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. . J. Am. Chem. Soc. 138, 2138-2141 (2016).
- al., K. e. HALIDE DOUBLE PEROVSKITE Cs2AgBiBr6 SOLAR-CELL ABSORBER HAVING LONG CARRIER LIFETIMES. U.S. Published Patent Application US 2017/O1941 01 A1 (2017).
- Enrico Greul, a. M. L. P., a Andreas Bineka, Pablo Docampob and Thomas Beina*. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 00, 1-3 (2017).
- Xiao ZW, D. K., Meng WW, et al. Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) double perovskites: A combined density functional theory and experimental study. . J Am Chem Soc. 139, 6054-6057 (2017).
- Xiao, Z. Y., Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices. . Nat. Mater. 14, 193−198 (2015).
- Bertoluzzi, L. S., R. S.; Liu, L.; Lee, J.-W.; Mas-Marza, E.; Han, H.; Park, N.-G.; Mora-Sero, I.; Bisquert, J. . Energy Environ. Sci. 8, 910-915 (2015).
- Snaith, H. J. A., A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W. Anomalous Hysteresis in Perovskite Solar Cells. . J. Phys. Chem. Lett. 5, 1511-1515 (2014).
- Tress, W. M., N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gratzel, M., . Understanding the Rate-Dependent J-V Hysteresis, Slow Time Component, and Aging in Ch3nh3pbi3 Perovskite Solar Cells: The Role of a Compensated Electric Field. Energy & Environmental Science 8, 995-1004 (2015).
- Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613-617, 2015. [CrossRef]
- Fan, Z. X., J.; Sun, K.; Chen, L.; Hu, Y.; Ouyang, J.; Ong, K. P.; Zeng, K.; Wang, J.,. Ferroelectricity of Ch3nh3pbi3 Perovskite. J. Phys. Chem. Lett. 6, 1155-1161 (2015).
- Tomas Leijtens 1, Ajay Ram Srimath Kandada1*, Giles E. Eperon2, Giulia Grancini1, Valerio D’Innocenzo1,3, James M. Ball1, Samuel D. Stranks2#, Henry J. Snaith2, and Annamaria Petrozza1*. Modulating the Electron - Hole Interaction in a Hybrid Lead Halide Perovskite with an Electric Field J. Am. Chem. Soc.,, 2015. [CrossRef]
- Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications 4, 29, 2020. [CrossRef]
- Prasanna, R. et al. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. Journal of the American Chemical Society 139, 11117-11124, 2017. [CrossRef]
- Lee, J.-H. et al. Resolving the Physical Origin of Octahedral Tilting in Halide Perovskites. Chemistry of Materials 28, 4259-4266, 2016. [CrossRef]
- Lei, H., Hardy, D. & Gao, F. Lead-Free Double Perovskite Cs 2 AgBiBr 6 : Fundamentals, Applications, and Perspectives. Advanced Functional Materials 31, 2105898, 2021. [CrossRef]
- Metal-halide double perovskites as solar-cell absorbers Stanford University/OFFICE OF TECHNOLOGY LICENSING/http://techfinder.stanford.edu/technologies/S15-455_metal-halide-double-perovskites-as.
- Palmstrom et al. Enabling Flexible All-Perovskite Tandem Solar Cells. Joule 3 1-12, 2019. [CrossRef]
- Lei Zhou, Y.-F. X., Bai-Xue Chen, Dai-Bin Kuang,* and Cheng-Yong Su. Synthesis and Photocatalytic Application of Stable LeadFree Cs2AgBiBr6 Perovskite Nanocrystals. Small 14, 1703762 (2018).
- Zhenzhen Zhanga, b., Yongqi Liangb, Hanlin Huangb, Xingyi Liub, Qi Lib, Langxing Chena*, Dongsheng Xub*. Stable and Highly Efficient Photocatalysis with Lead-Free DoublePerovskite of Cs2AgBiBr6. Angew. Chem. Int. Ed. 10.1002/anie.201900658 (2019).
- Cho, J., DuBose, J. T. & Kamat, P. V. Charge Injection from Excited Cs2AgBiBr6 Quantum Dots into Semiconductor Oxides. Chemistry of Materials 32, 510-517, 2020. [CrossRef]
- Qin, X., Zhao, Z., Wang, Y., Wu, J., Jiang, Q., and You, J. Recent progress in stability of perovskite solar cells. J. Semicond. 38 011002 (2017).
