Preprint
Article

Some Results on Coefficient Estimate Problems for Four-Leaf-Type Bounded Turning Functions

Altmetrics

Downloads

58

Views

24

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

15 April 2024

Posted:

24 April 2024

You are already at the latest version

Alerts
Abstract
Let BT4l denotes a subclass of bounded turning functions connected with a four-leaf-type domain. The goal of the study is to probe into coefficients of |b6|, |b7|, |b8|, the bounds of the logarithmic coefficients and the third-order determinants of H3,1, H3,2, H3,3 for functions in this class.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics

1. Introduction and Definitions

Let H be a representation for a family of mappings of the following kind, denoted by g
g ( ξ ) = ξ + n = 2 b n ξ n
in the unit disc U = { ξ C : | z | < 1 } . We refer to S as a subfamily of H , which consists of univalent functions in U .
For functions g H of the form g ( ξ ) = ξ + b 2 ξ 2 + b 3 ξ 3 + · · · and positive integers i and n, the Hankel determinant H i , n g is defined by
H i , n g : = b n a n + 1 b n + i 1 b n + 1 a n + 2 b n + i b n + i 1 b n + i b n + 2 i 2 ( b 1 = 1 ) .
The Hankel determinant H i , n ( g ) was introduced by Pommerrenke [1,2]. The third Hankel determinants are follows:
H 3 , 1 ( g ) = b 3 b 5 + 2 b 2 b 3 b 4 b 3 3 b 4 2 b 2 2 b 5 ,
H 3 , 2 ( g ) = b 4 ( b 3 b 5 b 4 2 ) b 5 ( b 2 b 5 b 3 b 4 ) + b 6 ( b 2 b 4 b 3 2 ) ,
H 3 , 3 ( g ) = b 5 ( b 4 b 6 b 5 2 ) b 6 ( b 3 b 6 b 4 b 5 ) + b 7 ( b 3 b 5 b 4 2 ) .
For the first time, the bounds of the third-order Hankel determinant H 3 , 1 ( g ) for the families of S * , K and R were investigated by Babalola[3]. Recently, the sharp bounds of the Hankel determinant H 3 , 1 ( g ) of subclasses of analytic functions were obtained by many authors [4,5,6,7,8,9,10].
For g S , Let F g ( ξ ) be defined as the logarithmic coefficients of g ( ξ ) ,
F g ( ξ ) = l o g g ( ξ ) ξ = 2 n = 1 δ n ξ n .
The δ n = δ n ( g ) are referred to as the the logarithmic coefficients of g . In the theory of univalent functions, These coefficients play an important role for different estimates. The problem of the best upper bounds for δ n is still open. In fact even the proper order of magnitude is still not known. It is known, however, for the starlike functions that the best bound is | δ n | 1 n ( n 1 ) and that this is not true in general [11].
Using (1) and differentiating (5), we have
δ 1 = 1 2 b 2 , δ 2 = 1 2 ( b 3 1 2 b 2 2 ) , δ 3 = 1 2 ( b 4 b 2 b 3 + 1 3 b 2 3 ) , δ 4 = 1 2 ( b 5 b 4 b 2 + b 3 b 2 2 1 2 b 3 2 1 4 b 2 4 ) , δ 5 = 1 2 ( b 6 b 2 b 5 b 3 b 4 + b 4 b 2 2 + b 2 b 3 2 b 2 3 b 3 + 1 5 b 2 5 ) .
In 2022, Sunthrayuth et al. [12] introduced a subclass of bounded turning functions associated with a four-leaf function defined by
B T 4 l = g S : g ( ξ ) 1 + 5 6 ξ + 1 6 ξ 5 , ( ξ U ) .
Sunthrayuth et al. [12] obtained Kruskal inequality, the bounds of the coefficient inequalities and the two-order Hankel determinant of bounded turning class B T 4 l .
Utilizing the estimates of the coefficients of the Schwartz function, we study the third-order Hankel determinants H 3 , 1 ( g ) , H 3 , 2 ( g ) and H 3 , 3 ( g ) for the class B T 4 l , also, we obtain the bounds of the logarithmic coefficients for g B T 4 l .
Let ω 0 be the family of Schwarz functions. Thus, the function w ω 0 may be expressed as a power series
w ( ξ ) = n = 1 c n ξ n .
Lemma 1
(see [13]). Suppose a function w is member of ω 0 . Then
c 2 1 c 1 2 , | c 3 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | , | c 4 | 1 | c 1 | 2 | c 2 | 2 ,
| c 5 | 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 1 + | c 1 | , | c 6 | 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 ,
| c 7 | 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 | c 4 | 2 1 + | c 1 | .
Lemma 2
(see [14,15]). Suppose a function w is member of ω 0 . then
| c 1 c 3 c 2 2 | 1 | c 1 | 2 , | c 2 c 4 c 3 2 | ( 1 c 1 2 ) 2 , | c 3 c 5 c 4 2 | 1 c 1 2 .
Lemma 3
(see [12]). If g B T 4 l , then
| b 2 | 5 12 , | b 3 | 5 18 , | b 4 | 5 24 , | b 5 | 1 6 .
Lemma 4
(see [11]). If w ω 0 , then c n 1 ( n 1 ) .
Lemma 5
(see [16]). Let w ω 0 , then for γ C , we have
c 2 + γ c 1 2 m a x 1 , γ
Lemma 6
(see [17]). If w ω 0 is in the form (7). Then, we get
| c 3 + γ c 1 c 2 + ς c 1 3 | 1 ,
where ( γ , ς ) D 0 D 1 , with
D 1 = { ( γ , ς ) R 2 : | γ | 1 2 , 1 ς 1 } ,
D 2 = { ( γ , ς ) R 2 : 1 2 | γ | 2 , 4 27 ( | γ | + 1 ) 3 ( | γ | + 1 ) ς 1 } ,
Lemma 7
(see [18]). Let w ω 0 and γ C , we obtain
c 4 + 2 γ c 1 c 3 + γ c 2 2 + 3 γ 2 c 1 2 c 2 + γ 3 c 1 4 m a x { 1 , | γ | 3 } .
Lemma 8
(see [18]). If w ω 0 , then for all γ C , we have
| c 5 + 2 γ c 1 c 4 + 2 γ c 2 c 3 + 3 γ 2 c 1 c 2 2 + 3 γ 2 c 1 2 c 3 + 4 γ 3 c 1 3 c 2 + γ 4 c 1 5 | 1 .

