Submitted:
30 March 2024
Posted:
01 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and methods
3. Diabetic Burden and Its Impact on the Health and Economy of Ecuador
4. Medicinal Plants with Anti-Diabetic Potential Used in Traditional Medicine of Ecuador
5. Active Compounds of Ecuadorian Medicinal Plants and Their Anti-Diabetic Properties
6. Conclusion and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, J.C.N.; Lim, L.-L.; Wareham, N.J.; Shaw, J.E.; Orchard, T.J.; Zhang, P.; Lau, E.S.H.; Eliasson, B.; Kong, A.P.S.; Ezzati, M.; et al. The Lancet Commission on Diabetes: Using Data to Transform Diabetes Care and Patient Lives. The Lancet 2020, 396, 2019–2082. [Google Scholar] [CrossRef]
- Ighodaro, O.M. Molecular Pathways Associated with Oxidative Stress in Diabetes Mellitus. Biomed. Pharmacother. 2018, 108, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Luna, R.; Talanki Manjunatha, R.; Bollu, B.; Jhaveri, S.; Avanthika, C.; Reddy, N.; Saha, T.; Gandhi, F. A Comprehensive Review of Neuronal Changes in Diabetics. Cureus 2021. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Aschner, P.; Gagliardino, J.J.; Ilkova, H.; Lavalle, F.; Ramachandran, A.; Mbanya, J.C.; Shestakova, M.; Chantelot, J.-M.; Chan, J.C.N. Persistent Poor Glycaemic Control in Individuals with Type 2 Diabetes in Developing Countries: 12 Years of Real-World Evidence of the International Diabetes Management Practices Study (IDMPS). Diabetologia 2020, 63, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Home; Resources; diabetes, L. with; Acknowledgement; FAQs; Contact; Policy, P. IDF Diabetes Atlas.
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Censos, I.N. de E. y Instituto Nacional de Estadística y Censos » No se encontró la página. Available online: https://www.ecuadorencifras.gob.ec (accessed on 19 March 2024).
- Lucio, R.; Villacrés, N.; Henríquez, R. Sistema de salud de Ecuador. Salud Pública México 2011, 53. [Google Scholar]
- Lee, B.-W.; Kim, J.H.; Ko, S.-H.; Hur, K.-Y.; Kim, N.-H.; Rhee, S.Y.; Kim, H.J.; Moon, M.K.; Park, S.-O.; Choi, K.M. Insulin Therapy for Adult Patients with Type 2 Diabetes Mellitus: A Position Statement of the Korean Diabetes Association, 2017. Diabetes Metab. J. 2017, 41, 367–373. [Google Scholar] [CrossRef]
- Jeong, H.S.; Hong, S.J.; Cho, S.-A.; Kim, J.-H.; Cho, J.Y.; Lee, S.H.; Joo, H.J.; Park, J.H.; Yu, C.W.; Lim, D.-S. Comparison of Ticagrelor Versus Prasugrel for Inflammation, Vascular Function, and Circulating Endothelial Progenitor Cells in Diabetic Patients With Non-ST-Segment Elevation Acute Coronary Syndrome Requiring Coronary Stenting: A Prospective, Randomized, Crossover Trial. JACC Cardiovasc. Interv. 2017, 10, 1646–1658. [Google Scholar] [CrossRef]
- Rao, M.U.; Sreenivasulu, M.; Chengaiah, B.; Reddy, K.J.; Chetty, C.M. Herbal Medicines for Diabetes Mellitus: A Review.
- Brownlee, M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef]
- Dey, L.; Attele, A.S.; Yuan, C.-S. Alternative Therapies for Type 2 Diabetes. Altern. Med. Rev. J. Clin. Ther. 2002, 7, 45–58. [Google Scholar]
- Alam, F.; Islam, M.A.; Kamal, M.A.; Gan, S.H. Updates on Managing Type 2 Diabetes Mellitus with Natural Products: Towards Antidiabetic Drug Development. Curr. Med. Chem. 2018, 25, 5395–5431. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.; Yam, M.F.; Ahmad, M.; Yusof, A.P.M. Antidiabetic Properties and Mechanism of Action of Gynura Procumbens Water Extract in Streptozotocin-Induced Diabetic Rats. Mol. Basel Switz. 2010, 15, 9008–9023. [Google Scholar] [CrossRef] [PubMed]
- Jarald, E.; Joshi, S.; Jain, D. Diabetes and Herbal Medicines. Iran J Pharmocol Ther 2007, 7. [Google Scholar]
- Eidi, A.; Eidi, M.; Esmaeili, E. Antidiabetic Effect of Garlic (Allium Sativum L.) in Normal and Streptozotocin-Induced Diabetic Rats. Phytomedicine Int. J. Phytother. Phytopharm. 2006, 13, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Losso, J.N.; Holliday, D.L.; Finley, J.W.; Martin, R.J.; Rood, J.C.; Yu, Y.; Greenway, F.L. Fenugreek Bread: A Treatment for Diabetes Mellitus. J. Med. Food 2009, 12, 1046–1049. [Google Scholar] [CrossRef] [PubMed]
- Maaliah, M.S.; Haddadin, M.; Abdalla, S. Hypolipidemic and Hypoglycemic Effects of Silybum Marianum (L.) Gaertn.(Milk Thistle) Ethanol Seed Extract in Streptozotocin-Induced Diabetes in Rats. Pharmacogn. Mag. 2024, 09731296241231104. [Google Scholar] [CrossRef]
- Huseini, H.F.; Darvishzadeh, F.; Heshmat, R.; Jafariazar, Z.; Raza, M.; Larijani, B. The Clinical Investigation of Citrullus Colocynthis (L.) Schrad Fruit in Treatment of Type II Diabetic Patients: A Randomized, Double Blind, Placebo-Controlled Clinical Trial. Phytother. Res. PTR 2009, 23, 1186–1189. [Google Scholar] [CrossRef]
- Iranloye, B.O.; Arikawe, A.P.; Rotimi, G.; Sogbade, A.O. Anti-Diabetic and Anti-Oxidant Effects of Zingiber Officinale on Alloxan-Induced and Insulin-Resistant Diabetic Male Rats. Niger. J. Physiol. Sci. Off. Publ. Physiol. Soc. Niger. 2011, 26, 89–96. [Google Scholar]
- Armijos, C.; Ramirez, J.; Vidari, G. Poorly Investigated Ecuadorian Medicinal Plants. Plants 2022, 11, 1590. [Google Scholar] [CrossRef]
- Ojo, O.A.; Amanze, J.C.; Oni, A.I.; Grant, S.; Iyobhebhe, M.; Elebiyo, T.C.; Rotimi, D.; Asogwa, N.T.; Oyinloye, B.E.; Ajiboye, B.O.; et al. Antidiabetic Activity of Avocado Seeds (Persea Americana Mill.) in Diabetic Rats via Activation of PI3K/AKT Signaling Pathway. Sci. Rep. 2022, 12, 2919. [Google Scholar] [CrossRef] [PubMed]
- Al-Snafi, A. Glycyrrhiza Glabra: A Phytochemical and Pharmacological Review. 2018, 8.