- Berhe, T. A. et al. Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science 9, 323-356, 2016. [CrossRef]
- Berhe, T. A. et al. Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. Journal of Materials Chemistry A 5, 21002-21015, 2017. [CrossRef]
- Xiao, Z., Meng, W., Wang, J., Mitzi, D.B., and Yan, Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4, 206-216 (2017).
- Zhang, Q., Ting, H., Wei, S., Huang, D., Wu, C., Sun, W., Qu, B., Wang, S., Chen, Z., and Xiao, L. Recent progress in lead-free perovskite (-like) solar cells. Mater. Today Energy 8, 157-165 (2018).
- Jodlowski, A., Rodrı’guez-Padro ´ n, D., Luque, R., and de Miguel, G. Alternative perovskites for photovoltaics. Adv. Energy Mater. , 201703120., 2018. [CrossRef]
- Liang, L., and Gao, P. . Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too? Adv. Sci.(Weinh) 5, 1700331 (2018).
- Abate, A. Perovskite solar cells go lead free. Joule 1 659-664 (2017).
- Xu, Q., Yang, D., Lv, J., Sun, Y.-Y., and Zhang, L. Perovskite solar absorbers: materials by design. Small Methods 2, 1700316 (2018).
- George Volonakis1 and Feliciano Giustino1, a. Surface properties of lead-free halide double perovskites: Possible visible-light photo-catalysts for water splitting featured. Appl. Phys. Lett. 112, 243901, 2018. [CrossRef]
- Slavney, A. H., Te Hu, Aaron M. Lindenberg, and Hemamala I. Karunadasa. . A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J. Am. Chem. Soc. 138, 2138−2141 (2016).
- al., K. e. HALIDE DOUBLE PEROVSKITE Cs2AgBiBr6 SOLAR-CELL ABSORBER HAVING LONG CARRIER LIFETIMES. US20170194101A1 (2017).
- Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nature Energy 2, 16207, https://www.nature.com/articles/nenergy2016207#supplementary-information (2017). [CrossRef]
- Dong, Q. et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> single crystals. Science 347, 967-970, 2015. [CrossRef]
- Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>. Science 342, 344-347, 2013. [CrossRef]
- Saparov, B. & Mitzi, D. B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chemical Reviews 116, 4558-4596, 2016. [CrossRef]
- Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316, https://www.nature.com/articles/nature12340#supplementary-information (2013). [CrossRef]
- Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (2019).
- Bhojak, V., Bhatia, D. & Jain, P. K. Investigation of photocurrent efficiency of Cs2TiBr6 double perovskite solar cell. Materials Today: Proceedings 66, 3692-3697. (2022). [CrossRef]
- Savory, C. N., Walsh, A. & Scanlon, D. O. Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? ACS Energy Lett 1, 949-955, 2016. [CrossRef]
- Pecunia, V., Occhipinti, L. G., Chakraborty, A., Pan, Y. & Peng, Y. Lead-free halide perovskite photovoltaics: Challenges, open questions, and opportunities. APL Materials 8, 2020. [CrossRef]
- S. Rühle. Phys. Status Solidi A, 1600955 (2017).
- R. Sheng, A. W. Y. H.-B., S. Huang, M. Keevers, X. Hao, L. Jiang, Y.-B Cheng, and M. A. Green, . J. Phys. Chem. Lett. 6, 3931-3934 (2015).
- Sani, F., Shafie, S., Lim, H. N. & Musa, A. O. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review. Materials (Basel) 11, 1008, 2018. [CrossRef]
- Filip, M. R. H., S.; Haghighirad, A. A.; Snaith, H. J.; Giustino, F. . Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment. J. Phys. Chem. Lett. 7, 2579−2585, 2016. [CrossRef]
- Igbari, F. et al. Composition Stoichiometry of Cs2AgBiBr6 Films for Highly Efficient Lead-Free Perovskite Solar Cells. Nano Letters 19, 2066-2073, 2019. [CrossRef]
- Bush, K. A. et al. Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation. ACS Energy Lett 3, 428-435, 2018. [CrossRef]
- Yang, J., Zhang, P. & Wei, S.-H. Band Structure Engineering of Cs2AgBiBr6 Perovskite through Order–Disordered Transition: A First-Principle Study. The Journal of Physical Chemistry Letters 9, 31-35, 2018. [CrossRef]
- Zhang, P., Yang, J. & Wei, S.-H. Manipulation of cation combinations and configurations of halide double perovskites for solar cell absorbers. Journal of Materials Chemistry A 6, 1809-1815, 2018. [CrossRef]
- Jongseob Kim1, H. K., Mahesh Chandran3, Seung-Cheol Lee3,a), Sang Hyuk Im4, and Ki-Ha Hong5,b). Impacts of cation ordering on bandgap dispersion of double perovskites. APL Materials 6, 084903 (2018).