2. The bounds of the third Hankel determinant for g B T 4 l

Theorem 1.
If g B T 4 l , then
| b 6 | 5 36 , | b 7 | 5 42 , | b 8 | 5 48 .
The bounds are sharp.
Proof. 
For a function g B T 4 l , there exists a Schwarz function w ξ , such that
g ξ = 1 + 5 6 w ξ + 1 6 w 5 ξ ,
Comparing the coefficients, we yield
b 2 = 5 12 c 1 , b 3 = 5 18 c 2 , b 4 = 5 24 c 3 , b 5 = 1 6 c 4 ,
b 6 = 5 c 5 + c 1 5 36
b 7 = 5 c 6 + 5 c 1 4 c 2 42 ,
b 8 = 5 c 7 + 5 c 1 4 c 3 + 10 c 1 3 c 2 2 48 .
From (9) and Lemma 1, we have
b 6 1 36 5 | c 5 | + | c 1 | 5 1 36 5 ( 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 1 + | c 1 | ) + | c 1 | 5 = 1 36 ( 5 5 | c 1 | 2 + | c 1 | 5 5 | c 2 | 2 5 | c 3 | 2 1 + | c 1 | ) 1 36 ( 5 5 | c 1 | 2 + | c 1 | 5 ) 5 36 .
From (10) and Lemma 1, we achieve
b 7 1 42 5 | c 6 | + 5 | c 1 | 4 | c 2 | 1 42 5 ( 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 ) + 5 | c 1 | 4 | c 2 | = 1 42 ( 5 5 | c 1 | 2 + 5 | c 1 | 4 | c 2 | 5 | c 2 | 2 5 | c 3 | 2 ) 1 42 5 5 | c 1 | 2 + 5 | c 1 | 4 ( 1 | c 1 | 2 ) = 1 42 5 5 | c 1 | 2 + 5 | c 1 | 4 5 | c 1 | 6 5 42 .
From (11) and Lemma 1, we get
b 8 1 48 5 | c 7 | + 5 | c 1 | 4 | c 3 | + 10 | c 1 | 3 | c 2 | 2 1 48 5 ( 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 | c 4 | 2 1 + | c 1 | ) + 5 | c 1 | 4 | c 3 | + 10 | c 1 | 3 | c 2 | 2 = 1 48 [ 5 5 | c 1 | 2 + ( 5 + 10 | c 1 | 3 ) | c 2 | 2 + 5 | c 1 | 4 | c 3 | 5 | c 3 | 2 5 | c 4 | 2 1 + | c 1 | ] 1 48 [ 5 5 | c 1 | 2 + ( 5 + 10 | c 1 | 3 ) | c 2 | 2 + 5 | c 1 | 4 ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) ] = 1 48 [ 5 5 | c 1 | 2 + 5 | c 1 | 4 5 | c 1 | 6 + 5 5 | c 1 | + 10 | c 1 | 3 + 5 | c 1 | 4 1 + | c 1 | | c 2 | 2 ] .
Setting c = | c 1 | and d = | c 2 | , we get
b 8 1 48 ϵ 1 ( c , d )
where
ϵ 1 ( c , d ) = 5 5 c 2 + 5 c 4 5 c 6 + 5 5 c + 10 c 3 + 5 c 4 1 + c d 2 .
The critical points of ϵ 1 satisfy
ϵ 1 c = 10 c + 20 c 3 30 c 5 + 15 c 4 + 40 c 3 + 30 c 2 ( 1 + c ) 2 d 2 , ϵ 1 d = 10 10 c + 20 c 3 + 10 c 4 1 + c d = 0 .
Applying numerical computations, we have
c 0 = 0 , d 0 = 0 , c 1 = 0.8668 , d 1 = 0.7940 , c 2 = 0.8668 , d 2 = 0.7940 . Thus, in ( 0 , 1 ) × ( 0 , 1 c 2 ) , there is no critical points which satisfies 0 d 1 c 2 . For c = 0 ,
ϵ 1 ( 0 , d ) = 5 5 d 2 5 .
For d = 0 ,
ϵ 1 ( c , 0 ) = 5 5 c 2 + 5 c 4 5 c 6 5 .
For d = 1 c 2 ,
ϵ 1 ( c , 1 c 2 ) = 5 c 2 + 10 c 3 5 c 4 15 c 5 + 5 c 7 = η 1 ( c ) η 1 ( 0.7202 ) = 2.5799 .
Thus, we have
| b 8 | 5 48 .
The bounds hold for c = 0 . The proof of Theorem 1 is completed. □
Theorem 2.
If g B T 4 l , then
H 2 , 3 ( g ) 0.044516 .
Proof. 
Let g B T 4 l . From (8), we receive
H 2 , 3 g = | b 3 b 5 b 4 2 | = 5 1728 16 c 2 c 4 15 c 3 2 = 5 1728 | 15 ( c 2 c 4 c 3 2 ) + c 2 c 4 | .
Utilizing inequality, Lemma 1 and Lemma 2 in (12), we get
H 2 , 3 g 5 1728 [ 15 | c 2 c 4 c 3 2 | + | c 2 | | c 4 | ] 5 1728 [ 15 ( 1 | c 1 | 2 ) 2 + | c 2 | ( 1 | c 1 | 2 | c 2 | 2 ) ] = 5 1728 [ 15 30 | c 1 | 2 + 15 | c 1 | 4 + ( 1 | c 1 | 2 ) | c 2 | | c 2 | 3 ) ] 5 1728 [ 15 30 | c 1 | 2 + 15 | c 1 | 4 + ( 1 | c 1 | 2 ) | c 2 | | c 2 | 3 ] .
