Altmetrics
Downloads
164
Views
89
Comments
0
A peer-reviewed article of this preprint also exists.
supplementary.png (4.57KB )
This version is not peer-reviewed
Submitted:
12 April 2024
Posted:
15 April 2024
You are already at the latest version
Studies | Source of exosomes | Animal models | Purification methods | Characterization | Administration dose | Administration route | Evaluation methods and times for observation |
---|---|---|---|---|---|---|---|
Xin et. al., [58] | Rat bone marrow mesenchymal stem cell (MSC) | Adult male Wistar rat transient (2 hours) MCAO model | Ultracentrifugation | expression of Alix | 100 µg total protein of MSC-derived exosomes | Intravenous injection at 24 hrs after stroke | Neurologic severity score (NSS) and foot-fault test at 1, 3, 7, 14, 21 and 28 days |
Doeppner et. al. [20] | Human bone marrow mesenchymal stem cell (MSC) | 10-wk old mice transient MCAO | Polyethyleneglycol (PEG) precipitation and ultracentrifugation | expression of TSG101 and CD81 | 2 x 106 BMSC-EV | Intravenous injection at 24 hrs after stroke at 3 consecutive time points (24 hr, 3 and 5 days) after stroke | Rotarod, corner test and tightrope test, neurologic severity score (NSS) at 7, 14, and 28 days after stroke |
Ophelders et. al. [19] | Human MSC | Ovine model of preterm hypoxia-ischemia (HI) min in sheep fetuses at 102 days of gestation. | Polyethylene glycol (PEG) and low-speed centrifugation | Particle size (99-123 nm) and expression of CD81 and TSG101 | 2.0 x 107 MSC-EV | Intravenous injection 2 consecutive time points, at 1 hr and 4 days post HI | 1) Baroreceptor reflex on days 0-6 post HI, 2) Collect seizure burden data continuously until 7 days’ post HI |
Lee et. al. [22] | Human adipose MSC exposed to normal rat brain extract (NBE-MSC), stroke-injured rat brain extract (SBE-MSC) or not exposed to any extract (MSC) | Permanent MCA stroke model in male Sprague-Dawley rats | Ultracentrifugation | No molecular or EM characterization | 0.2 mg EV/kg rat body weight | the common carotid artery 48 hrs after stroke | Neurologic function (open field, foot fault, beam balance, prehensile traction and torso-twisting) at 0-, 3- and 7-days post MV injection |
Chen et. al. [66] | ADSCs and ADSC-exosomes isolated from xenogenic pigs | Mini pigs using the KISOTM System | Ultracentrifugation | Particle size (30-90 nm) using TEM and expression of CD63, TSG101 and ß-catenin | 300 µg exosomes | Intravenous injection at 3 hours after stroke | 1) Sensorimotor functional (Corner Test) studies on day 0, 1, 3, 7, 14 and 28 after stroke, 2) MRI on days 3 and 28 post stroke and 3) euthanized 60 days after stroke. |
Otero-Ortega et. al. [64] | ADMSC obtained from allogeneic adipose tissue of Sprague-Dawley rats | Ischemic stroke in adult male rats by injection of 1ul of endothelin-1 or of 0.5 U collagenase type IV into the striatum | miRCURY Exosome Isolation Kit | size (<100nm) using NanoSight and by the expression of CD81 and Alix | 100 µg EV | Intravenous injection at 24 hours after stroke | 1) Behavior studies (beam walk, rotarod, modified Rogers test) on 48 hrs, 7 and 28 days after stroke and 2) MRI imaging performed 7 and 28 days after stroke. |
Webb et. al. [21] | Human neural stem cells (NSC) and human MSC (MSC) differentiated from the H9 hESCs | Thromboembolic model of stroke in aged mice. | Ultracentrifugation | size (<300 nm) using NanoSight and expression of CD63 and CD81 | three dose regiment of EV with 2.7 x 1011 EV | Intravenous injection at 2, 14, and 38 hrs post stroke | 1) Cerebral Doppler measurements at 6 and 38 hrs post injection断2) novel object recognition (NOR) testing to test Episodic memory |
Xiao et. al. [16] | Endothelial cells exposed to ischemia (6 hr)- reperfusion (24 hr) in vitro | Transient remote ischemic preconditioning cerebral I/R (MCAO/R) in parallel to remote ischemic preconditioning (RIP) by temporary clamping of the femoral artery using adult male and female Sprague-Dawley rats | Ultracentrifugation | size (40-100 nm) with a JEOL-1010 TEM and expression of CD63, HSP70 and TSG101 by immunohistochemistry, western blot and flow cytometry | NA | NA | NA |
Han et. al. [65] | BMSC from Wistar rat | intracerebral hemorrhage (ICH) in adult male Wistar rats | ExoQuick exosome isolation | BCA Protein assay and qNano nanopore-based exosome detection system断断Alix by断Western blot, and electron microscopy | 100 μg protein of MSC-derived exosomes | Intravenous injection at 24 hrs post ICN | Modified Morris water maze (mMWM), modified Neurological Severity Score (mNSS), and social odor–based novelty recognition tests at days 1, 7, 14, 21 and 25 |
Huang et al [59] | 1) rat adipose-derived mesenchymal stem cells (ADSCs) isolated from rat 断2) Pigment epithelium-derived factor (PEDF)-overexpressing ADSC | MCAO model using adult male Sprague-Dawley rats | Ultracentrifugation | expression of CD9, CD63, CD81, and TSC101 | 100 μg of EVs per kg | Intravenous injection | Oxygen-glucose deprivation (OGD) experiments |
Jiang et al [60] | miR30d-5p overexpressing rat ADSCs | MCAO model using adult male Sprague-Dawley rats | Ultracentrifugation | size distribution of ADs-Exos, Nanosizer™ technology (Malvern Instruments, Malvern, UK), transmission electron microscopy (TEM), specific exosome markers CD9, CD63, CD81, and TSC101 | 80 μg of EVs | Intravenous injection | N/A |
Geng et. al. [61] | Human MI ADSCs (Age: 57-69) and miR-126 loaded ADSCs | MCAO model using 8-12 weeks Sprague-Dawley rats | ExoQuickTM Exosome Precipitation Solution | N/A | N/A | Intravenous injection | Foot-fault test and a modified neurologic severity score (mNSS) at days 1,3,7, and 14 post stroke |
Liu et. al [62] | Enkephalin overexpressing rat BMSCs | MCAO model using 8-12 weeks Sprague-Dawley rats | Ultracentrifugation | cryo-electron microscopy (cryo-EM) analysis, Nanoparticle tracking analysis, specific exosome markers HSP70, CD63, and TSC101 | N/A | Intravenous injection at 12-hour post stroke | NSS test and inclined board test at 1 an d3 weeks |
Moon et. al [63] | Rat MSCs (p4) or fibroblasts | MCAO model using Sprague-Dawley rats | Ultracentrifugation | NTA analysis, TEM | 10, 30, 100, or断300 μg rMSC-EVs | Intravenous injection at 24-hour post stroke | 1) mNSS test days 1, 7 and 14 after stroke, and 2) The cylinder and ladder rung walking tests at 28 days post-injury |
Tian et al. [56] | Neural progenitor cells with RGD-C1C2-fusion | MCAO model using C57BL/6 mice (8 weeks old) | Ultracentrifugation | NTA analysis, TEM | 100 μg (2.5-3.7 × 1010) | Intravenous injection at 1 h of MCAO and 12 h of reperfusion | N/A |
Yang et al [37] | Hypoxic pre-treated mouse ADSCs | MCAO model using C57BL/6 mice | Ultracentrifugation | TEM and light scattering utilizing Nanosizer (Malvern Instruments, Malvern, UK). | N/A | 1 day postoperatively via an intraperitoneal injection. | Sensorimotor functional recovery prior to MCAO and 3, 5, 7, and 10 days post-MCAO was measured Rotarod exam (IITC Life Science, NY, USA) to define sensorimotor coordination, the adhesive removal test |
Jiang X et al [92] | Hypoxic preconditioning of neural stem cells (NSCs) | MCAO model using C57BL/6 mice | Ultracentrifugation | BCA protein assay kit, TEM; Nano ZS90 for size and zeta potential; CD9 and CD63 were analyzed via Western Blot; CXCR4 measured using ELISA | 10 µg EV | Intravenous injection at 1 Day after MCAO procedure | Complex motor ability on mNSS adhesive removal test, ladder rung task weekly until day 28th |
Li et al [97] | M2 microglia | MCAO model using C57BL/6 mice | ExoQuickTC kit from System Biosciences, USA. | TEM, Western blot, PKH26 Red Fluorescent Cell Linker Kit. | M2-Exos (100 μg/mL) EV | Intravenous injection at 2h after MCAO | M2-Exos had a certain effect on alleviating neuronal apoptosis in the MCAO/R model, but had no significant effect on the indicators of neuronal autophagy and ferroptosis |
Hong et al [93] | UC-MSCs | MCAO model using 8 weeks male Sprague Dawley rats | Ultracentrifugation | TEM, western blot fro CD63, Alix, and TSG101; PKH26 | 50 μg EV | Intravenous injection at 4h after MCAO once a day per 3 days | Neurologic at 2, 4, and 8 hours after the onset of occlusion and then daily until sacrifice. |
Wang et al [98] | Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) | MCAO male SD Rats | Ultracentrifugation 断exosome isolation kit from Umibio, China | TEM, western blot, NTA | 200 µg EV | Intravenous injection at the beginning of reperfusion | Stainless steel brain molds were used to freeze the brains rapidly for 5 min at 20°C; the olfactory bulbs and cerebellum were removed before freezing the brain. 2-mm coronal brain sections were prepared, followed by incubation in 2% TTC (Solarbio, China) at RT in the dark. Infarct volumes were calculated using ImageJ software after TTC staining. |