- Liu, Z. et al. Solution-Processed Inorganic Perovskite Flexible Photodetectors with High Performance. Nanoscale Research Letters 14, 284, 2019. [CrossRef]
- Chilvery, A., Das, S., Guggilla, P., Brantley, C. & Sunda-Meya, A. A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and technology of advanced materials 17, 650-658, 2016. [CrossRef]
- Seo, J., Noh, J. H. & Seok, S. I. Rational Strategies for Efficient Perovskite Solar Cells. Acc. Chem. Res. 49, 562-572, 2016. [CrossRef]
- Arain, Z. et al. Elucidating the dynamics of solvent engineering for perovskite solar cells. Science China Materials 62, 161-172, 2019. [CrossRef]
- Li, J. et al. Optimization of anti-solvent engineering toward high performance perovskite solar cells. J. Mater. Res. 34, 2416-2424, 2019. [CrossRef]
- Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897-903, 2014. [CrossRef]
- Duan, J. et al. Inorganic perovskite solar cells: an emerging member of the photovoltaic community. Journal of Materials Chemistry A 7, 21036-21068, 2019. [CrossRef]
- Li, B. et al. Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies. Journal of Materials Chemistry A 7, 20494-20518, 2019. [CrossRef]
- Wang, P. et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications 9, 2225, 2018. [CrossRef]
- Chu, L. et al. Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications. Vol. 11 (2019).
- Volonakis, G. & Giustino, F. Surface properties of lead-free halide double perovskites: Possible visible-light photo-catalysts for water splitting. Vol. 112 (2018).
- DeHoff, R. T. Engineering of microstructures. Materials Research 2, 111-126 (1999).
- Clemens, H., Mayer, S. & Scheu, C. 1-20 (2017).
- Khalfin, S. & Bekenstein, Y. Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale 11, 8665-8679, 2019. [CrossRef]
- Szuromi, P. Microstructural Engineering of Materials. Science 277, 1183-1183, 1997. [CrossRef]
- Chen, L. et al. Tailoring properties of hybrid perovskites by domain-width engineering with charged walls. npj Computational Materials 4, 75, 2018. [CrossRef]
- Schade, L. et al. Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite. ACS Energy Letters 4, 299-305, 2019. [CrossRef]
- Lozhkina, O. A. et al. Microstructural analysis and optical properties of the halide double perovskite Cs2BiAgBr6 single crystals. Chem. Phys. Lett. 694, 18-22, 2018. [CrossRef]
- Wei Liu 1, Y. L., Ju Wang 1, Cuncun Wu 1, Congyue Liu 1, Lixin Xiao 1, Zhijian Chen 1, Shufeng Wang 1,2,* ID and Qihuang Gong 1,2. Twin Domains in Organometallic Halide Perovskite Thin-Films. Crystals 8, 216 (2018).
- Shi Liu, F. Z., Nathan Z. Koocher, Hiroyuki Takenaka, Fenggong Wang, and Andrew M. Rappe*. Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. J. Phys. Chem. Lett. 6, 693−699 (2015).
- You, L. et al. Enhancing ferroelectric photovoltaic effect by polar order engineering. Science Advances 4, eaat3438, 2018. [CrossRef]
- Lu You1*, F. Z., Liang Fang3*, Yang Zhou1, Liang Z. Tan2, Zeyu Zhang4, Guohong Ma4, Daniel Schmidt5‡, Andrivo Rusydi5, Le Wang1§, Lei Chang1, Andrew M. Rappe2¶, Junling Wang1¶. Enhancing ferroelectric photovoltaic effect by polar order engineering Sci. Adv. 4 (2018).
- Chen, B. et al. Interface band structure engineering by ferroelectric polarization in perovskite solar cells. Nano Energy 13, 582-591, 2015. [CrossRef]
- Du, K., Meng, W., Wang, X., Yan, Y. & B Mitzi, D. Bandgap Engineering of Lead-Free Double Perovskite Cs2AgBiBr6 through Trivalent Metal Alloying. (2017).
- Torkzadeh, S., Maghsoudipour, A., Khanlarkhani, A. & Tajabadi, F. Bandgap Engineering of Mixed-Halide Perovskites, A DFT Study. (2017).
- Roknuzzaman, M. et al. Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Scientific Reports 9, 718, 2019. [CrossRef]
- Li, Q. et al. High-Pressure Band-Gap Engineering in Lead-Free Cs <sub>2</sub> AgBiBr <sub>6</sub> Double Perovskite. Angewandte Chemie (International Edition), Medium: X; Size: p. 15969-15973 (2017).
- Shockley, W. Q., H. J. . Detailed Balance Limit of Efficiency of P-N Junction Solar Cells. . J. Appl. Phys. 32 (3), 510-511 (1961).
- Adam H. Slavney, a., °] Linn Leppert,[b ,°] Abraham Saldivar Valdes,[a] Davide Bartesaghi,[c,d] Tom J. Savenije,[c] Jeffrey B. Neaton,*[e, f, g] and Hemamala I. Karunadasa*[a]. Small-Bandgap Halide Double Perovskites. Angew. Chem. Int. Ed. 10.1002/anie.201807421 (2018).
- Walsh, A. Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites. The Journal of Physical Chemistry C 119, 5755-5760, 2015. [CrossRef]
- Ihtisham ul, h. et al. Bandgap reduction and efficiency enhancement in Cs2AgBiBr6 double perovskite solar cells through gallium substitution. RSC Advances 14, 5440-5448, 2024. [CrossRef]
- Yan, K. et al. Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Journal of the American Chemical Society 137, 4460-4468, 2015. [CrossRef]
- R. F. Berger and J. B. Neaton. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 165211 (2012).
- Mcclure, E. T. B., M. R.; Windl, W.; Woodward, P. M. . Cs2AgBiX6 (X = Br, Cl) -new visible light absorbing, lead-free halide perovskite semiconductors. . Chem. Mater. 6 2-4 (2016).
- Creutz, S. E., Crites, E. N., De Siena, M. C. & Gamelin, D. R. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials. Nano Lett. 18, 1118-1123, 2018. [CrossRef]
- Hou, P. et al. Precursor engineering for high-quality Cs2AgBiBr6 films toward efficient lead-free double perovskite solar cells. Journal of Materials Chemistry C 9, 9659-9669, 2021. [CrossRef]
- Kangsabanik, J., Sugathan, V., Yadav, A., Yella, A. & Alam, A. Double perovskites overtaking the single perovskites: A set of new solar harvesting materials with much higher stability and efficiency. Physical Review Materials 2, 055401, 2018. [CrossRef]
- Mohandes, A., Moradi, M. & Nadgaran, H. Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D. Optical and Quantum Electronics 53, 319, 2021. [CrossRef]
- D. Shi, V. A., R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, . Science 347, 519 (2015).
- W. Nie, H. T., R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, A. D. Mohite, . Science 347, 522 (2015).
- W. Zhang, G. E. E., H. J. Snaith, . Nat. Energy 1, 16048 (2016).
- H. Tan, A. J., O. Voznyy, X. Lan, F. P. García de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E. H. Sargent,. Science 355, 722 (2017).
- N. De Marco, H. Z., Q. Chen, P. Sun, Z. Liu, L. Meng, E. P. Yao, Y. Liu, A. Schiffer, Y. Yang, . Nano Lett. 16, 1009 (2016).
- D. Luo, W. Y., Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R. H. Friend, Q. Gong, H. J. Snaith, R. Zhu Science 360, 1442 (2018).
- L. Liu, S. H., Y. Lu, P. Liu, Y. Zhao, C. Shi, S. Zhang, J. Wu, H. Zhong, M. Sui, H. Zhou, H. Jin, Y. Li, Q. Chen,. Adv. Mater. 30, 1800544 (2018).
- Slavney, A. H. et al. Defect-Induced Band-Edge Reconstruction of a Bismuth-Halide Double Perovskite for Visible-Light Absorption. Journal of the American Chemical Society 139, 5015-5018, 2017. [CrossRef]
- Wang, F., Bai, S., Tress, W., Hagfeldt, A. & Gao, F. Defects engineering for high-performance perovskite solar cells. npj Flexible Electronics 2, 22, 2018. [CrossRef]
- Han, T.-H. et al. Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices. (2019).
- Jian Xu, J.-B. L., * Bai-Xin Liu, Jianfeng Wang, and Bing Huang. Defect Engineering of Grain Boundaries in Lead-Free Halide Double Perovskites for Better Optoelectronic Performance. Adv. Funct. Mater., 1805870 (2019).
- Ramamoorthy Ramesha, b., c,1. Defect engineering using crystal symmetry. PNAS vol. 115 (38), 9344-9346 (September 18, 2018 ).
- Samanta, M., Ahmed, S. I., Chattopadhyay, K. K. & Bose, C. Role of various transport layer and electrode materials in enhancing performance of stable environment-friendly Cs2TiBr6 solar cell. Optik 217, 164805, 2020. [CrossRef]
- He, Y., Xu, L., Zheng, H. & Guo, X. Numerical Exploration of Lead-Free Inorganic Perovskite Cs2TiBr6 Solar Cell. Journal of Physics: Conference Series 2021, 012069, 2021. [CrossRef]
- Jani, M. R. et al. Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: A numerical study. Superlattices and Microstructures 146, 106652, 2020. [CrossRef]
- Sultana, F., Jannat, F., Ahmed, S. & Alim, M. A. A comparative numerical approach between lead-free inorganic Cs2TiBr6 and Cs2PtI6-based perovskite solar cells. Results in Optics 13, 100567, 2023. [CrossRef]
- He, Y. et al. Defect Investigation of Ti-Based Vacancy-Ordered Double Perovskite Solar Cell using SCAPS-1D. Journal of Physics: Conference Series 2044, 012100, 2021. [CrossRef]
- Hussain, I. et al. Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials 1, 133-154, 2018. [CrossRef]
- Kopacic, I. et al. Enhanced Performance of Germanium Halide Perovskite Solar Cells through Compositional Engineering. Vol. 1 (2018).
- Song, Z., Watthage, S. C., Phillips, A. B. & Heben, M. J. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Vol. 6 (SPIE, 2016).
- E. Greul, M. L. P., A. Binek, P. Docampo, T. Bein, . J. Mater. Chem. A 5, 19972 (2017).
- J. Luo, S. L., H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, J. Tang,. ACS Photonics 5, 398 (2018).
- A. Karmakar, M. S. D., S. Agnihotri, E. Ravera, V. K. Michaelis, . Chem. Mater. 30, 8280 (2018).
- Locardi, F. et al. Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystals. Journal of the American Chemical Society 140, 12989-12995, 2018. [CrossRef]
- Luo, B. et al. B-Site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications. Journal of Materials Chemistry C 7, 2781-2808, 2019. [CrossRef]
- Zhang, X., Li, L., Sun, Z. & Luo, J. Rational chemical doping of metal halide perovskites. Chemical Society Reviews 48, 517-539, 2019. [CrossRef]
- Ye, T. et al. Enhanced Charge Carrier Transport and Device Performance Through Dual-Cesium Doping in Mixed-Cation Perovskite Solar Cells with Near Unity Free Carrier Ratios. ACS Applied Materials & Interfaces 9, 2358-2368, 2017. [CrossRef]
- Jun Zhou, X. R., Peng Zhang, Maxim S. Molokeev, Peijia Wei, Quanlin Liu, Xiuwen Zhang,* and Zhiguo Xia*. Manipulation of Bi3+/In3+ Transmutation and Mn2+-Doping Effect on the Structure and Optical Properties of Double Perovskite Cs2NaBi1-xInxCl6. Adv. Optical Mater., 1801435 (2019).
- Zhifang Tan, J. L., Cheng Zhang, Zha Li, Qingsong Hu, Zewen Xiao,* Toshio Kamiya, Hideo Hosono, Guangda Niu, Efrat Lifshitz, Yibing Cheng, and Jiang Tang*. Highly Efficient Blue-Emitting Bi-Doped Cs2SnCl6 Perovskite Variant: Photoluminescence Induced by Impurity Doping Adv. Funct. Mater., 1801131 (2018).
- K. Z. Du, W. M., X. Wang, Y. Yan, D. B. Mitzi, . Angew. Chem., Int. Ed. 56, 8158 (2017).
- T. T. Tran, J. R. P., J. R. Chamorro, J. R. Morey, T. M. McQueen, ;. Mater. Horiz. 4, 688 (2017).
- M. R. Filip, X. L., A. Miglio, G. Hautier, F. Giustino, . J. Phys. Chem. C 122, 158 (2018).
- F. Giustino, H. J. S. ACS Energy Lett. 1, 1233 (2016).
- Q. Sun, J. W., W. J. Yin, Y. Yan, . Adv. Mater. 30, 1705901 (2018).
- K.-z. Du, X. W., Q. Han, Y. Yan, D. B. Mitzi, . ACS Energy Lett. 2, 2486 (2017).
- Fridkin, V. M. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep. 46, 654-658 (2001).
- Peng Gao1, Heng-Jui Liu3, Yen-Lin Huang3, Ying-Hao Chu3,4, Ryo Ishikawa5, Bin Feng5, Ying Jiang2,6, Naoya Shibata5, En-Ge Wang2,6 & Yuichi Ikuhara5,7,8. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nat. Commun. 7, 11318 (2016).
- R. von Baltz, W. K. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590-5596 (1981).
- S. M. Young, A. M. R. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).
- S. M. Young, F. Z., A. M. Rappe First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. Phys. Rev. Lett. 109, 236601 (2012).
- Padinhare Cholakkal Harikesh, B. W., Biplab Ghosh, Rohit Abraham John, Stener Lie, Krishnamoorthy Thirumal, Lydia Helena Wong, Tze Chien Sum, Subodh Mhaisalkar, and Nripan Mathews*. Doping and Switchable Photovoltaic Effect in Lead-Free Perovskites Enabled by Metal Cation Transmutation. Adv. Mater., 1802080 (2018).
- D. Lee, S. H. B., T. H. Kim, J.-G. Yoon, C. M. Folkman, C. B. Eom, T. W. Noh, . Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B 84, 125305 (2011).
- Dai, X., Deng, Y., Van Brackle, C. H. & Huang, J. Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost solar panels. International Journal of Extreme Manufacturing 1, 022004, 2019. [CrossRef]
- Tiing, T. V. e. a. Octadecylamine-Functionalized Single-Walled Carbon Nanotubes for Facilitating the Formation of a Monolithic Perovskite Layer and Stable Solar Cells. . Adv. Funct. Mater. 28(10),, 1705545 (2018).
- Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry 52, 9019-9038, 2013. [CrossRef]
- Ponseca, C. S. et al. Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. Journal of American Chemical Society 136, 5189-5192, 2014. [CrossRef]
- Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 342, 344-347, 2013. [CrossRef]
- Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. Journal of American Chemical Society 134, 17396-17399, 2012. [CrossRef]
- Pham, H. Q., Holmes, R. J., Aydil, E. S. & Gagliardi, L. Lead-free double perovskites Cs2InCuCl6 and (CH3NH3)2InCuCl6: electronic, optical, and electrical properties. Nanoscale 11, 11173-11182, 2019. [CrossRef]
- Ankur Tayaa), P. R., and Manish K. Kashyap. Structural, electronic and optical studies of Pb-free halide double perovskite Cs2BiAgBr6; an mBJLDA approach. AIP Conf. Proc. 2093, 020028, 2019. [CrossRef]
- Zhang, Q. et al. Perovskite solar cells: must lead be replaced – and can it be done? Science and Technology of Advanced Materials 19, 425-442, 2018. [CrossRef]
- Wei, F. et al. Synthesis and Properties of a Lead-Free Hybrid Double Perovskite: (CH3NH3)2AgBiBr6. Chem.mater. 29, 1089-1094, 2017. [CrossRef]
- Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 6, 1739-1743, 2013. [CrossRef]
- Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897-903, http://www.nature.com/nmat/journal/v13/n9/abs/nmat4014.html#supplementary-information (2014). [CrossRef]
- Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316-319, http://www.nature.com/nature/journal/v499/n7458/abs/nature12340.html#supplementary-information (2013). [CrossRef]
- Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photon 8, 133-138, http://www.nature.com/nphoton/journal/v8/n2/abs/nphoton.2013.342.html#supplementary-information (2014). [CrossRef]
- Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 7, 982-988 (2014). [CrossRef]
- Hodes, G. Perovskite-Based Solar Cells. Science 342, 317-318, 2013. [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