Let | c 1 | = c and | c 2 | = d , we obtain
H 2 , 3 g 5 1728 ϵ 2 ( c , d ) .
Consider
ϵ 2 c = 60 c + 60 c 3 2 c d = 0 , ϵ 2 d = 1 c 2 3 d 2 = 0 .
Applying numerical computations, we get
c 1 = 0 , d 1 = 0.5774 , c 2 = 0 , d 2 = 0.5774 , c 3 = 1 , d 3 = 0 , c 4 = 1 , d 4 = 0 , c 5 = 0.9998 , d 5 = 0.0111 , c 6 = 0.9998 , d 6 = 0.0111 . Thus, there is no critical point in ( 0 , 1 ) × ( 0 , 1 c 2 ) .
(1)For d = 0 ,
ϵ 2 ( c , 0 ) = 15 30 c 2 + 15 c 4 15 .
(2)For c = 0 ,
ϵ 2 ( 0 , d ) = 15 + d d 3 ϵ 2 ( 0 , 3 3 ) = 2 3 + 135 9 = 15.384888 .
(3)For d = 1 c 2 ,
ϵ 2 ( c , 1 c 2 ) = 15 29 c 2 + 13 c 4 + c 6 15 .
Therefore, we yield
H 2 , 3 ( g ) 10 3 + 675 15552 = 0.044516 .
The proof of Theorem 2 is completed. ☐
Theorem 3.
If g B T 4 l , then
H 3 , 1 ( g ) 3025 46656 = 0.064836 .
Proof. 
Assume that g B T 4 l . From (8) and (2), we achieve
H 3 , 1 g = 1 46656 2250 c 1 c 2 c 3 1000 c 2 3 2025 c 3 2 + 2160 c 2 c 4 1350 c 1 2 c 4 = 1 46656 1000 c 2 ( c 1 c 3 c 2 2 ) + 1250 c 1 c 2 c 3 + 2025 ( c 2 c 4 c 3 2 ) + 135 c 2 c 4 1350 c 1 2 c 4
By applying the triangle inequality, Lemma 1 and Lemma 2 in (13), we receive
46656 H 3 , 1 ( g ) 1000 | c 2 | | c 1 c 3 c 2 2 | + 1250 | c 1 | | c 2 | | c 3 | + 2025 | c 2 c 4 c 3 2 | + 135 | c 2 | | c 4 | + 1350 | c 1 | 2 | c 4 | 1000 | c 2 | ( 1 | c 1 | 2 ) + 1250 | c 1 | | c 2 | ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) + 2025 ( 1 | c 1 | 2 ) 2 + 135 | c 2 | ( 1 | c 1 | 2 | c 2 | 2 ) + 1350 | c 1 | 2 ( 1 | c 1 | 2 | c 2 | 2 ) = 2025 2700 | c 1 | 2 + 675 | c 1 | 4 + ( 1135 + 1250 | c 1 | 1135 | c 1 | 2 1250 | c 1 | 3 ) | c 2 | 1350 | c 1 | 2 | c 2 | 2 135 + 1385 | c 1 | 1 + | c 1 | | c 2 | 3 .
Setting | c 1 | = c and | c 2 | = d , we have
46656 H 3 , 1 g 2025 2700 c 2 + 675 c 4 + ( 1135 + 1250 c 1135 c 2 1250 c 3 ) d 1350 c 2 d 2 135 + 1385 c 1 + c d 3 = ϵ 3 ( c , d )
where c [ 0 , 1 ] and d [ 0 , 1 c 2 ] .
Taking the partial derivative with respect to c and y respectively, and we have
ϵ 3 c = 5400 c + 2700 c 3 + ( 1250 2270 c 3405 c 2 ) d 2700 c d 2 1250 ( 1 + c ) 2 d 3
and
ϵ 3 d = 1135 + 1250 c 1135 c 2 1250 c 3 2700 c 2 d 405 + 4155 c 1 + c d 2 .
Setting ϵ 3 c = ϵ 3 d = 0 and simplifying, we yield
5400 c 10800 c 2 2700 c 3 + 5400 c 4 + 2700 c 5 + ( 1250 + 230 c 6695 c 2 9080 c 3 3405 c 4 ) d 2700 c ( 1 + c ) 2 d 2 1250 d 3 = 0 , 1135 + 2358 c + 115 c 2 2385 c 3 1250 c 4 2700 c 2 ( 1 + c ) d ( 405 + 4155 c ) d 2 = 0 .
Applying Newton’s methods, we yield
c 1 = 1 , d 1 = 0 , c 2 = 0.1018 , d 2 = 1.3080 , c 3 = 1.0726 , d 3 = 1.1909 , c 4 = 1.7878 d 4 = 0.3706 , c 5 = 3.3060 , d 5 = 6.5565 , c 6 = 1.3977 , d 6 = 0.0899 . Thus, there is no critical point in ( 0 , 1 ) × ( 0 , 1 c 2 ) .
For c = 0 ,
ϵ 3 ( 0 , d ) = 2025 + 1135 d 135 d 3 ϵ 3 ( 0 , 1 ) = 3025 .
For d = 0 ,
ϵ 3 ( c , 0 ) = 2025 2700 c 2 + 675 c 4 2025 .
For d = 1 c 2 ,
ϵ 3 ( c , 0 ) = 3025 4665 c 2 + 1605 c 4 + 35 c 6 ϵ 3 ( 0 , 0 ) = 3025 .
Thus, we obtain
H 3 , 1 ( g ) 3025 46656 = 0.064836 .
The proof of Theorem 3 is completed. ☐
Theorem 4.
If g B T 4 l , then
| b 2 b 5 b 3 b 4 | 15.503407 432 = 0.035888 .
Proof. 
Let g B T 4 l . From (8), we obtain
| b 2 b 5 b 3 b 4 | = 1 432 | 30 c 1 c 4 25 c 2 c 3 | .
Applying Lemma 1 and the triangle inequality in (14), we get
| b 2 b 5 b 3 b 4 | 1 432 [ 30 | c 1 | ( 1 | c 1 | 2 | c 2 | 2 ) + 25 | c 2 | ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) ] = 1 432 30 | c 1 | 30 | c 1 | 3 + ( 25 25 | c 1 | 2 ) | c 2 | 30 | c 1 | | c 2 | 2 25 1 + | c 1 | | c 2 | 3 .
Setting | c 1 | = c and | c 2 | = d , we yield
| b 2 b 5 b 3 b 4 | 1 432 ϵ 4 ( c , d ) .
Taking the partial derivative with respect to c, and d respectively, we get
ϵ 4 c = 30 90 c 2 50 c d 30 d 2 + 25 ( 1 + c ) 2 d 3
and
ϵ 4 d = 25 25 c 2 60 c d 75 1 + c d 2 .
Setting ϵ 4 c = ϵ 4 d = 0 ,and simplifying, we receive
90 c 4 180 c 3 60 c 2 + 60 c + 30 50 c ( 1 + c ) 2 d 30 ( 1 + c ) 2 d 2 + 25 d 3 = 0 , 25 c 3 25 c 2 + 25 c + 25 60 ( c 2 + c ) d 75 d 2 = 0 .
Applying Newton’s methods, we have c 1 = 1 , d 1 = 0 , c 2 = 0.4098 , d 2 = 0.8978 , c 3 = 0.4271 , d 3 = 0.4258 , c 4 = 0.4550 d 4 = 0.2931 , c 5 = 0.7258 , d 5 = 0.3023 . Therefore, we get ε 4 ( c , d ) ε 4 ( 0.4271 , 0.4258 ) = 15.503407 .
(a)For c = 0 ,
ε 4 ( 0 , d ) = 25 d 25 d 3 ε 4 ( 0 , 3 3 ) = 50 3 9 .
(b)For d = 0 ,
ε 4 ( c , 0 ) = 30 c 30 c 3 ε 4 ( 3 3 , 0 ) = 20 3 3 = 11.546666 .
(b)For d = 1 c 2 ,
ε 4 ( c , 1 c 2 ) = 25 c 20 c 3 5 c 5 = η 2 ( c ) = η 2 ( 0.6017 ) = 10.2913 .
Thus, we get
| b 2 b 5 b 3 b 4 | 15.503407 432 = 0.035888 .
Theorem 5.
If g B T 4 l , then
| b 2 b 4 b 3 2 | 200.27 2592 = 0.077265 .
Proof. 
Let g B T 4 l . From (8), we get
| b 2 b 4 b 3 2 | = 1 2592 | 225 c 1 c 3 200 c 2 2 | = 1 2592 | 200 ( c 1 c 3 c 2 2 ) + 25 c 1 c 3 | .
Applying Lemma 1, Lemma 2 and the triangle inequality, we receive
| b 2 b 4 b 3 2 | 1 2592 [ 200 ( 1 | c 1 | 2 ) + 25 | c 1 | ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) ] = 1 2592 200 + 25 | c 1 | 200 | c 1 | 2 25 | c 1 | 3 | c 1 | 1 + | c 1 | | c 2 | 2 1 2592 200 + 25 | c 1 | 200 | c 1 | 2 25 | c 1 | 3 = 1 2592 η 3 ( | c 1 | ) 1 2592 η 3 ( 0.0618 ) = 200.2700 2592 = 0.077265 .
Theorem 6.
If g B T 4 l , then
| H 3 , 2 ( g ) | 0.025986 .
Proof. 
Let g B T 4 l . From Lemma 3, Theorem 1, Theorem 2, Theorem 4 and Theorem 5, we yield
| H 3 , 2 ( g ) | | b 4 | | b 3 b 5 b 4 2 | + | b 5 | | b 2 b 5 b 3 b 4 | + | b 6 | | b 2 b 4 b 3 2 | = 5 24 × 0.044516 + 1 6 × 0.035888 + 5 36 × 0.077265 = 0.025986 .
Theorem 7.
If g B T 4 l , then
| b 4 b 6 b 5 2 | 24.385252 864 = 0.028224 .
Proof. 
Let f B T 4 l . From (8) and (9), we have
| b 4 b 6 b 5 2 | = 1 864 | 25 c 3 c 5 24 c 4 2 + 5 c 3 c 1 5 | = 1 864 | 24 ( c 3 c 5 c 4 2 ) + c 3 c 5 + 5 c 3 c 1 5 | .
Using Lemma 1 and 2, we have
| b 4 b 6 b 5 2 | 1 864 ( 24 | c 3 c 5 c 4 2 | + | c 3 | | c 5 | + 5 | c 3 | | c 1 5 | ) 1 864 [ 24 ( 1 | c 1 | 2 ) + | c 3 | ( 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 1 + | | c 1 ) + 5 | c 1 | 5 | c 3 | ] = 1 864 [ 24 24 | c 1 | 2 + ( 1 | c 1 | 2 + 5 | c 1 | 5 | c 2 | 2 ) | c 3 | 1 1 + | c 1 | | c 3 | 3 ] .
Setting c = | c 1 | , d = | c 2 | and e = | c 3 | , we yield
| b 4 b 6 b 5 2 | 1 864 ϵ 5 ( c , d , e )
where ϵ 5 ( c , d , e ) = 24 24 c 2 + ( 1 c 2 + 5 c 5 d 2 ) e 1 1 + c e 3 and ( c , d , e ) Ω = { ( c , d , e ) : 0 1 , 0 d 1 c 2 , 0 e 1 c 2 d 2 1 + c } . Consider
ϵ 5 d = 2 d e 0 ,
thus there are no points in Ω .
(1)For c = 0 ,
ϵ 5 ( 0 , d , e ) = 24 + ( 1 d 2 ) e e 3 = η 4 ( d , e ) .
It is evident that there is on point in ( 0 , 1 ) × ( 0 , 1 d 2 ) .
(2)For d = 0 ,
ϵ 5 ( c , 0 , e ) = 24 24 c 2 + ( 1 c 2 + 5 c 5 ) e 1 1 + c e 3 = η 5 ( c , e ) .
Partial derivative of η 5 with respect to c, and then with respect to e, we achieve
η 5 c = 48 c + ( 2 c + 25 c 4 ) e + 1 ( 1 + c ) 2 e 3 ,
and
η 5 e = 1 c 2 + 5 c 5 3 1 + c e 2 .
Setting η 5 c = η 5 e = 0 and simplifying, we yield
48 c ( 1 + c ) 2 + ( 25 c 6 + 50 c 5 + 25 c 4 2 c 3 4 c 2 2 c ) e + e 3 = 0 , 5 c 6 + 5 c 5 c 3 c 2 + c + 1 3 e 2 = 0 .
We obtain a critical point ( 0.0039 , 0.5785 ) , thus, we have η 5 ( c , e ) η 5 ( 0.0039 , 0.5785 ) = 24.385252 .
(3)For e = 0 ,
ϵ 5 ( c , d , 0 ) = 24 24 c 2 24 .
(4)For e = 1 c 2 d 2 1 + c ,
ϵ 5 ( c , d , 1 c 2 d 2 1 + c ) = 24 + c 24 c 2 2 c 3 + 6 c 5 5 c 7 + 5 c 5 + 4 c 3 c 2 4 c + 1 1 + c d 2 + 2 + 4 c ( 1 + c ) 2 d 4 + 1 ( 1 + c ) 4 d 6 = η 6 ( c , d ) η 6 ( 0.0016 , 0.5767 ) = 24.148169 .
(5)For c = d = 0
ϵ 5 ( 0 , 0 , e ) = 24 + e e 3 = η 7 ( e ) η 7 ( 3 3 ) = 24 + 2 3 9 = 24.384889 .
(6)For c = e = 0 ,
ϵ 5 ( 0 , d , 0 ) = 24 .
(7)For d = e = 0 ,
ϵ 5 ( c , 0 , 0 ) = 24 + e e 3 24.384889 .
(8)For e = 0 , d = 1 c 2 ,
ϵ 5 ( c , 1 c 2 , 0 ) = 24 24 c 2 24 .
(9)For d = 0 and e = 1 c 2 ,
ϵ 5 ( c , 0 , 1 c 2 ) = 24 + c 24 c 2 2 c 3 + 6 c 5 5 c 7 = η 8 ( c ) η 8 ( 0.0206 ) = 24.0104 .
(10)For c = 0 , e = 1 d 2
ϵ 5 ( 0 , d , 1 d 2 ) = 24 + d 2 2 d 4 + d 6 = η 9 ( d ) η 9 ( 3 3 ) = 24.148148 .
Thus, we get
| b 4 b 6 b 5 2 | 24.385252 864 = 0.035888 .
Theorem 8.
If g B T 4 l , then
| b 3 b 6 b 4 b 5 | 5 144 .
The bound is sharp.
Proof. 
Let g B T 4 l . From (8) and (9), we receive
| b 3 b 6 b 4 b 5 | = 1 1296 | 50 c 2 c 5 45 c 3 c 4 + 50 c 2 c 1 5 | .
Using Lemma 1, we get
| b 3 b 6 b 4 b 5 | 1 1296 ( 50 | c 2 | | c 5 | + 45 | c 3 | | c 4 | + 50 | c 2 | | c 1 5 | ) 1 1296 [ 50 | c 2 | ( 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 1 + | c 1 | ) + 45 | c 3 | ( 1 | c 1 | 2 | c 2 | 2 ) + 50 | c 1 | 5 | c 2 | ] = 1 1296 [ ( 50 50 | c 1 | 2 + 50 | c 1 | 5 ) | c 2 | 50 | c 2 | 3 + ( 45 45 | c 1 | 2 45 | c 2 | 2 ) | c 3 | 50 | c 2 | 1 + | c 1 | | c 3 | 2 ] .
By setting | c 1 | = c , | c 2 | = d and | c 3 | = e , we have
| b 3 b 6 b 4 b 5 | 1 1296 Ψ ( c , d , e )
where Ψ ( c , d , e ) = ( 50 50 c 2 + 50 c 5 ) d 50 d 3 + ( 45 45 c 2 45 d 2 ) e 50 d 1 + c e 2 , ( c , d , e ) Ω . Differentiating partially with respect to c, d and e, respectively, we get
Ψ c = ( 100 c + 250 c 4 ) d 90 c e + 50 d ( 1 + c ) 2 e 2 ,
Ψ d = 50 50 c 2 + 50 c 5 150 d 2 90 d e 50 1 + c e 2 ,
and
Ψ e = 45 45 c 2 45 d 2 100 d 1 + c e .
By putting Ψ c = Ψ d = Ψ e = 0 , and simplifying, we obtain
( 250 c 6 + 500 c 5 + 250 c 4 100 c 3 200 c 2 100 c ) d 900 c ( 1 + c ) 2 e + 50 d e 2 = 0 , 50 c 6 + 50 c 5 50 c 3 50 c 2 + 50 c + 50 150 ( 1 + c ) d 2 90 ( 1 + c ) d e 50 e 2 = 0 , 45 c 3 45 c 2 + 45 c + 45 45 ( 1 + c ) d 2 100 d e = 0 .
By a numberical caculation, we get
c 1 = 1 , d 1 = d , e 1 = 0 , c 2 = 0.8441 , d 2 = 0.4127 , e 2 = 0.2354 , c 3 = 0.8441 , d 3 = 0.4127 , e 3 = 0.2354 . Thus, there’s no critical point which satisfies 0 c 1 and 0 d 1 c 2 .
(1)For c = 0 ,
Ψ ( 0 , d , e ) = 50 d 50 d 3 + ( 45 45 d 2 ) e 50 d e 2 = Λ 1 ( d , e ) .
Consider
Λ 1 d = 50 150 d 2 90 d e 50 e 2 = 0 , Λ 1 e = 45 45 d 2 100 d e = 0 .
A numberrical caculation that there is no critical point in ( 0 , 1 ) × ( 0 , 1 d 2 ) .
(2)For d = 0 ,
Ψ ( c , 0 , e ) = ( 45 45 c 2 ) e 45 ( 1 c 2 ) 2 45 .
(3)For e = 0 ,
Ψ ( c , d , 0 ) = ( 50 50 c 2 + 50 c 5 ) d 50 d 3 = Λ 2 ( c , d ) Λ 2 ( 0.7368 , 0.2828 ) = 8.403278 .
(4)For e = 1 c 2 d 2 1 + c ,
Ψ ( c , d , 1 c 2 d 2 1 + c ) = 45 90 c 2 + 45 c 4 + ( 50 c 50 c 3 + 50 c 5 ) d + ( 90 + 45 c + 45 c 2 ) d 2 + 50 150 c 1 + c d 3 + 45 1 + c d 4 50 ( 1 + c ) 3 d 5 = Λ 3 ( c , d ) .
Differentiating Λ 3 partially with respect to c and d, we yield
Λ 3 c = 180 c + 180 c 3 + ( 50 150 c 2 + 250 c 4 ) d + ( 45 + 90 c ) d 2 100 d 3 ( 1 + c ) 2 45 d 4 ( 1 + c ) 2 + 150 d 5 ( 1 + c ) 4
and
Λ 3 d = 50 c 50 c 3 + 50 c 5 + ( 180 + 90 c + 90 c 2 ) d + 150 450 c 1 + c d 2 + 180 d 3 1 + c 250 d 4 ( 1 + c ) 3 .
Setting Λ 3 c = Λ 3 d = 0 and simplifying, we receive
180 c 7 + 720 c 6 + 900 c 5 900 c 3 720 c 2 180 c + ( 250 c 8 + 1000 c 7 + 1350 c 6 + 400 c 5 600 c 4 400 c 3 + 150 c 2 + 200 c + 50 ) d + ( 90 c 5 + 405 c 4 + 720 c 3 + 630 c 2 + 270 c + 45 ) d 2 100 ( 1 + c ) 2 d 3 45 ( 1 + c ) 2 d 4 + 150 d 5 = 0 , 50 c 8 + 150 c 7 + 100 c 6 100 c 5 100 c 4 + 100 c 3 + 150 c 2 + 50 c + ( 90 c 5 + 360 c 4 + 360 c 3 180 c 2 450 c 180 ) d + ( 450 c 3 750 c 2 150 c + 150 ) d 2 + 180 ( 1 + c ) 2 d 3 250 d 4 = 0
Applying Newton’s methods, we recieve
c 1 = 1 d 1 = 0 , c 2 = 0 , d 2 = 0 , c 3 = 0.8336 , d 3 = 0.4141 , c 4 = 0.9194 , d 4 = 0.0957 . Thus, there is no critical point satisfing 0 c 1 and 0 d 1 c 2 .
(5)For d = c = 0 ,
Ψ ( 0 , 0 , e ) = 45 e 45 .
(6)For e = d = 0 ,
Ψ ( c , 0 , 0 ) = 0 .
(7)For c = e = 0 ,
Ψ ( 0 , d , 0 ) = 50 d 50 d 3 = Λ 4 ( d ) Λ 4 ( 3 3 ) = 100 3 9 = 19.2444 .
(8)For d = 1 c 2 and e = 0 ,
Ψ ( c , 1 c 2 , 0 ) = 50 c 2 100 c 4 + 50 c 5 + 50 c 6 50 c 7 = Λ 5 ( c ) Λ 5 ( 0.7145 ) = 10.6734 .
(9)For e = 1 c 2 and d = 0 ,
Ψ ( c , 0 , 1 c 2 ) = 45 ( 1 c 2 ) 2 45 .
(10)For e = 1 d 2 and c = 0 ,
Ψ ( 0 , d , 1 c 2 ) = 45 90 d 2 + 50 d 3 + 45 d 4 50 d 5 = Λ 6 ( d ) Λ 6 ( 0 ) = 45 .
Hence, we get
| b 3 b 6 b 4 b 5 | 45 1296 = 5 144 .
The equality holds for c 1 = c 2 = 0 and c 3 = c 4 = 1 .
Theorem 9.
If g B T 4 l , then
| H 3 , 3 ( g ) | 0.016103 .
Proof. 
Let g B T 4 l . From Lemma 3, Theorem 1, Theorem 2, Theorem 3 and 4, we receive
| H 3 , 3 ( g ) | | b 5 | | b 4 b 6 b 5 2 | + | b 6 | | b 3 b 6 b 4 b 5 | + | b 7 | | b 3 b 5 b 4 2 | 1 6 × 0.035888 + 5 36 × 5 144 + 5 42 × 0.044516 = 0.016103 .

3. The bounds of the logarithmic coefficients for g B T 4 l

Theorem 10.
If g B T 4 l , then
| δ 1 | 5 24 , | δ 2 | 5 36 , | δ 3 | 5 48 , | δ 4 | 13827 165888 = 0.083351 , | δ 5 | 173400 2488320 = 0.069686 .
The first three bounds are the best possible.
Proof. 
Let g B T 4 l . From(6),(8) and (9), we have
δ 1 = 5 c 1 24 ,
δ 2 = 5 36 ( c 2 5 8 c 1 2 ) ,
δ 3 = 5 48 ( c 3 5 9 c 1 c 2 + 25 216 c 1 3 ) ,
δ 4 = 1 165888 ( 13824 c 4 7200 c 1 c 3 + 4000 c 1 2 c 2 3200 c 2 2 625 c 1 4 ) .
δ 5 = 1 2488320 ( 172800 c 5 86400 c 1 c 4 72000 c 2 c 3 + 45000 c 1 2 c 3 + 40000 c 1 c 2 2 5000 c 1 3 c 2 + 37685 c 1 5 ) .
Applying Lemma 4 to (15), we have
| δ 1 | 5 24
Applying Lemma 5 to (16), we get
| δ 2 | 5 36 .
Utilizing the triangle inequality and Lemma 6 with γ = 5 9 and ζ = 25 216 , we yield
| δ 3 | 5 48 .
Rearranging (18), we obtain
| δ 4 | = 1 165888 | 6912 ( c 4 c 1 c 3 1 2 c 2 2 + 3 4 c 1 2 c 2 1 8 c 1 4 ) + 6912 c 4 288 c 1 c 3 + 256 c 2 2 1184 c 1 2 c 2 + 239 c 1 4 | 1 165888 | 6912 ( c 4 c 1 c 3 1 2 c 2 2 + 3 4 c 1 2 c 2 1 8 c 1 4 ) | + 1 165888 | 6912 c 4 288 c 1 c 3 + 256 c 2 2 1184 c 1 2 c 2 + 239 c 1 4 | = 1 165888 D 1 + 1 165888 D 2 ,
where D 1 = | 6912 ( c 4 c 1 c 3 1 2 c 2 2 + 3 4 c 1 2 c 2 1 8 c 1 4 ) |
D 2 = | 6912 c 4 288 c 1 c 3 + 256 c 2 2 1184 c 1 2 c 2 + 239 c 1 4 | .
Using Lemma 7 with γ = 1 2 , we get D 1 6912 . Rearranging (20), we get
D 2 = | 6912 c 4 288 c 1 ( c 3 + 2 c 1 2 c 2 + c 1 4 ) + 256 c 2 2 608 c 1 2 c 2 + 527 c 1 4 | .
Using Lemma 1, Lemma 6 and the triangle inequality, we receive
D 2 6912 ( 1 | c 1 | 2 | c 2 | 2 ) + 288 | c 1 | + 256 | c 2 | 2 + 608 | c 1 | 2 | c 2 | + 527 | c 1 | 4 = 6912 + 288 | c 1 | 6912 | c 1 | 2 + 527 | c 1 | 4 + 608 | c 1 | 2 | c 2 | 6656 | c 2 | 2 = Υ 1 ( c , d )
where | c 1 | = c , | c 2 | = d .
Consider
Υ 1 c = 288 13824 c + 2108 c 3 + 1216 c d = 0 , Υ 1 d = 608 c 2 13312 d = 0
Applying Newton’s methods, we have
c 1 = 2.5173 d 1 = 0.2894 , c 2 = 2.5173 , d 2 = 0.2942 , c 3 = 0.0208 , d 3 = 0 . Thus, in ( 0 , 1 ) × ( 0 , 1 c 2 ) , there is no critical point.
(1)For c = 0 ,
Υ 1 ( 0 , d ) = 6912 6912 d 2 6912 .
(2)For d = 0 ,
Υ 1 ( c , 0 ) = 6912 + 288 c 6912 c 2 + 527 c 4 = γ 1 ( c ) γ 1 ( 0.0208 ) = 6915 .
(3)For d = 1 c 2 ,
Υ 1 ( c , 1 c 2 ) = 256 + 288 c + 7008 c 2 6737 c 4 = γ 2 ( d ) γ 2 ( 0.7313 ) = 2287.6 .
Therefore, we have
| γ 4 | 13827 165888 = 0.083351 .
Rearranging (19), we obtain
| δ 5 | = 1 2488320 | 86400 ( c 5 c 1 c 4 c 2 c 3 + 3 4 c 1 c 2 2 + 3 4 c 1 2 c 3 1 2 c 1 3 c 2 + 1 16 c 1 5 ) + 86400 c 5 + 14400 c 2 c 3 19800 c 1 2 c 3 24800 c 1 c 2 2 + 38200 c 1 3 c 2 + 32285 c 1 5 | 1 2488320 | 86400 ( c 5 c 1 c 4 c 2 c 3 + 3 4 c 1 c 2 2 + 3 4 c 1 2 c 3 1 2 c 1 3 c 2 + 1 16 c 1 5 ) | + 1 2488320 | 86400 c 5 + 14400 c 2 c 3 19800 c 1 2 c 3 24800 c 1 c 2 2 + 38200 c 1 3 c 2 + 32285 c 1 5 | = 1 2488320 D 3 + 1 2488320 D 4 ,
where D 3 = | 86400 ( c 5 c 1 c 4 c 2 c 3 + 3 4 c 1 c 2 2 + 3 4 c 1 2 c 3 1 2 c 1 3 c 2 + 1 16 c 1 5 ) | and
D 4 = | 86400 c 5 + 14400 c 2 c 3 19800 c 1 2 c 3 24800 c 1 c 2 2 + 38200 c 1 3 c 2 + 32285 c 1 5 | .
Using Lemma 8 with γ = 1 2 , we get D 3 86400 . Rearranging (21), we get
D 4 = | 86400 c 5 + 14400 c 2 ( c 3 2 c 1 c 2 + c 1 3 ) 19800 c 1 2 ( c 3 c 1 c 2 c 1 3 ) + 4000 c 1 c 2 2 + 4000 c 1 3 c 2 + 12485 c 1 5 | .
Utilizing the triangle inequality, Lemma 1, Lemma 6 and 5, we obtain
D 4 86400 | c 5 | + 14400 | c 2 | | c 3 2 c 1 c 2 + c 1 3 | + 19800 | c 1 | 2 | c 3 c 1 c 2 c 1 3 | + 4000 | c 1 | | c 2 | 2 + 4000 | c 1 | 3 | c 2 | + 12485 | c 1 | 5 86400 ( 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 1 + | c 1 | ) + 14400 | c 2 | + 19800 | c 1 | 2 + 4000 | c 1 | | c 2 | 2 + 4000 | c 1 | 3 | c 2 | + 12485 | c 1 | 5 = 86400 666000 | c 1 | 2 + 12485 | c 1 | 5 + ( 14400 + 4000 | c 1 | 3 ) | c 2 | + ( 86400 + 4000 | c 1 | ) | c 2 | 2 86400 | c 3 | 2 1 + | c 1 | 86400 666000 | c 1 | 2 + 12485 | c 1 | 5 + ( 14400 + 4000 | c 1 | 3 ) | c 2 | + ( 86400 + 4000 | c 1 | ) | c 2 | 2 = Υ 2 ( c , d )
where | c 1 | = c , | c 2 | = d . Consider
Υ 2 c = 133200 c + 62425 c 4 + 12000 c 2 d + 4000 d 2 = 0 , Υ 2 d = 14400 + 4000 c 3 + ( 172800 + 8000 c ) d = 0 .
We have a critical point ( 0.000209 , 0.083334 ) . Thus, we get Υ 2 ( c , d ) Υ 2 ( 0.000209 , 0.083334 ) = 86999.968 .
(1)For c = 0 ,
Υ 2 ( 0 , d ) = 86400 + 14400 d 86400 d 2 = γ 3 ( d ) γ 3 ( 1 12 ) = 87000 .
(2)For d = 0 ,
Υ 2 ( c , 0 ) = 86400 66600 c 2 + 12485 c 5 864000 .
(3)For d = 1 c 2 ,
Υ 2 ( c , 1 c 2 ) = 14400 + 4000 c + 91800 c 2 4000 c 3 86400 c 4 + 12485 c 5 = γ 4 ( c ) γ 4 ( 0.7771 ) = 43098 . .
Therefore, we receive
| δ 5 | 173400 2488320 = 0.069686 .
The proof of Theorem 10 is completed. ☐

4. Conclusion

In this paper, we considered a subclass of bounded turning functions linked with a four-leaf-type domain. Utilizing the estimates of the coefficients of the Schwartz function, we obtained the coefficients of | b 6 | , | b 7 | , | b 8 | , and the third-order determinants of H 3 , 2 , H 3 , 3 of the class B T 4 l for the first time. Also, one can easily use this new methodology to obtain the bounds the coefficients of | b 6 | , | b 7 | , | b 8 | , and the third-order Hankel determinant of H 3 , 2 , H 3 , 3 for other subclasses of univalent functions.

Funding

No Funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors state that they have no conflicts of interest.

References

  1. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, S1-41, 111–122. [Google Scholar] [CrossRef]
  2. Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
  3. Babalola, K. O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
  4. Banga, S.; Kumar, S. S. The sharp bounds of the second and third Hankel determinats for the class SL*. Math. Slovaca. 2020, 70, 849–862. [Google Scholar] [CrossRef]
  5. Riaz, A.; Raza, M.; Binyamin, M. A.; Saliu, A. The second and third Hankel determinants for starlike and convex functions associated with three-leaf function. Heliyon 2023, 9, e12748. [Google Scholar] [CrossRef] [PubMed]
  6. Riaz, A.; Raza, M.; Thomas, D. K. The third Hankel determinant for starlike functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar] [CrossRef]
  7. Riaz, A.; Raza, M. The third Hankel determinant for starlike and convex functions associated with lune. Bull. Des Sci. MathéMatiques 2023, 183, 103289. [Google Scholar] [CrossRef]
  8. Kowalczyk, B.; Lecko., A.; Thomas, D. K. The sharp bound of the third Hankel determinant for Convex functions of order -1/2. Journal of Mathematical Inequalities 2023, 17, 191–204. [Google Scholar] [CrossRef]
  9. Wang, Z. G.; Raza, M.; Arif, M.; et al. On the Third and Fourth Hankel Determinants for a Subclass of Analytic Functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
  10. Shi, L.; Arif, M. Certain Sharp Coefficient Results on a Subclass of Starlike Functions Defined by the Quotient of Analytic Functions. Fractal and Fractional. 2023, 7, 195. [Google Scholar] [CrossRef]
  11. Duren, P. L. Univalent Funtions; Springer: New York, NY, USA, 1983. [Google Scholar]
  12. Sunthrayuth, P.; Jawarneh, Y.; Naeem, M.; Iqbal, N. Some sharp results on coefficient estimate problems for four-leaf-type bounded turning functions. Journal of Function Spaces. 2022, 2022, Article ID 8356125, 10 pages.
  13. Carlson, F. Sur les coeffcients d’une fonction bornée dans le cercle unité. Ark. Mat. Astr. Fys. 1940, 27A, 8. [Google Scholar]
  14. Zaprawa, P. Inequalities for the Coefficients of Schwarz Functions. Bulletin of the Korean Mathematical Society., 2023, 46, 144. [Google Scholar] [CrossRef]
  15. Zaprawa, P. On a coefficient inequality for Carathéodory Functions. Results Math., 2024, 79, 30. [Google Scholar] [CrossRef]
  16. Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
  17. Prokhorov D V, Szynal J. Inverse coefficients for (α,β)-convex functions. Ann Univ Mariae Curie-Sklodowska, 1981, 35(A): 125–143.
  18. Efraimidis, I. A generalization of Livingston,s coefficient inequalities for functions with positive real part. J Math Anal Appl, 2016, 435: 369-379.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated