Altmetrics
Downloads
135
Views
114
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
26 April 2024
Posted:
28 April 2024
You are already at the latest version
Algorithm 1:MutIn algorithm-based-discriminant channels selection |
Algorithm 2:The MNE steps implemented to enhance EEG data. |
1 Get EEG data from selected channels
2 Handle poor channels providing extremely noisy data to be usable, based on good signals delivered by other channels.
3 Discard erroneous data gaps and spans.
4 Calculate the variance of the data.
5 Remove the mean and scale to the unit variance to standardize features.
6 Create epoch of data.
7 Average epoch to obtain evoked responses.
|
BCI | Brain-Computer Interface |
EEG | Electroencephalogram |
CSP | Common Spatial Pattern |
SVM | Support Vector Machine |
DCNN | Deep Convolutional Neural Network |
LSTM | Long-Short-Term Memory |
fNIRS | Functional near-infrared spectroscopy |
SD | Source-detector |
RNN | Recurrent Neural Network |
CNN | Convolutional Neural Network |
EEGNet | Compact convolutional neural network for EEG-based BCI |
PL | Perceive Lab |
CNN-LSTM | Convolutional Neural Network-Long-Short Term Memory |
ERP | Event-related potential |
STFT | Short-Term Fourier Transform |
VEP | Visual-evoked potentials |
SSVEP | Steady-State Visually Evoked Potentials |
KNN | K-nearest neighbors |
EEGCapsNet | Capsule Network |
FC-GDN | Functional connectivity-based geometric deep network |
MutIn | Mutual Information |
MNE | Minimum-Norm Estimates software suite |
MI | Motor Imagery |
MI-EEG | Motor Imagery EEG |
EVC | EEG Visual Classification |
EMG | Electromyogram |
KLD | Kullback-Leibler Divergence |
CLR | Cyclical Learning Rate |
SOTA | State-of-the-art |
Works | Models | Dataset | Channels | Acc. [%] |
---|---|---|---|---|
Zheng and Chen [30] | Bi-LSTM-AttGW | PL | 128 | 99.50 |
Zheng et al. [31] | LSTMS_B | PL | 128 | 97.13 |
Spampinato et al. [20] | RNN/CNN | PL | 128 | 82.9 |
Kumari et al. [32] | STFT + EEGCapsNet | PL | 128 | 81.59 |
Khaleghi et al. [33] | FC-GDN | PL | 128 | 98.4 |
Order | Subject | Segments order | Number of samples |
---|---|---|---|
1 | 4 | from 1 to 1995 | 1995 |
2 | 1 | from 1996 to 3980 | 1985 |
3 | 6 | from 3981 to 5976 | 1996 |
4 | 3 | from 5977 to 7972 | 1996 |
5 | 2 | from 7973 to 9968 | 1996 |
6 | 5 | from 9969 to 11964 | 1996 |
Total | All subjects | from 1 to 11964 | 11964 |
Parameter | Number |
---|---|
Total number of images | 2000 |
Number of images per class | 50 |
Number of classes | 40 |
Display mode | sequential |
Display time per image | 0.5 s |
Sampling frequency | 1000 Hz |
Pause time between classes | 10 s |
Number of sessions | 4 |
Session running time | 350 s |
Total running time | 1400 s |
Layer (type) | Output Shape | Parameters |
---|---|---|
Input Layer | (None, 54, 440, 1) | 0 |
Conv2D | (None, 54, 440, 8) | 320 |
Batch_normalization_1 | (None, 54, 440, 8) | 32 |
Depthwise_conv2D | (None, 1, 440, 80) | 4320 |
Batch_normalization_2 | (None, 1, 440, 80) | 320 |
Activation_1 | (None, 1, 440, 80) | 0 |
Average_pooling2D_1 | (None, 1, 110, 80) | 0 |
Dropout_1 | (None, 1, 110, 80) | 0 |
Separable_conv2D | (None, 1, 110, 80) | 7680 |
Batch_normalization_3 | (None, 1, 110, 80) | 320 |
Activation_2 | (None, 1, 110, 80) | 0 |
Average_pooling2D_2 | (None, 1, 13, 80) | 0 |
Dropout_2 | (None, 1, 13, 80) | 0 |
Flatten | (None, 1040) | 0 |
Dense | (None, 40) | 41640 |
Softmax | (None, 40) | 0 |
Layer (type) | Output Shape | Parameters |
---|---|---|
Conv1D_layer1 | (None, 440, 128) | 20864 |
Dropout_1 | (None, 440, 128) | 0 |
Activation_1 | (None, 440, 128) | 0 |
Max_Pooling | (None, 220, 128) | 0 |
Conv1D_layer2 | (None, 220, 64) | 24640 |
Dropout_2 | (None, 220, 64) | 0 |
Activation_2 | (None, 220, 64) | 0 |
LSTM_layer1 | (None, 220, 64) | 33024 |
Conv1D_layer3 | (None, 220, 64) | 12352 |
Dropout_3 | (None, 220, 64) | 0 |
Activation_3 | (None, 220, 64) | 0 |
LSTM_layer2 | (None, 32) | 12416 |
Dropout_4 | (None, 32) | 0 |
Dense_1 | (None, 54) | 1782 |
Activation_4 | (None, 54) | 0 |
Dense_2 | (None, 40) | 2200 |
Brain Area | Nr.Ch. | Description |
---|---|---|
Frontal-Central-Central | 3 | FCC1h,FCC2h,FCC4h |
Frontal-Central | 2 | FC1,FC2, |
Central | 7 | C1,C2,C3,Cz,C4,C5,C6 |
Central-Parietal | 5 | CP1,CP2,CP3,CPz,CP4 |
Central-Central-Parietal | 4 | CCP1h,CCP2h,CCP3h,CCP4h |
Occipital | 7 | O1,Oz,O2,I1,O11h,O12h,I2 |
Parietal | 8 | Pz,P1,P2,P3,P4,P5,P6,P8 |
Parietal-Occipital | 7 | PO7,PO3,POz,PO4,PO8,PO9,PO10 |
Parietal-Parietal-Occipital | 6 | PPO9h,PPO5h,PPO1h,PPO2h,PPO6h, PPO10h |
Parietal-Occipital-Occipital | 5 | POO1,POO2,POO9h,POO10h,Iz |
TOTAL | 54 |
k-fold | Number of segments | Classification accuracy [%] | |||
---|---|---|---|---|---|
Training | Testing | EEGNet | CNN-LSTM | ||
1 | 10768 | 1197 | 92.8 | 88.7 | |
2 | 10768 | 1197 | 93.1 | 88.9 | |
3 | 10768 | 1197 | 92.2 | 89.1 | |
4 | 10768 | 1197 | 93.6 | 87.3 | |
5 | 10768 | 1197 | 94.3 | 88.8 | |
6 | 10769 | 1196 | 93.7 | 88.2 | |
7 | 10769 | 1196 | 92.8 | 87.9 | |
8 | 10769 | 1196 | 94.1 | 88.1 | |
9 | 10769 | 1196 | 92.9 | 87.5 | |
10 | 10769 | 1196 | 93.3 | 88.4 | |
Average | 93.2 | 88.2 |
N° | EEG time interval [ms] | Average accuracy [%] | |
---|---|---|---|
EEGNet | CNN-LSTM | ||
1 | [20 - 240] | 87.2 | 81.3 |
2 | [20 - 350] | 90.8 | 85.9 |
3 | [20 - 440] | 91.4 | 87.8 |
4 | [40 - 200] | 91.1 | 84.9 |
5 | [40 - 360] | 90.5 | 85.6 |
6 | [130 - 350] | 92.6 | 87.9 |
7 | [130 - 440] | 92.9 | 88.3 |
8 | [240 - 440] | 94.4 | 89.1 |
9 | [360 - 440] | 94.8 | 89.8 |
N° | Class | Average accuracies per class label ([%]) | Average | |||
---|---|---|---|---|---|---|
[130-350] | [130-440] | [240-440] | [360-440] | |||
1 | cats | 91 | 90 | 93 | 92 | 91.5 |
2 | sorrels | 91 | 90 | 93 | 92 | 91.5 |
3 | elephants | 91 | 90 | 93 | 92 | 91.5 |
4 | fish | 91 | 90 | 93 | 92 | 91.5 |
5 | dogs | 91 | 90 | 93 | 92 | 91.5 |
6 | airliners | 91 | 90 | 93 | 92 | 91.5 |
7 | brooms | 91 | 90 | 93 | 92 | 91.5 |
8 | pandas | 91 | 90 | 93 | 92 | 91.5 |
9 | canoes | 91 | 90 | 93 | 92 | 91.5 |
10 | phones | 91 | 90 | 93 | 92 | 91.5 |
11 | mugs | 91 | 90 | 93 | 92 | 91.5 |
12 | convertibles | 91 | 90 | 93 | 92 | 91.5 |
13 | computers | 91 | 90 | 93 | 92 | 91.5 |
14 | fungi | 91 | 90 | 93 | 92 | 91.5 |
15 | locomotives | 91 | 90 | 93 | 92 | 91.5 |
16 | espresso | 91 | 90 | 93 | 92 | 91.5 |
17 | chairs | 91 | 90 | 93 | 92 | 91.5 |
18 | butterflies | 91 | 90 | 93 | 92 | 91.5 |
19 | golf | 91 | 90 | 93 | 92 | 91.5 |
20 | piano | 91 | 90 | 93 | 92 | 91.5 |
21 | iron | 91 | 90 | 93 | 92 | 91.5 |
22 | daisy | 91 | 90 | 93 | 92 | 91.5 |
23 | jacks | 91 | 90 | 93 | 92 | 91.5 |
24 | mailbags | 91 | 90 | 93 | 92 | 91.5 |
25 | capuchin | 91 | 90 | 93 | 92 | 91.5 |
26 | missiles | 91 | 90 | 93 | 92 | 91.5 |
27 | mittens | 91 | 90 | 93 | 92 | 91.5 |
28 | bikes | 91 | 90 | 93 | 92 | 91.5 |
29 | tents | 91 | 90 | 93 | 92 | 91.5 |
30 | pajama | 91 | 90 | 93 | 92 | 91.5 |
31 | parachutes | 91 | 90 | 93 | 92 | 91.5 |
32 | pools | 91 | 90 | 93 | 92 | 91.5 |
33 | radios | 91 | 90 | 93 | 92 | 91.5 |
34 | cameras | 91 | 90 | 93 | 92 | 91.5 |
35 | guitar | 91 | 90 | 93 | 92 | 91.5 |
36 | guns | 91 | 90 | 93 | 92 | 91.5 |
37 | shoes | 91 | 90 | 93 | 92 | 91.5 |
38 | bananas | 91 | 90 | 93 | 92 | 91.5 |
39 | pizzas | 91 | 90 | 93 | 92 | 91.5 |
40 | watches | 91 | 90 | 93 | 92 | 91.5 |
N° | Class | Average accuracies per class label ([%]) | Average | |||
---|---|---|---|---|---|---|
[130-350] | [130-440] | [240-440] | [360-440] | |||
1 | cats | 86 | 87 | 86 | 88 | 86.7 |
2 | sorrels | 86 | 87 | 86 | 88 | 86.7 |
3 | elephants | 86 | 87 | 86 | 88 | 86.7 |
4 | fish | 86 | 87 | 86 | 88 | 86.7 |
5 | dogs | 86 | 87 | 86 | 88 | 86.7 |
6 | airliners | 86 | 87 | 86 | 88 | 86.7 |
7 | brooms | 86 | 87 | 86 | 88 | 86.7 |
8 | pandas | 86 | 87 | 86 | 88 | 86.7 |
9 | canoes | 86 | 87 | 86 | 88 | 86.7 |
10 | phones | 86 | 87 | 86 | 88 | 86.7 |
11 | mugs | 86 | 87 | 86 | 88 | 86.7 |
12 | convertibles | 86 | 87 | 86 | 88 | 86.7 |
13 | computers | 86 | 87 | 86 | 88 | 86.7 |
14 | fungi | 86 | 87 | 86 | 88 | 86.7 |
15 | locomotives | 86 | 87 | 86 | 88 | 86.7 |
16 | espresso | 86 | 87 | 86 | 88 | 86.7 |
17 | chairs | 86 | 87 | 86 | 88 | 86.7 |
18 | butterflies | 86 | 87 | 86 | 88 | 86.7 |
19 | golf | 86 | 87 | 86 | 88 | 86.7 |
20 | piano | 86 | 87 | 86 | 88 | 86.7 |
21 | iron | 86 | 87 | 86 | 88 | 86.7 |
22 | daisy | 86 | 87 | 86 | 88 | 86.7 |
23 | jacks | 86 | 87 | 86 | 88 | 86.7 |
24 | mailbags | 86 | 87 | 86 | 88 | 86.7 |
25 | capuchin | 86 | 87 | 86 | 88 | 86.7 |
26 | missiles | 86 | 87 | 86 | 88 | 86.7 |
27 | mittens | 86 | 87 | 86 | 88 | 86.7 |
28 | bikes | 86 | 87 | 86 | 88 | 86.7 |
29 | tents | 86 | 87 | 86 | 88 | 86.7 |
30 | pajama | 86 | 87 | 86 | 88 | 86.7 |
31 | parachutes | 86 | 87 | 86 | 88 | 86.7 |
32 | pools | 86 | 87 | 86 | 88 | 86.7 |
33 | radios | 86 | 87 | 86 | 88 | 86.7 |
34 | cameras | 86 | 87 | 86 | 88 | 86.7 |
35 | guitar | 86 | 87 | 86 | 88 | 86.7 |
36 | guns | 86 | 87 | 86 | 88 | 86.7 |
37 | shoes | 86 | 87 | 86 | 88 | 86.7 |
38 | bananas | 86 | 87 | 86 | 88 | 86.7 |
39 | pizzas | 86 | 87 | 86 | 88 | 86.7 |
40 | watches | 86 | 87 | 86 | 88 | 86.7 |
N° | Interval [ms] | EEGNet’s accuracy [%] | CNN-LSTM’s accuracy | |||
---|---|---|---|---|---|---|
with MNE | without MNE | with MNE | without MNE | |||
1 | [130 - 350] | 92.6 | 80.3 | 87.9 | 73.8 | |
2 | [130 - 440] | 92.9 | 79.2 | 88.3 | 74.1 | |
3 | [240 - 440] | 94.4 | 81.8 | 89.1 | 75.4 | |
4 | [360 - 440] | 94.8 | 82.1 | 89.8 | 76.2 | |
Average benefit | 12.8 | 13.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Tat’y Mwata-Velu
et al.
,
2024
Mateo Tobon-Henao
et al.
,
2023
Alessandro Gallo
et al.
,
2022
© 2024 MDPI (Basel, Switzerland) unless otherwise stated