- Fierro, X.J.; Riascos, S.O. In vitro hypoglycemic and antioxidant activities of some medicinal plants used in treatment of diabetes in southern Ecuador. AXIOMA 2018, 23–36. [Google Scholar]
- Ranilla, L.G.; Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Phenolic Compounds, Antioxidant Activity and in Vitro Inhibitory Potential against Key Enzymes Relevant for Hyperglycemia and Hypertension of Commonly Used Medicinal Plants, Herbs and Spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef]
- Afify, A.E.-M.M.R.; El-Beltagi, H.S.; Hammama, A.A.E.-A.; Sidky, M.M.; Mostafa, O.F.A. Distribution of Trans-Anethole and Estragole in Fennel (Foeniculum Vulgare Mill) of Callus Induced from Different Seedling Parts and Fruits. Not. Sci. Biol. 2011, 3, 79–86. [Google Scholar] [CrossRef]
- Salehi, B.; Ata, A.; V. Anil Kumar, N.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Valere Tsouh Fokou, P.; Kobarfard, F.; Amiruddin Zakaria, Z.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elshamy, A.I.; Elgorban, A.M.; Hassan, E.M.; Zaghloul, N.S.; Alamery, S.F.; El Gendy, A.E.-N.G.; Elhindi, K.M.; EI-Amier, Y.A. Essential Oil of Ipomoea Carnea: Chemical Profile, Chemometric Analysis, Free Radical Scavenging, and Antibacterial Activities. Sustainability 2022, 14, 9504. [Google Scholar] [CrossRef]
- Olasunkanmi, A.M.; Ogunyemi, O. PHYTOCHEMICAL CONSTITUENTS AND ANTIOXIDANT ACTIVITY OF PERSEA AMERICANA LEAVE. Int. J. Chem. Res. 2023, 1–4. [Google Scholar] [CrossRef]
- Herrera-Feijoo, R.J.; morocho, L.; Vinueza, D.; Lopez-Tobar, R.; Chicaiza-Ortiz, C. Use of Medicinal Plants According to the Ancestral Knowledge of the Indigenous People of the Yacuambi Canton, Zamora Chinchipe-Ecuador. Green World J. 2023, 06, 63. [Google Scholar] [CrossRef]
- WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. Available online: https://www.who.int/publications-detail-redirect/9789241594448 (accessed on 22 March 2024).
- Sánchez, L.; Kvist, Z.; Aguirre; Sanchez, O.; Kvist, L.; Aguirre, Z.; Editores, M.; Moraes, R.; Øllgaard, B.; Borchsenius, F.; et al. Bosques Secos En Ecuador y Sus Plantas Útiles. Botánica Económica Los Andes Cent. 2006. [Google Scholar]
- Maleki, V.; Jafari-Vayghan, H.; Saleh-Ghadimi, S.; Adibian, M.; Kheirouri, S.; Alizadeh, M. Effects of Royal Jelly on Metabolic Variables in Diabetes Mellitus: A Systematic Review. Complement. Ther. Med. 2019, 43, 20–27. [Google Scholar] [CrossRef]
- Belwal, T.; Bisht, A.; Devkota, H.P.; Ullah, H.; Khan, H.; Pandey, A.; Bhatt, I.D.; Echeverría, J. Phytopharmacology and Clinical Updates of Berberis Species Against Diabetes and Other Metabolic Diseases. Front. Pharmacol. 2020, 11, 41. [Google Scholar] [CrossRef]
- Valdés, S.; Botas, P.; Delgado, E.; Alvarez, F.; Cadórniga, F.D. Population-Based Incidence of Type 2 Diabetes in Northern Spain: The Asturias Study. Diabetes Care 2007, 30, 2258–2263. [Google Scholar] [CrossRef] [PubMed]
- Koulis, C.; Watson, A.M.D.; Gray, S.P.; Jandeleit-Dahm, K.A. Linking RAGE and Nox in Diabetic Micro- and Macrovascular Complications. Diabetes Metab. 2015, 41, 272–281. [Google Scholar] [CrossRef]
- Yeung, S.; Soliternik, J.; Mazzola, N. Nutritional Supplements for the Prevention of Diabetes Mellitus and Its Complications. J. Nutr. Intermed. Metab. 2018, 14, 16–21. [Google Scholar] [CrossRef]
- Diabetes. Available online: https://www.who.int/health-topics/diabetes (accessed on 23 March 2024).
- Facts & Figures. Available online: https://idf.org/about-diabetes/diabetes-facts-figures/ (accessed on 23 March 2024).
- Global Diabetes Cases to Soar from 529 Million to 1.3 Billion by 2050 | Institute for Health Metrics and Evaluation. Available online: https://www.healthdata.org/news-events/newsroom/news-releases/global-diabetes-cases-soar-529-million-13-billion-2050 (accessed on 6 March 2024).
- Freire, W.B.; Silva-Jaramillo, K.M.; Ramírez-Luzuriaga, M.J.; Belmont, P.; Waters, W.F. The Double Burden of Undernutrition and Excess Body Weight in Ecuador. Am. J. Clin. Nutr. 2014, 100, 1636S–43S. [Google Scholar] [CrossRef] [PubMed]
- Villacres, T. IDF2022-0851 Direct Standardized Cost of Diabetes in Ecuador. Diabetes Res. Clin. Pract. 2023, 197. [Google Scholar] [CrossRef]
- Tripathy, D.; Schwenke, D.C.; Banerji, M.; Bray, G.A.; Buchanan, T.A.; Clement, S.C.; Henry, R.R.; Kitabchi, A.E.; Mudaliar, S.; Ratner, R.E.; et al. Diabetes Incidence and Glucose Tolerance after Termination of Pioglitazone Therapy: Results from ACT NOW. J. Clin. Endocrinol. Metab. 2016, 101, 2056–2062. [Google Scholar] [CrossRef]
- Chikhi, I.; Allali, H.; Dib, M.E.A.; Medjdoub, H.; Tabti, B. Antidiabetic Activity of Aqueous Leaf Extract of Atriplex Halimus L. (Chenopodiaceae) in Streptozotocin-Induced Diabetic Rats. Asian Pac. J. Trop. Dis. 2014, 4, 181–184. [Google Scholar] [CrossRef]
- Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Paul, A. Devasagayam, T. Indian Herbs and Herbal Drugs Used for the Treatment of Diabetes. J. Clin. Biochem. Nutr. 2007, 40, 163–173. [Google Scholar] [CrossRef]
- Awasthi, A.; Parween, N.; Singh, V.; Anwar, A.; Prasad, B.; Kumar, J. Diabetes: Symptoms, Cause and Potential Natural Therapeutic Methods. Adv. Diabetes Metab. 2016, 4, 10–23. [Google Scholar] [CrossRef]
- Bibi, T.; Ahmad, M.; Bakhsh Tareen, R.; Mohammad Tareen, N.; Jabeen, R.; Rehman, S.-U.; Sultana, S.; Zafar, M.; Yaseen, G. Ethnobotany of Medicinal Plants in District Mastung of Balochistan Province-Pakistan. J. Ethnopharmacol. 2014, 157, 79–89. [Google Scholar] [CrossRef]
- Pekova, L.; Ziarovska, J.; Fernández, E. Medicinal Plants with Antidiabetic Activity Used in the Traditional Medicine in Bolivia: A Review. Boletin Latinoam. Caribe Plantas Med. Aromat. 2023, 22, 417–430. [Google Scholar] [CrossRef]
- Tene, V.; Malagón, O.; Finzi, P.V.; Vidari, G.; Armijos, C.; Zaragoza, T. An Ethnobotanical Survey of Medicinal Plants Used in Loja and Zamora-Chinchipe, Ecuador. J. Ethnopharmacol. 2007, 111, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Rante, H.; Alam, G.; Irwan, M. α –Glucosidase Inhibitory Activity of Breadfruit Leaf Extract (Artocarpus Altilis (Parkinson) Fosberg). J. Phys. Conf. Ser. 2019, 1341, 072015. [Google Scholar] [CrossRef]
- Hennig, L.; Malca Garcia, G.R.; Giannis, A.; Bussmann, R. New Constituents of Baccharis Genistelloides (Lam.). Pers. Arch. Org. Chem. 2010; IV, 74–82. [Google Scholar]
- Nahar, L.; Nasrin, F.; Zahan, R.; Haque, A.; Haque, E.; Mosaddik, A. Comparative Study of Antidiabetic Activity of Cajanus Cajan and Tamarindus Indica in Alloxan-Induced Diabetic Mice with a Reference to in Vitro Antioxidant Activity. Pharmacogn. Res. 2014, 6, 180–187. [Google Scholar] [CrossRef]
- Pino, J.A.; Terán-Portelles, E.C.; Hernández, I.; Rodeiro, I.; Fernández, M.D. Chemical Composition of the Essential Oil from Croton Wagneri Müll. Arg. (Euphorbiaceae) Grown in Ecuador. J. Essent. Oil Res. 2018, 30, 347–352. [Google Scholar] [CrossRef]
- Jadid, N.; Widodo, A.; Ermavitalini, D.; Sa’adah, N.; Gunawan, S.; Nisa, C. The Medicinal Umbelliferae Plant Fennel (Foeniculum Vulgare Mill.): Cultivation, Traditional Uses, Phytopharmacological Properties, and Application in Animal Husbandry. Arab. J. Chem. 2023, 16, 104541. [Google Scholar] [CrossRef]
- El-Ouady, F.; Lahrach, N.; Ajebli, M.; Haidani, A.E.; Eddouks, M. Antihyperglycemic Effect of the Aqueous Extract of Foeniculum Vulgare in Normal and Streptozotocin-Induced Diabetic Rats. Cardiovasc. Hematol. Disord. Drug Targets. 2020, 20, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H. Glycyrrhiza Glabra: A Phytopharmacological Review’, International Journal of Pharmaceutical Sciences and Research’, R. Kaur and H.P.Kaur, 2013, 4(7), 2470-2477. Int. J. Pharm. Sci. Res. 2013, 4, 2470–2477. [Google Scholar] [CrossRef]
- Zambrano-Intriago, L.F.; Buenaño-Allauca, M.P.; Mancera-Rodríguez, N.J.; Jiménez-Romero, E. Estudio etnobotánico de plantas medicinales utilizadas por los habitantes del área rural de la Parroquia San Carlos, Quevedo, Ecuador. Univ. Salud 2015, 17, 97–111. [Google Scholar]
- Dueñas, J.F.; Jarrett, C.; Cummins, I.; Logan–Hines, E. Amazonian Guayusa (Ilex Guayusa Loes.): A Historical and Ethnobotanical Overview. Econ. Bot. 2016, 70, 85–91. [Google Scholar] [CrossRef]
- Khan, T.; Raina, R.; Verma, P.; Sultana, M.; Jyoti, M. Phytochemical Constituents and Antidiabetic Potential of Ipomoea Carnea Jacq Leaves Extracts. J. Exp. Integr. Med. 2014, 2014, 137–142. [Google Scholar] [CrossRef]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria Chamomilla L.): An Overview. Pharmacogn. Rev. 2011, 5, 82–95. [Google Scholar] [CrossRef]
- Fernández Cusimamani, E.; Espinel Jara, V.M.; Gordillo Alarcón, S.; Castillo Andrade, R.E.; Žiarovská, J.; Zepeda del Valle, J.M. Estudio etnobotánico de plantas medicinales utilizadas en tres cantones de la provincia Imbabura, Ecuador. Agrociencia 2019, 53, 797–810. [Google Scholar]
- Cemek, M.; Kağa, S.; Simşek, N.; Büyükokuroğlu, M.E.; Konuk, M. Antihyperglycemic and Antioxidative Potential of Matricaria Chamomilla L. in Streptozotocin-Induced Diabetic Rats. J. Nat. Med. 2008, 62, 284–293. [Google Scholar] [CrossRef]
- Vinueza, D.; Yanza, K.; Tacchini, M.; Grandini, A.; Sacchetti, G.; Chiurato, M.A.; Guerrini, A. Flavonoids in Ecuadorian Oreocallis Grandiflora (Lam.) R. Br.: Perspectives of Use of This Species as a Food Supplement. Evid. Based Complement. Alternat. Med. 2018, 2018, e1353129. [Google Scholar] [CrossRef]
- Ennaifer, M.; Bouzaiene, T.; Chouaibi, M.; Hamdi, M. Pelargonium Graveolens Aqueous Decoction: A New Water-Soluble Polysaccharide and Antioxidant-Rich Extract. BioMed Res. Int. 2018, 2018, e2691513. [Google Scholar] [CrossRef]
- Javed Ahamad; Subasini Uthirapathy Chemical Characterization and Antidiabetic Activity of Essential Oils from Pelargonium Graveolens Leaves. ARO- Sci. J. KOYA Univ. 2021, 9, 109–113. [CrossRef]
- Abd Elkader, A.M.; Labib, S.; Taha, T.F.; Althobaiti, F.; Aldhahrani, A.; Salem, H.M.; Saad, A.; Ibrahim, F.M. Phytogenic Compounds from Avocado (Persea Americana L.) Extracts; Antioxidant Activity, Amylase Inhibitory Activity, Therapeutic Potential of Type 2 Diabetes. Saudi J. Biol. Sci. 2022, 29, 1428–1433. [Google Scholar] [CrossRef]
- Ezzat, S.M.; Abdallah, H.M.I.; Yassen, N.N.; Radwan, R.A.; Mostafa, E.S.; Salama, M.M.; Salem, M.A. Phenolics from Physalis Peruviana Fruits Ameliorate Streptozotocin-Induced Diabetes and Diabetic Nephropathy in Rats via Induction of Autophagy and Apoptosis Regression. Biomed. Pharmacother. Biomedecine Pharmacother. 2021, 142, 111948. [Google Scholar] [CrossRef]
- Kasali, F.M.; Kadima, J.N.; Mpiana, P.T.; Ngbolua, K.-N.; Tshibangu, D.S.-T. Assessment of Antidiabetic Activity and Acute Toxicity of Leaf Extracts from Physalis Peruviana L. in Guinea-Pig. Asian Pac. J. Trop. Biomed. 2013, 3, 841–846. [Google Scholar] [CrossRef]
- Gomes, E.N.; Krinski, D. Piper Crassinervium Kunth Vegetative Propagation: Influence of Substrates and Stem Cuttings Positions. Appl. Res. Agrotechnology 2018, 11, 51–59. [Google Scholar] [CrossRef]
- Asgarpanah, J.; R, K. Phytochemistry and Pharmacological Properties of Ruta Graveolens L. J. Med. Plants Res. 2012, 6. [Google Scholar] [CrossRef]
- Ardeshirlarijani, E.; Namazi, N.; Jalili, R.; Saeedi, M.; Imanparast, S.; Adhami, H.; Faramarzi, M.; Ayati, M.; Mahdavi, M.; Larijani, B. Potential Anti-Obesity Effects of Some Medicinal Herb: In Vitro α-Amylase, α-Glucosidase and Lipase Inhibitory Activity.; August 10 2019.
- Ruiz, S.; Malagón, O.; Zaragoza, T.; Valarezo, E. Composition of the Essential Oils of Artemisia Sodiroi Hieron., Siparuna Eggersii Hieron., Tagetes Filifolia Lag. and Clinopodium Nubigenum (Kunth) Kuntze from Loja Ecuador. J. Essent. Oil Bear. Plants 2010, 13, 676–691. [Google Scholar] [CrossRef]
- Tatke, P.; Waghmare, R. Chapter 16 - Antidiabetic Plants with Insulin Mimetic Activity. In Antidiabetic Medicinal Plants; Naeem, M., Aftab, T., Eds.; Academic Press, 2024; pp. 491–513. [Google Scholar]
- Samakar, B.; Mehri, S.; Hosseinzadeh, H. A Review of the Effects of Urtica Dioica (Nettle) in Metabolic Syndrome. Iran. J. Basic Med. Sci. 2022, 25, 543–553. [Google Scholar] [CrossRef]
- Bnouham, M.; Merhfour, F.-Z.; Ziyyat, A.; Mekhfi, H.; Aziz, M.; Legssyer, A. Antihyperglycemic Activity of the Aqueous Extract of Urtica Dioica. Fitoterapia 2003, 74, 677–681. [Google Scholar] [CrossRef]
- Braga, V.F.; Mendes, G.C.; Oliveira, R.T.R.; Soares, C.Q.G.; Resende, C.F.; Pinto, L.C.; Santana, R. de; Viccini, L.F.; Raposo, N.R.B.; Peixoto, P.H.P. Micropropagation, Antinociceptive and Antioxidant Activities of Extracts of Verbena Litoralis Kunth (Verbenaceae). An. Acad. Bras. Ciênc. 2012, 84, 139–148. [Google Scholar] [CrossRef]
- García-Pérez, P.; Lozano-Milo, E.; Landin, M.; Gallego, P.P. From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum Sp. Pharmaceuticals 2020, 13, 444. [Google Scholar] [CrossRef]
- Gallegos-Zurita, M. Las Plantas Medicinales: Principal Alternativa Para El Cuidado de La Salud, En La Población Rural de Babahoyo, Ecuador. An. Fac. Med. 2016, 77, 327–332. [Google Scholar] [CrossRef]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for Human Disease: An Update on Plant-Derived Compounds Antibacterial Activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Bansal, A.; Priyadarsini, C. Medicinal Properties of Phytochemicals and Their Production. 2022. [Google Scholar] [CrossRef]
- Alqudah, A.; Athamneh, R.Y.; Qnais, E.; Gammoh, O.; Oqal, M.; AbuDalo, R.; Alshaikh, H.A.; AL-Hashimi, N.; Alqudah, M. The Emerging Importance of Cirsimaritin in Type 2 Diabetes Treatment. Int. J. Mol. Sci. 2023, 24, 5749. [Google Scholar] [CrossRef]
- Escandón-Rivera, S.M.; Andrade-Cetto, A.; Sánchez-Villaseñor, G. Phytochemical Composition and Chronic Hypoglycemic Effect of Bromelia Karatas on STZ-NA-Induced Diabetic Rats. Evid. Based Complement. Alternat. Med. 2019, 2019, e9276953. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, A.; Alkhalidy, H.; Luo, J.; Moomaw, E.; Neilson, A.P.; Liu, D. Flavone Hispidulin Stimulates Glucagon-Like Peptide-1 Secretion and Ameliorates Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Mol. Nutr. Food Res. 2020, 64, 1900978. [Google Scholar] [CrossRef]
- Muhammad, A.J.; Muhammad, M.; Yunusa, A.; Mikail, T.A.; Dalhatu, M.M.; Habib, I.Y.; Sarki, S.I.; Gwarzo, M.S.; Muhammad, N.A.; Mustapha, R.K. Determination of Antioxidant and α–Amylase Inhibition Properties of Alligator.
- Pepper (Aframomum Melegueta): A Potential Therapeutic Against Diabetes Mellitus. EAS J. Pharm. Pharmacol. 2022, 4, 43–42. [CrossRef]
- Ihim, S.A.; Kaneko, Y.K.; Yamamoto, M.; Yamaguchi, M.; Kimura, T.; Ishikawa, T. Apigenin Alleviates Endoplasmic Reticulum Stress-Mediated Apoptosis in INS-1 β-Cells. Biol. Pharm. Bull. 2023, 46, 630–635. [Google Scholar] [CrossRef]
- Pal, D.; Mishra, P.; Sachan, N.; Ghosh, A.K. Biological Activities and Medicinal Properties of Cajanus Cajan (L) Millsp. J. Adv. Pharm. Technol. Res. 2011, 2, 207–214. [Google Scholar] [CrossRef]
- Villacís-Chiriboga, J.; García-Ruiz, A.; Baenas, N.; Moreno, D.A.; Meléndez-Martínez, A.J.; Stinco, C.M.; Jerves-Andrade, L.; León-Tamariz, F.; Ortiz-Ulloa, J.; Ruales, J. Changes in Phytochemical Composition, Bioactivity and in Vitro Digestibility of Guayusa Leaves (Ilex Guayusa Loes.) in Different Ripening Stages. J. Sci. Food Agric. 2018, 98, 1927–1934. [Google Scholar] [CrossRef]
- Vinueza, D.; Yanza, K.; Tacchini, M.; Grandini, A.; Sacchetti, G.; Chiurato, M.A.; Guerrini, A. Flavonoids in Ecuadorian Oreocallis Grandiflora (Lam.) R. Br.: Perspectives of Use of This Species as a Food Supplement. Evid. Based Complement. Alternat. Med. 2018, 2018, e1353129. [Google Scholar] [CrossRef]
- Dzamic, A.; Soković, M.; Ristić, M.; Grujić, S.; Mileski, K.; Marin, P. Chemical Composition, Antifungal and Antioxidant Activity of Pelargonium Graveolens Essential Oil ARTICLE INFO ABSTRACT. J. Appl. Pharm. Sci. 2014, 4, 1–5. [Google Scholar] [CrossRef]
- Lima, R.D.; Brondani, J.C.; Dornelles, R.C.; Lhamas, C.L.; Faccin, H.; Silva, C.V.; Dalmora, S.L.; Manfron, M.P. Anti-Inflammatory Activity and Identification of the Verbena Litoralis Kunth Crude Extract Constituents. Braz. J. Pharm. Sci. 2020, 56, e17419. [Google Scholar] [CrossRef]
- Deka, H.; Choudhury, A.; Dey, B.K. An Overview on Plant Derived Phenolic Compounds and Their Role in Treatment and Management of Diabetes. J. Pharmacopuncture 2022, 25, 199–208. [Google Scholar] [CrossRef]
- Setyawan, H.; Sukardi, S.; Puriwangi, C. Phytochemicals Properties of Avocado Seed: A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012090. [Google Scholar] [CrossRef]
- Sikarwar, M.; Hui, B.; Subramaniam, K.; Valeisamy, B.; Yean, L.; Balaji, K. A Review on Artocarpus Altilis (Parkinson) Fosberg (Breadfruit). J. Appl. Pharm. Sci. 2014, 4, 91–97. [Google Scholar] [CrossRef]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A.; et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13. [Google Scholar] [CrossRef]
- Amalan, V.; Vijayakumar, N.; Indumathi, D.; Ramakrishnan, A. Antidiabetic and Antihyperlipidemic Activity of p-Coumaric Acid in Diabetic Rats, Role of Pancreatic GLUT 2: In Vivo Approach. Biomed. Pharmacother. 2016, 84, 230–236. [Google Scholar] [CrossRef]
- Narasimhan, A.; Chinnaiyan, M.; Karundevi, B. Ferulic Acid Regulates Hepatic GLUT2 Gene Expression in High Fat and Fructose-Induced Type-2 Diabetic Adult Male Rat. Eur. J. Pharmacol. 2015, 761, 391–397. [Google Scholar] [CrossRef]
- Jung, U.J.; Lee, M.-K.; Park, Y.B.; Jeon, S.-M.; Choi, M.-S. Antihyperglycemic and Antioxidant Properties of Caffeic Acid in Db/Db Mice. J. Pharmacol. Exp. Ther. 2006, 318, 476–483. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, A.; Singh, H.; Kaur, S.; Arora, S.; Singh, B. Protective Effect of Vanillic Acid against Diabetes and Diabetic Nephropathy by Attenuating Oxidative Stress and Upregulation of NF-κB, TNF-α and COX-2 Proteins in Rats. Phytother. Res. 2022, 36, 1338–1352. [Google Scholar] [CrossRef]
- Putta, S.; Yarla, N.S.; Kilari, E.K.; Surekha, C.; Aliev, G.; Divakara, M.B.; Santosh, M.S.; Ramu, R.; Zameer, F.; Mn, N.P.; et al. Therapeutic Potentials of Triterpenes in Diabetes and Its Associated Complications. Curr. Top. Med. Chem. 2016, 16, 2532–2542. [Google Scholar] [CrossRef]
- Peng, W.; Li, P.; Ling, R.; Wang, Z.; Feng, X.; Liu, J.; Yang, Q.; Yan, J. Diversity of Volatile Compounds in Ten Varieties of Zingiberaceae. Mol. Basel Switz. 2022, 27, 565. [Google Scholar] [CrossRef]
- Diao, W.-R.; Hu, Q.-P.; Zhang, H.; Xu, J.-G. Chemical Composition, Antibacterial Activity and Mechanism of Action of Essential Oil from Seeds of Fennel (Foeniculum Vulgare Mill.). Food Control 2014, 35, 109–116. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; El-Mleeh, A.M.; Abdel-Daim, M.; Prasad Devkota, H. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza Glabra L. (Fabaceae). Biomolecules 2020, 10, 352. [Google Scholar] [CrossRef]
- Pereira, R.; Pereira, A.L.; Ferreira, M.M.; Fontenelle, R.O.S.; Saker-Sampaio, S.; Santos, H.S.; Bandeira, P.N.; Vasconcelos, M.A.; Queiroz, J. a. N.; Braz-Filho, R.; et al. Evaluation of the Antimicrobial and Antioxidant Activity of 7-Hydroxy-4′, 6-Dimethoxy-Isoflavone and Essential Oil from Myroxylon Peruiferum L.f. An. Acad. Bras. Ciênc. 2019, 91, e20180204. [Google Scholar] [CrossRef]
- Popova, V.T.; Ivanova, T.A.; Stoyanova, M.A.; Mazova, N.N.; Panayotov, N.D.; Stoyanova, A.S. The Leaves and Stems of Cape Gooseberry (Physalis Peruviana L.) as an Alternative Source of Bioactive Substances. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1031, 012094. [Google Scholar] [CrossRef]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J. Chemical Composition, Antioxidant and Antimicrobial Activity of Chamomile Flowers Essential Oil ( Matricaria Chamomilla L.). J. Essent. Oil Bear. Plants 2016, 19, 2017–2028. [Google Scholar] [CrossRef]
- Morandim, A.D.A.; Pin, A.R.; Pietro, N. a. S.; Alecio, A.C.; Kato, M.J.; Young, C.M.; Oliveira, J. de; Furlan, M. Composition and Screening of Antifungal Activity against Cladosporium Sphaerospermum and Cladosporium Cladosporioides of Essential Oils of Leaves and Fruits of Piper Species. Afr. J. Biotechnol. 2010, 9, 6135–6139. [Google Scholar]
- Gül, S.; Demirci, B.; Başer, K.H.C.; Akpulat, H.A.; Aksu, P. Chemical Composition and in Vitro Cytotoxic, Genotoxic Effects of Essential Oil from Urtica Dioica L. Bull. Environ. Contam. Toxicol. 2012, 88, 666–671. [Google Scholar] [CrossRef]
- Savych, A.; Marchyshyn, S.; Basaraba, R. Determination of Fatty Acid Composition Content in the Herbal Antidiabetic Collections. Pharmacia 2020, 67, 153–159. [Google Scholar] [CrossRef]
- Sen, A.; Kurkcuoglu, M.; Senkardes, I.; Bitis, L.; Baser, K.H.C. Chemical Composition, Antidiabetic, Anti-Inflammatory and Antioxidant Activity of Inula Ensifolia L. Essential Oil. J. Essent. Oil Bear. Plants 2019, 22, 1048–1057. [Google Scholar] [CrossRef]
- Alex, E.; Augustine Dubo, B.; Ejiogu, D.; Iyomo, K.; Jerome, K.; Aisha, N.; Daikwo, A.; Yahaya, J.; Osiyemi, R. Evaluation of Oral Administration of Lauric Acid Supplement on Fasting Blood Glucose Level and Pancreatic Histomorphological Studies in High Fat Diet/ Streptozotocin-Induced Type 2 Diabetic Male Wistar Rats. J. Diabetes Metab. 2022, 11, 849. [Google Scholar] [CrossRef]
- Natta, S.; Pal, K.; Kumar Alam, B.; Mondal, D.; Kumar Dutta, S.; Sahana, N.; Mandal, S.; Bhowmick, N.; Sankar Das, S.; Mondal, P.; et al. In-Depth Evaluation of Nutritive, Chemical Constituents and Anti-Glycemic Properties of Jackfruit (Artocarpus Heterophyllus Lam) Clonal Accessions with Flake Colour Diversity from Eastern Sub-Himalayan Plains of India. Food Chem. 2023, 407, 135098. [Google Scholar] [CrossRef]
- Samadi-Noshahr, Z.; Ebrahimzadeh-Bideskan, A.; Hadjzadeh, M.-A.-R.; Shafei, M.N.; Salmani, H.; Hosseinian, S.; Khajavi-Rad, A. Trans-Anethole Attenuated Renal Injury and Reduced Expressions of Angiotensin II Receptor (AT1R) and TGF-β in Streptozotocin-Induced Diabetic Rats. Biochimie 2021, 185, 117–127. [Google Scholar] [CrossRef]
- Noor, Z.I.; Ahmed, D.; Rehman, H.M.; Qamar, M.T.; Froeyen, M.; Ahmad, S.; Mirza, M.U. In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum Basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes. Biology 2019, 8, 92. [Google Scholar] [CrossRef]
- Yagi, S.; Mohammed, A.B.A.; Tzanova, T.; Schohn, H.; Abdelgadir, H.; Stefanucci, A.; Mollica, A.; Zengin, G. Chemical Profile, Antiproliferative, Antioxidant, and Enzyme Inhibition Activities and Docking Studies of Cymbopogon Schoenanthus (L.) Spreng. and Cymbopogon Nervatus (Hochst. ) Chiov. from Sudan. J. Food Biochem. 2020, 44, e13107. [Google Scholar] [CrossRef]
- Mohamed, S.; Sokkar, N.; El-Gindi, O.; Ali, Z.; Alfishawy, I.M. Phytoconstituents Investigation, Anti-Diabetic and Anti-Dyslipidemic Activities of Cotoneaster Horizontalis Decne Cultivated in Egypt. Life Sci. J. 2013, 10, 620–630. [Google Scholar]
- Valverde - Rodríguez, J.X.; Jumbo – Benítez, N.del C.; Fernández – Guarnizo, P.V.; González Rogel, J.B.; Iñiguez – Ordoñez, D.P.; Pucha – Cofrep, D.A. Chemical Composition of the Wood of Juglans Neotropica Diels., and Its Relationship with the Chemical Properties of the Soil in Valladolid Parish, Zamora Chinchipe Province, Ecuador. 2020.
- Maheri, H.; Hashemzadeh, F.; Shakibapour, N.; Kamelniya, E.; Malaekeh-nikouei, B.; Mokabberi, P.; Chamani, J. Glucokinase Activity Enhancement by Cellulose Nanocrystals Isolated from Jujube Seed: A Novel Perspective for Type II Diabetes Mellitus Treatment (In Vitro). J. Mol. Struct. 2022, 1269, 133803. [Google Scholar] [CrossRef]
- Barapatre, A.; Aadil, K.R.; Tiwary, B.N.; Jha, H. In Vitro Antioxidant and Antidiabetic Activities of Biomodified Lignin from Acacia Nilotica Wood. Int. J. Biol. Macromol. 2015, 75, 81–89. [Google Scholar] [CrossRef]
- Jung, H.A.; Ali, M.Y.; Choi, J.S. Promising Inhibitory Effects of Anthraquinones, Naphthopyrone, and Naphthalene Glycosides, from Cassia Obtusifolia on α-Glucosidase and Human Protein Tyrosine Phosphatases 1B. Mol. J. Synth. Chem. Nat. Prod. Chem. 2016, 22, 28. [Google Scholar] [CrossRef]
- Diabetes. Available online: https://www.who.int/health-topics/diabetes (accessed on 23 March 2024).
- Home; Resources; diabetes, L. with; Acknowledgement; FAQs; Contact; Policy, P. 6th Edition | IDF Diabetes Atlas.
- Andrade, J.M.; Lucero Mosquera, H.; Armijos, C. Ethnobotany of Indigenous Saraguros: Medicinal Plants Used by Community Healers “Hampiyachakkuna” in the San Lucas Parish, Southern Ecuador. BioMed Res. Int. 2017, 2017, e9343724. [Google Scholar] [CrossRef]
- Dueñas, J.F.; Jarrett, C.; Cummins, I.; Logan–Hines, E. Amazonian Guayusa (Ilex Guayusa Loes.): A Historical and Ethnobotanical Overview. Econ. Bot. 2016, 70, 85–91. [Google Scholar] [CrossRef]
- Aguirre Mendoza, Z.; Yaguana Puglla, C.; Merino. Bolivar Plantas medicinales: de la zona andina de la provincia de Loja; Primera edición; Universidad Nacional de Loja: Loja, Ecuador, 2014; ISBN 978-9978-355-27-5. [Google Scholar]
- Dabas, D.; Shegog, R.M.; Ziegler, G.R.; Lambert, J.D. Avocado (Persea Americana) Seed as a Source of Bioactive Phytochemicals. Curr. Pharm. Des. 2013, 19, 6133–6140. [Google Scholar] [CrossRef]
- Mehri, A.; Hasani-Ranjbar, S.; Larijani, B.; Abdollahi, M. A Systematic Review of Efficacy and Safety of Urtica Dioica in the Treatment of Diabetes. Int. J. Pharmacol. 2011, 7, 161–170. [Google Scholar] [CrossRef]
- Fatima, N.; Hafizur, R.M.; Hameed, A.; Ahmed, S.; Nisar, M.; Kabir, N. Ellagic Acid in Emblica Officinalis Exerts Anti-Diabetic Activity through the Action on β-Cells of Pancreas. Eur. J. Nutr. 2017, 56, 591–601. [Google Scholar] [CrossRef]
- Sok Yen, F.; Shu Qin, C.; Tan Shi Xuan, S.; Jia Ying, P.; Yi Le, H.; Darmarajan, T.; Gunasekaran, B.; Salvamani, S. Hypoglycemic Effects of Plant Flavonoids: A Review. Evid.-Based Complement. Altern. Med. ECAM 2021, 2021, 2057333. [Google Scholar] [CrossRef]
- Birgani, G.A.; Ahangarpour, A.; Khorsandi, L.; Moghaddam, H.F. Anti-Diabetic Effect of Betulinic Acid on Streptozotocin-Nicotinamide Induced Diabetic Male Mouse Model. Braz. J. Pharm. Sci. 2018, 54, e17171. [Google Scholar] [CrossRef]
- Lim, T.K. Edible Medicinal and Non Medicinal Plants: Volume 9, Modified Stems, Roots, Bulbs; Springer Netherlands: Dordrecht, 2015; ISBN 978-94-017-9510-4. [Google Scholar]
- Abbasi, E.; Khodadadi, I. Antidiabetic Effects of Genistein: Mechanism of Action. Endocr. Metab. Immune Disord. - Drug TargetsFormerly Curr. Drug Targets - Immune Endocr. Metab. Disord. 2023, 23, 1599–1610. [Google Scholar] [CrossRef]
- Search for Patents. Available online: https://www.uspto.gov/patents/search (accessed on 23 March 2024).
- Hartini, Y.S.; Setyaningsih, D. A-Amylase and a-Glucosidase Inhibitory Effects of Four Piper Species and GC-MS Analysis of Piper Crocatum. Biodiversitas J. Biol. Divers. 2023, 24. [Google Scholar]
- Sebai, H.; Selmi, S.; Rtibi, K.; Souli, A.; Gharbi, N.; Sakly, M. Lavender (Lavandula Stoechas L.) Essential Oils Attenuate Hyperglycemia and Protect against Oxidative Stress in Alloxan-Induced Diabetic Rats. Lipids Health Dis. 2013, 12, 189. [Google Scholar] [CrossRef]
- Seethalakshmi, S.; Sarumathi, R.; Sankaranarayanan, C. Effect of Alpha-Phellandrene on Glucose Uptake and Adipogenesis in Insulin Resistant 3T3-L1 Adipocytes: An in Vitro and in Silico Approach. 12.
- Bahadori, M.B.; Dinparast, L.; Zengin, G.; Sarikurkcu, C.; Bahadori, S.; Asghari, B.; Movahhedin, N. Functional Components, Antidiabetic, Anti-Alzheimer’s Disease, and Antioxidant Activities of Salvia Syriaca L. Int. J. Food Prop. 2017, 20, 1761–1772. [Google Scholar] [CrossRef]
- Nazir, N.; Zahoor, M.; Uddin, F.; Nisar, M. Chemical Composition, in Vitro Antioxidant, Anticholinesterase, and Antidiabetic Potential of Essential Oil of Elaeagnus Umbellata Thunb. BMC Complement. Med. Ther. 2021, 21, 73. [Google Scholar] [CrossRef]
- Bungau, S.G.; Vesa, C.M.; Bustea, C.; Purza, A.L.; Tit, D.M.; Brisc, M.C.; Radu, A.-F. Antioxidant and Hypoglycemic Potential of Essential Oils in Diabetes Mellitus and Its Complications. Int. J. Mol. Sci. 2023, 24, 16501. [Google Scholar] [CrossRef]
- Tahir, H.; Sarfraz, R.; Ashraf, A.; Adil, S. Chemical Composition and Anti-Diabetic Activity of Essential Oils Obtained from Two Spices ( Syzygium Aromaticum and Cuminum Cyminum ). Int. J. Food Prop. 2015, 19. [Google Scholar] [CrossRef]
- Al Kury, L.T.; Abdoh, A.; Ikbariah, K.; Sadek, B.; Mahgoub, M. In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. Mol. Basel Switz. 2021, 27, 182. [Google Scholar] [CrossRef]
- Maharaj, V.; Ezeofor, C.C.; Naidoo Maharaj, D.; Muller, C.J.F.; Obonye, N.J. Identification of Antidiabetic Compounds from the Aqueous Extract of Sclerocarya Birrea Leaves. Mol. Basel Switz. 2022, 27, 8095. [Google Scholar] [CrossRef]
- Kalai, F.Z.; Boulaaba, M.; Ferdousi, F.; Isoda, H. Effects of Isorhamnetin on Diabetes and Its Associated Complications: A Review of In Vitro and In Vivo Studies and a Post Hoc Transcriptome Analysis of Involved Molecular Pathways. Int. J. Mol. Sci. 2022, 23, 704. [Google Scholar] [CrossRef]
- Eid, H.M.; Haddad, P.S. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr. Med. Chem. 2017, 24, 355–364. [Google Scholar] [CrossRef]
- Hashiesh, H.M.; Meeran, M.F.N.; Sharma, C.; Sadek, B.; Kaabi, J.A.; Ojha, S.K. Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications. Nutrients 2020, 12, 2963. [Google Scholar] [CrossRef]
- Gunawan, I.W.G.; Putra, A.A.B.; Widihati, I. a. G. The Response to Oxidative Stress α-Humulene Compounds Hibiscus Manihot L Leaf on The Activity of 8-Hydroxy-2-Deoksiquanosin Levels Pancreatic β-Cells in Diabetic Rats. Biomed. Pharmacol. J. 2016, 9, 433–441. [Google Scholar] [CrossRef]
- Wen, L.; Wu, D.; Tan, X.; Zhong, M.; Xing, J.; Li, W.; Li, D.; Cao, F. The Role of Catechins in Regulating Diabetes: An Update Review. Nutrients 2022, 14, 4681. [Google Scholar] [CrossRef]
- Elmazar, M.M.; El-Abhar, H.S.; Schaalan, M.F.; Farag, N.A. Phytol/Phytanic Acid and Insulin Resistance: Potential Role of Phytanic Acid Proven by Docking Simulation and Modulation of Biochemical Alterations. PloS One 2013, 8, e45638. [Google Scholar] [CrossRef]
- Hoca, M.; Becer, E.; Vatansever, H.S. Carvacrol Is Potential Molecule for Diabetes Treatment. Arch. Physiol. Biochem. 2023, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Mechchate, H.; Benali, T.; Ghchime, R.; Charfi, S.; Balahbib, A.; Burkov, P.; Shariati, M.A.; Lorenzo, J.M.; Omari, N.E. Health Benefits and Pharmacological Properties of Carvone. Biomolecules 2021, 11, 1803. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, M.B.; Maggi, F.; Zengin, G.; Asghari, B.; Eskandani, M. Essential Oils of Hedgenettles (Stachys Inflata, S. Lavandulifolia, and S. Byzantina) Have Antioxidant, Anti-Alzheimer, Antidiabetic, and Anti-Obesity Potential: A Comparative Study. Ind. Crops Prod. 2020, 145. [Google Scholar] [CrossRef]
- Ojah, E.; Moronkola, D.; Ajiboye, C.; Yusuf, T.; Adeniyi-Akee, M. Chemical Compositions, Antioxidant and Anti-Diabetic Activities of Root Wood and Root Bark Essential Oils from Pterocarpus Soyauxii TAUB. J. Essent. Oil Bear. Plants 2021, 24, 53–67. [Google Scholar] [CrossRef]


| Family | Scientific name | Local name (Vernacular name) | Plant part used | Traditional preparations | Pharmacological activity as antidiabetic | References |
|---|---|---|---|---|---|---|
| Acanthaceae | Justicia colorata (Nees) Wassh. | Insulina | Leaf, stem | Infusion | α-glucosidase inhibitory activity, antioxidant activity | [26] |
| Apiaceae | Foeniculum vulgare Mill. | Hinojo, eneldo | Whole plant | Infusion | Reduction of blood glucose level in streptozotocin-induced diabetic rats | [56,57,124] |
| Neonelsonia acuminata (Benth.) J.M.Coult. & Rose ex Drude | Zanahoria blanca | Root | Eaten raw | α-glucosidase inhibitory activity, antioxidant activity | [23,26] | |
| Aquifoliaceae | Ilex guayusa Loes. | Guayusa | Leaf | Infusion | α-glucosidase inhibitory activity, antioxidant activity | [26,125] |
| Asteraceae | Baccharis genistelloides (Lam.) Pers. | Tres filos | Aerial part | Aqueous infusion | Reduction in blood sugar levels observed in diabetic mice | [26,51,126] |
| Matricaria chamomilla L. | Chamomile | Whole plant | Infusion | Decrease in postprandial hyperglycaemia in streptozotocin-induced diabetic rats, antioxidant activity | [63,64] | |
| Convolvulaceae | Ipomoea carnea Jacq. | Borrachera, matacabra | Aerial part | Infusion | Decrease in blood glucose levels in streptozotocin-induced diabetic Wistar rats | [34,61] |
| Costaceae | Costus comosus Roscoe | Caña | Stem | Decoction | α-glucosidase inhibitory activity | [26,51] |
| Costus villosissimus Jacq. | Caña agria | Leaf, stem | Infusion | Not known | [80] | |
| Crassulaceae | Bryophyllum gastonis-bonnieri (Raym.-Hamet & H.Perrier) Lauz.-March. | Dulcamara | Leaf | Juice, crushed | Not known | [59,79] |
| Euphorbiaceae | Croton wagneri Müll.Arg. | Moshquera | Leaf | Aqueous infusion | α-amylase and α-glucosidase inhibitory activity | [34,61] |
| Fabaceae | Cajanus cajan (L.) Millsp. | Fréjol de palo | Bark | Infusion | Reduction in blood glucose levels in alloxan-induced diabetic Swiss albino mice, high antioxidant activity | [34,54] |
| Geraniaceae | Pelargonium graveolens L’Hér. | Esencia de rosa | Flower, leaf, stem | Infusion | α-glucosidase inhibitory activity | [23,67] |
| Juglandaceae | Juglans neotropica Diels | Nogal, tocte | Leaf | Infusion | Not known | [34] |
| Lauraceae | Persea americana Mill. | Aguacate | Leaf, fruit, seed | Aqueous infusion, decoction | α-amylase and α-glucosidase inhibitory activity in alloxan-induced diabetic male Wistar rats | [24,51,127] |
| Leguminosae | Glycyrrhiza glabra L. | Zaragoza | Leaf, stem | Infusion | Improvement in modulating blood glucose levels and lowered blood insulin levels in streptozotocin-induced diabetic rats | [25,59] |
| Myroxylon peruiferum L.f. | Bálsamo, chaquino | Bark | Infusion | Not known | [34] | |
| Mimosaceae | Pithecellobium excelsum (Kunth) Mart. | Chaquiro | Bark | Infusion | Not known | [34] |
| Monimiaceae | Siparuna eggersii Hieron. | Monte del oso | Leaf | Crushed, infusion | α-glucosidase inhibitory activity | [26,51] |
| Moraceae | Artocarpus altilis (Parkinson) Fosberg | Fruto del pan | Leaf | Aqueous infusion | α-glucosidase inhibitory activity | [26,51,52] |
| Piperaceae | Piper crassinervium Kunth | Guabiduca | Stem, leaf | Decoction | α-glucosidase inhibitory activity | [26,51] |
| Proteaceae | Oreocallis grandiflora R.Br. | Cucharillo | Leaf, bark, flower | Aqueous infusion | α-amylase and high α-glucosidase inhibitory activity, antioxidant activity | [23,26,51] |
| Pteridaceae | Adiantum poiretii Wikstr. | Culantrillo | Aerial part | Aqueous infusion | α-glucosidase inhibitory activity | [23,26,51] |
| Rutaceae | Ruta graveolens L. | Ruda | Stem, leaf | Infusion | α-amylase and α-glucosidase inhibitory activity | [73] |
| Solanaceae | Physalis peruviana L. | Uvilla, uchuva, uvilla lanuda | Fruit | Juice | Decrease in blood sugar levels tested in guinea pigs | [23,69,70] |
| Urticaceae | Urtica dioica L. | Ortiga | Whole plant | Infusion, fresh | Decrease in blood glucose levels tested in male Wistar rats and Swiss mice, reduction of intestinal glucose absorption | [77,128] |
| Verbenaceae | Verbena litoralis Kunth | Verbena | Whole plant | Cooked, infusion | α-glucosidase inhibitory activity | [26,124] |
| Scientific name | Active compounds with antidiabetic properties | Bioactive chemical group | Antidiabetic properties | Reference |
|---|---|---|---|---|
| Adiantum poiretii | No proper evidence found | - | - | - |
| Artocarpus altilis | n-Hexadecanoic acid | Fatty acid | α-amylase and α-glucosidase inhibitory activity and antioxidant activity | [111] |
| Ellagic acid | Phenol | α-amylase inhibitory activity and antioxidant activity, stimulate insulin secretion and decrease glucose intolerance | [129] | |
| 2-Heptadecenal | Aldehyde | α-amylase and α-glucosidase inhibitory activity | [113] | |
| Baccharis genistelloides | Cirsimaritin | Flavonoid | Reduces elevated level of serum glucose in diabetic rats and abrogated the increase in serum insulin | [83] |
| Cirsiliol | Flavonoid | Hypoglycaemic effect | [84] | |
| Hispidulin | Flavonoid | Stimulates glucagon-like peptide-1 and suppresses hepatic glucose production | [85] | |
| Genkwanin | Flavonoid | α-amylase inhibitory activity and antioxidant activity | [86] | |
| Apigenin | Flavonoid | Facilitates glucose-stimulated insulin secretion and prevents ER stress-mediated β-cell apoptosis in the pancreas | [87] | |
| Bryophyllum gastonis-bonnieri | Flavonoids | Flavonoid | α-amylase and α-glucosidase inhibitory activity, improves insulin resistance, antioxidant activity, inhibitors of Glucose Cotransporter | [130] |
| Cajanus cajan | Betulinic acid | Terpenoid | Reduces blood glucose, α-amylase and improves insulin sensitivity as well as pancreas histopathology | [131] |
| Pinostrobin | Flavonoid | Reduces the blood sugar level of diabetic mice | [132] | |
| Genistein | Flavonoid | Inhibits hepatic glucose production, increases β-cell proliferation, reduces β-cell apoptosis, and shows antioxidant activity | [133] | |
| Costus comosus | Camphene | Monoterpene | Reduces fasting blood sugar and blood insulin levels. | [134] |
| n-Hexadecanoic acid | Fatty acid | α-amylase and α-glucosidase inhibitory and antioxidant activities | [111] | |
| Costus villosissimus | Not known | Not known | ||
| Croton wagneri | Myrcene | Monoterpene | α-amylase and α-glucosidase inhibitory activities | [135] |
| Foeniculum vulgare | Trans-anethole | Phenylpropanoid | Suppresses diabetic nephropathy in rats by decreasing blood glucose levels and downregulating AT1R and TGF-β1 expression | [114] |
| Fenchone | Monoterpenoid | Protects against the increased blood glucose level and decreased level of antioxidant enzyme activities in alloxan-induced diabetic rats | [136] | |
| Estragole | Phenylpropene | α-amylase and lipase inhibitory activity, antioxidant activity | [115] | |
| Methyl chavicol | Phenylpropene | α-amylase and tyrosinase inhibitory activity, antioxidant activity | [116] | |
| Limonene | Monoterpene | Inhibits protein glycation, stimulates the uptake of glucose and breakdown of fats, upregulates glucose transporter 1 (GLUT1) expression, and suppresses α-amylase and α-glucosidase | [140] | |
| α-Phellandrene | Monoterpene | Increases glucose uptake, enhances glycerol-3-phosphate activity and triglyceride accumulation, and regulates adipositic function | [137] | |
| Glycyrrhiza glabra | n-Hexadecanoic acid | Fatty acid | α-amylase and α-glucosidase inhibitory activities and antioxidant activity | [111] |
| Dodecanoic acid | Fatty acid | Decreases fasting blood glucose level and induces β-cell regeneration in diabetic rat | [112] | |
| Carvone | Terpenoid | Improves glycoprotein components and controls glucose metabolism | [147] | |
| Ilex guayusa | Chlorogenic acid | Phenol | Increases glucose uptake in L6 muscular cells and raises insulin secretion from the INS-1E insulin-secreting cell line and rat islets of Langerhans. | [96] |
| Quercetin-3-O-hexose | Flavonoid | Inhibits the activity of glucose transporter, enhances glucose uptake, reduces hepatic glucose production, protects against pancreatic islet beta-cell, α-glucosidase inhibition | [130] | |
| Ipomoea carnea | Spathulenol | Sesquiterpenoid | Strong antioxidant, α-amylase, and α-glucosidase inhibitory activities | [138] |
| Caryophyllene oxide | Sesquiterpene | α-amylase and α-glucosidase inhibitory activities and antioxidant activity | [139] | |
| Juglans neotropica | Holocellulose | Polysaccharide | Acts as an activator for glucokinase in reducing blood sugar | [119] |
| Lignin | Organic polymer | Improves inhibitory effect on α-amylase activity, antioxidant activity | [120] | |
| Justicia colorata | No proper evidence found | - | - | - |
| Matricaria chamomilla | Germacrene D | Sesquiterpene | Strong inhibitor of α-glucosidase | [140] |
| Myroxylon peruiferum | Germacrene D | Sesquiterpene | Strong inhibitor of α-glucosidase | [140] |
| α-Pinene | Terpene | Inhibition of α-amylase | [141] | |
| Spathulenol | Sesquiterpenoid | Strong antioxidant, α-amylase, and α-glucosidase inhibitory activities | [138] | |
| Caryophyllene oxide | Sesquiterpene | α-amylase and α-glucosidase inhibitory activity and antioxidant activity | [139] | |
| Limonene | Monoterpene | Inhibits protein glycation, stimulates the uptake of glucose and breakdown of fats, upregulates glucose transporter 1 (GLUT1) expression, and suppresses α-amylase and α-glucosidase | [142] | |
| Neonelsonia acuminata | No proper evidence found | - | - | - |
| Oreocallis grandiflora | Myricetin 3-O-β-glucuronide | Flavonoid | Stimulates 2-deoxy-glucose uptake in C2C12 myocytes | [143] |
| Isorhamnetin hexuronide | Flavonoid | Decreases glucose level, and oxidative stress, modulates lipid metabolism and adipocytic activity | [144] | |
| Quercetin 3-O-rutinoside | Flavonoid | Regulates whole-body glucose homeostasis, reduction of intestinal glucose absorption, insulin secretion, and insulin-sensitizing actions, as well as enhances glucose utilization in peripheral tissues | [145] | |
| Quercetin 3-O-β-glucuronide | Flavonoid | Stimulates 2-deoxy-glucose uptake in C2C12 myocytes | [143] | |
| Isorhamnetin hexoside | Flavonoid | Decreases glucose level and oxidative stress modulates lipid metabolism and adipocytic activity | [145] | |
| Isorhamnetin 3-O-rutinoside | Flavonoid | Decreases glucose levels and oxidative stress, modulates lipid metabolism and adipocytic activity | [145] | |
| Pelargonium graveolens | Chlorogenic acid | Phenol | Increases glucose uptake in L6 muscular cells and raises insulin secretion from the INS-1E insulin-secreting cell line and rat islets of Langerhans. | [96] |
| Quercetin-3-O-hexose | Flavonoid | Inhibits the activity of glucose transporter, enhances glucose uptake, reduces hepatic glucose production, Protects against pancreatic islet beta-cell, α-glucosidase inhibition | [130] | |
| Persea americana | β-Caryophyllene | Sesquiterpene | Exhibits selective agonism on cannabinoid receptor type 2 (CB2R), which plays a role in glucose and lipid metabolism, antioxidant, anti-inflammatory activities | [146] |
| Caryophyllene oxide | Sesquiterpene | α-amylase and α-glucosidase inhibitory activities, and antioxidant activity | [139] | |
| α-Humulene | Sesquiterpene | Prevents oxidative stress through the reduction mechanism of 8-hydroxy-2-deoksiguanosin in the pancreatic β-cells | [147] | |
| Catechin | Sesquiterpenoid | Reduces blood sugar source, regulates intestinal function, improves insulin resistance, and has antioxidant and anti-inflammatory activities | [148] | |
| Caffeic acid | Phenol | Reduction of hepatic glucose output and enhances adipocyte glucose uptake, insulin secretion, and antioxidant capacity | [99] | |
| Chlorogenic acid | Phenol | Increases glucose uptake in L6 muscular cells and raises insulin secretion from the INS-1E insulin-secreting cell line and rat islets of Langerhans. | [96] | |
| Coumaric acid | Phenol | Lowers the blood glucose level, and gluconeogenic enzymes and increases the activities of hexokinase, glucose-6 phosphatase dehydrogenase, and GSH via increasing levels of insulin. | [97] | |
| Ferulic acid | Phenol | Improves insulin sensitivity and hepatic glycogenesis also inhibits gluconeogenesis and maintains insulin signalling to maintain normal glucose homeostasis. | [98] | |
| Physalis peruviana | Phytol | Diterpenoid | Stimulates insulin resistance by activation of nuclear receptors and heterodimerization of RXR with PPARγ | [149] |
| n-Hexacosane | Alkane | Improves blood glucose, glucose tolerance, glycated hemoglobin, and liver glycogen | [117] | |
| Piper crassinervium | Germacrene D | Sesquiterpene | Strong inhibitor of α-glucosidase | [140] |
| β-Caryophyllene | Sesquiterpene | Exhibits selective agonism on cannabinoid receptor type 2 (CB2R), which plays a role in glucose and lipid metabolism, antioxidant, and anti-inflammatory activities. | [146] | |
| Spathulenol | Sesquiterpenoid | Strong antioxidant, α-amylase, and α-glucosidase inhibitory activities | [138] | |
| Pithecellobium excelsum | No proper evidence found | - | - | - |
| Ruta graveolens | No proper evidence found | - | - | - |
| Siparuna eggersii | Germacrene D | Sesquiterpene | Strong inhibitor of α-glucosidase | [140] |
| Caryophyllene oxide | Sesquiterpene | α-amylase and α-glucosidase inhibitory activities and antioxidant activity | [139] | |
| Urtica dioica | Carvacrol | Monoterpenoid | Improves diabetes-related enzymes, insulin resistance, insulin sensitivity, glucose uptake, and anti-oxidant, and anti-inflammatory activities. | [150] |
| Carvone | Monoterpenoid | Improves glycoprotein components and controls glucose metabolism | [151] | |
| Naphthalene | Polycyclic aromatic hydrocarbon | α-glucosidase inhibitory activity | [121] | |
| (E)-Anethole | Phenylpropanoid | Suppresses diabetic nephropathy in rats by decreasing blood glucose levels and downregulating AT1R and TGF-β1 expression. | [114] | |
| Hexahydrofarnesyl acetone | Sesquiterpene | α-glucosidase inhibition activity | [152] | |
| (E)-β-Ionone | Sesquiterpenoid | α-amylase and α-glucosidase inhibitory activities and antioxidant activity | [153] | |
| Phytol | Diterpene | Stimulates insulin resistance by activation of nuclear receptors and heterodimerization of RXR with PPARγ | [149] | |
| Verbena litoralis | Chlorogenic acid | Phenol | Increases glucose uptake in L6 muscular cells and raises insulin secretion from the INS-1E insulin-secreting cell line and rat islets of langerhans. | [96] |
| Caffeic acid | Phenol | Reduction of hepatic glucose output and enhanced adipocyte glucose uptake, insulin secretion, and antioxidant capacity | [99] | |
| Apigenin | Flavonoid | Facilitates glucose-stimulated insulin secretion and prevents ER stress-mediated β-cell apoptosis in the pancreas | [87] | |
| p-Coumaric acid | Phenol | Lowers the blood glucose level and gluconeogenic enzymes, and increases the activities of hexokinase, glucose-6 phosphatase dehydrogenase, and GSH via increasing the level of insulin. | [97] | |
| Vanillic acid | Phenol | Reduced hyperglycemia and GSH, increased liver enzymes found in diabetic rats, anti-inflammatory activity | [100] | |
| Ferulic acid | Phenol | Improves insulin sensitivity and hepatic glycogenesis also inhibits gluconeogenesis and maintains insulin signalling to maintain normal glucose homeostasis. | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