Zhang et al [91] | NSCs | MCAO male C57BL/6 mice (age: 7–8week, weight: 22-24g) | Ultracentrifugation | TEM, NTA (Malvern Nano ZS90) | NSC (5 × 105 NSCs in 5 μl PBS)断NSC + Exo ( 5 × 105 NSCs with 10 μg exosomes in 5 μl PBS) | lateral ventricle injection at 7 days post MCAO Stereoscopic apparatus (RWD, China). For (AP+0, ML-1, DV-2.25 mm) | Presence and persistence of cerebral edema evaluated by TTC staining at 1 and 7 days post-MCAO/R.断Measurement of reactive oxygen species (ROS) and inflammation at 3 days post-treatment.断Behavioral assessments (balance beam, ladder rung, rotarod, modified neurological severity score) conducted at 0-8 weeks post-treatment.断Histological examinations performed at 8 weeks post-treatment. MRI for infarct volume |
Xiao et al [17] | Bone marrow mesenchymal stem cells (BMSCs) | MCAO C57BL/6 mice (male, 8-week) | Total Exosome Isolation reagent from Thermo Fisher Scientific | TEM, western blot, NTA | 100 µg EV | Intravenous injection Once per day for 3 days after MCAO | Neurological evaluations used the Longa neurological scoring system. |
Studies | Therapeutic outcomes | Mechanism of action |
---|---|---|
Xin et. al.[58] | Enhanced NSS, synaptic plasticity, neurogenesis, and angiogenesis | 1) Bielschowsky silver and Luxol fast blue staining: Increase neurite remodeling and 2) increased synaptophysin immunoreactivity, increased number of BrdU+/Dcx+ cells and BrdU+/vWF+ cells in IBZ* |
Doeppner et. al. [20] | Improved neurological impairment and brain remodeling, comparing to 1 x 106 MSC, peripheral lymphodemia was reversed no infiltrating monocytes, macrophages, lymphocytes, dendritic cells or neutrophils into the brain | 1) Neuroangiogenesis at 28 days post stroke: increased NeuN+ cell density, NeuN+/BrdU+ cell number, Dcx+/BrdU+ cell number and CD31/BrdU+ cell number; 2) Reversed peripheral lymphodemia at D6, no infiltrating monocytes, macrophages, lymphocytes, dendritic cells or neutrophils into the brain |
Ophelders et. al. [19] | Reduced baroreflex sensitivity | 1) reduce white matter injury (measured by myelin basic protein) and 2) not impact the normal microglial response to HI (measured by IBA-1 immunoreactivity) |
Lee et. al. [22] | Reduced infarct volume and improvement in neurologic function was similar in animals treated with either MV isolated from MSC exposed to normal rat brain extract or extract from rat brain after stroke | 1) increased number of DCX+ cells in the ipsilateral **SVZ, increased alpha-smooth muscle actin and reduced GFAP+ cells, 2) increase in the anti-inflammatory cytokines IL-10 and TSG-6 and attenuation of the pro-inflammatory factors TNF-alpha and progranulin |
Chen et. al. [66] | 1) Sensorimotor function: No difference was seen between treatments of ADSC, ADSC-EV and combination, 2) MRI and histological studies: greatest reduced infarct volumes showed in the ADMSC plus exosome group, 3) Biodistribution at 60 days: no exosomes or ADMSC | Inflammation, edema, fibrosis, necrosis and apoptosis: greatest reduction in the ADMSC plus exosome group |
Otero-Ortega et. al. [64] | 1) Significant improvement in the behavioral tests at 28 days and 2) MRI: a decrease in lesion size and improved mean axial diffusivity at 28 days (No difference in functional outcome or MRI at 24 hours and 7 days after treatment. 3) Biodistribution: EV found in the brain, lung, liver, and spleen 24 hrs after administration | Promoting white matter repair after stroke involves proteins identified in extracellular vesicles (EVs) proteome. These proteins play roles in hydrolase activity, tubulin binding, protein kinase regulator activity, kinase regulator activity, and catalytic activity. While growth factor activity isn't the predominant function, the proteins identified could still contribute to functional recovery after EVs administration. There's potential for enhancing therapeutic effects by selectively manipulating the expression of these molecules. |
Webb et. al. [21] | 1) Significant functional improvements of sensorimotor tests (i.e., balance beam walking, the number of footfalls, hanging wire, and tail suspension performance and declarative memory 14 days post-TEMCAO in aged rodents 2) Biodistribution: the presence of EV in the brain infarct area at 1 hr after injection and still present in the liver, lungs, and spleen at 24 hrs after injection | Smaller infarct volumes (TTC staining) and higher amounts of circulating M2 macrophages and T regulatory cells and lower amounts of TH17 T-cells at 96 hrs after administration of NSC-EV compared to both MSC-EV treated and control animals. Promoting tissue repair and reduce inflammation by modulating immune responses and facilitating communication between cells in the CNS. Crossing the blood-brain barrier for delivering therapeutic molecules directly to the brain. |
Xiao et. al. [16] | Evaluating smaller infarct volumes using TTC-staining | Reduction the rate of apoptosis through downregulation of Bax and caspase-3 and upregulation of Bcl-2 in SH-SY5Y nerve cells. |
Han et. al. [65] | Significant improvement in the neurological function of spatial learning and motor recovery measured at 26–28 days by mMWM and starting at day 14 by mNSS | Increased newly generated endothelial cells in the hemorrhagic boundary zone, neuroblasts and mature neurons in the subventricular zone, and myelin in the striatum without altering the lesion volume. 1) EBA staining for mature vascular detection, 2) DCX, TUJ1, and MAP2 for neurogenesis and 3) BrdU-positive, indicating that there were newly generated neuroblasts (BrdU-DCX, BrdU-TUJ1) and newly generated immature neurons (BrdU-MAP2) around the hematoma and the SVZ. |
Huang et al [59] | Suppressed MCAO-induced cerebral injury (TTC staining 3 days after MCAO). | PEDF-modified ADSCs ameliorated cerebral I/R injury by activating autophagy and suppressing neuronal apoptosis. |
Jiang et al [60] | Reduction of the cerebral injury area of infarction at day 3 post stroke | Increased anti-inflammatory cytokines IL-4, IL-10. Suppression of autophagy (Beclin-1 and Atg5) and inflammatory factors, TNF-a, IL-6 and iNOS |
Geng et. al. [61] | MiR-126 exosomes: significant reduction ischemic stroke and MCAO ratsImproved functional recovery | Significant increase of the expression of vWF (an endothelial cell marker) and doublecortin (a neuroblasts marker), suppression of microglial cell by Iba1. Decrease of neuron cell death (TUNEL) and increase of cell proliferation. |
Liu et. al [62] | Exosomes crossed the blood-brain barrier Improvement of the neurological score. | Reduction of Neurons Injury: LDH, p53, caspase-3, and NO. Improvement of brain neuron density. at days 3 and 7: NeuN. |
Moon et. al [63] | Biodistribution: larger amounts of hMSCs were trapped within the lung after injection and rMSC-EVs accumulated in the infarcted hemisphere in a dose-dependent manner (30–300 μg), but not in the lung and liver. | miRNA-184 and miRNA-210 were essential for promoting neurogenesis and angiogenesis of MSC-EVs.Ki-67 (proliferating cells), DCX (immature progenitor neurons), and vWF (angiogenesis) of both ipsilateral and contralateral hemispheres, 14 days after tMCAO. significantly increased coexpression of Ki-67 and DCX in the subventricular zone (SVZ) of both the contralateral and ipsilateral hemispheres |
Tian et al. [56] | Biodistribution: 24 hours later, the brains were dissected and analyzed by NIRF imaging. the accumulation of undecorated EVReN or Scr-EVReN was most predominant in the liver, followed by the ischemic brain and then the spleens and lungs, whereas the RGD-EVReN had a significantly stronger signal in the ischemic brain | Strong suppression of the inflammatory response (TNFa, IL1b and IL-6). RNA sequencing revealed a set of 7 miRNAs packaged in the EVs inhibited MAPK, an inflammation related pathway. |
Yang et al [37] | Improved cognitive function by decreasing neuronal damage in the hippocampus after cerebral infarction. | Delivery of circ-Rps5, downstream targets, SIRT7 and miR-124-3p, which promoted M2 microglia/macrophage polarization |
Jiang X et al 17 | 1) Survival Improvement: MCAO mice treated with hypoxia-preconditioned exosomes (H-EXO) showed a 25% increase in survival compared to standard exosome treatment. 2) Motor Function Recovery:H-EXO-treated mice exhibited superior motor function recovery, outperforming standard exosome treatment in neurological severity scores and behavioral tests. 3) Sensory Acuity and Motor Ability:H-EXO significantly enhanced sensory acuity recovery, restoration of complex motor abilities, and early recovery in ladder-crossing tests. 4) Infarct Volume Reduction: H-EXO treatment resulted in a substantial reduction in infarct volume relative to the whole brain, as observed through MRI and TTC staining. 5) Pathological Examination: Pathological examination revealed that H-EXO reduced spongy tissue, widened cell gaps, and protected neurons, showcasing improved ischemic brain repair capacity. | miR-216a-5p and miR612, are upregulated in hypoxic stem cell-derived exosomes, providing stronger neuroprotection. Additionally, hypoxic stimulation increases the presence of hypoxia-inducible factor-1a (HIF-1a) in mesenchymal stem cell-derived exosomes, leading to enhanced vascularization of endothelial cells. |
Li et at [97] | OIP5-AS1 could reduce cerebral infarct size, brain edema and mNSS scores in MCAO/R mice and inhibit the expression levels of pyroptosis-related proteins in brain tissue, suggesting that M2 microglia-derived exosomal OIP5-AS1 can alleviate CIRI and inhibit neuronal pyroptosis.M2-Exos had a certain effect on alleviating neuronal apoptosis in the MCAO/R model but had no significant effect on the indicators of neuronal autophagy and ferroptosis. | OIP5-AS1 can alleviate MCAO/R-induced brain damage via the pyroptosis-related proteins indicating that OIP5-AS1 could inhibit the expression of pyroptotic proteins. OIP5-AS1 attenuates neuron damage by reducing the protein stability of TXNIP, thereby inhibiting neuron pyroptosis and reducing CIRI. |
Hong et al [93] | MSCs-derived exosomes ameliorated cerebral I/R injury via enhancing circBBS2 expression. circBBS2 served as an endogenous sponger of miR-494 to upregulate SLC7A11, resulting in ferroptosis inhibition. | UC-MSCs-derived exosomes protected against H/R-induced ferroptosis in SH-SY5Y cells via delivering circBBS2. |
Wang et al [98] | Infarct volume was decreased more evidently of the miR-193b-5p Exos group compared with the Exos group (P<0.01). The infarct volume differed not obviously between the Exos and inhibitor Exos groups (P>0.05). These findings showed that exosomes overexpressing miR-193b-5p aggravate ischemic injury caused by pyroptosis. | miR-193b-5p, which is overexpressed in bone marrow mesenchymal stem cell-derived exosomes. These exosomes mediate the activation of the AIM2 inflammasome and induce cell pyroptosis, a form of programmed cell death. The exosomes are absorbed by OGD/R-induced PC12 cells and ischemic penumbra of cerebral tissue, influencing the inflammatory response and cell death associated with ischemic stroke. |
Zhang et al [91] | Combination therapy (NSCs and exosomes) significantly reduces tissue loss compared to NSC treatment alone. Exosomes further decrease neuronal loss in the postlesional hemisphere. Combination therapy superior therapeutic effects compared to individual treatments. Improved motor function and reduced brain infarction in MCAO/R mice. Accelerated and enhanced therapeutic effects with the addition of NSC-derived exosomes. | Delivery of miRNAs to recipient cells and brain tissues, which then regulate the expression of target genes such as STAT3, PTPN1, and CHUK. |
Xiao et al [17] | BMSC-derived exosomes contribute to functional recovery after ischemic stroke by promoting angiogenesis and reducing neuronal cell damage. Role of Egr2 in this process, which binds to the promoter of SIRT6, enhancing its expression. Increased SIRT6 then suppresses Notch signaling, leading to improved outcomes in cell injury and angiogenesis under OGD/R conditions. BMSC-derived exosome-mediated mitigation of OGD/R-caused cell injury and reduced angiogenesis was dependent on Egr2. Exosomes carrying Egr2 can mitigate brain damage caused by MCAO/R in mice, offering a promising avenue for exosome-based ischemic stroke therapy. | Transferring mRNAs and microRNAs, exosomes with overexpressed microRNA-138-5p from bone marrow-derived mesenchymal stem cells can confer neuroprotection to astrocytes after ischemic stroke by inhibiting LCN2. Exosomes derived from BMSCs with overexpressed CXCR4 promote the activation of microvascular endothelial cells during cerebral ischemia/reperfusion injury. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated