Submitted:
30 April 2024
Posted:
01 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Changes in Dietary Lipids in the United States of America (US) over the Last Century
3. Environmental Lipids and Membrane Modifiers Affect Preeclampsia Risk
4. Placental Hypoxia and Hypoxia Inducible Factors (HIF)
5. Impedance to Transmembrane Oxygen Diffusion
6. Effects of Molecular Components on Membrane Biophysics and Phase Separation


7. Dietary Challenges to Membrane Homeoviscosity

8. Excessively Fluid Lipid Bilayers Increase Membrane Stiffness

9. Melting Point Disparity, Membrane Rafts, and Cholesterol Content



10. Dyslipidemia: Increased Total Cholesterol, Reduced Cholesterol Dependent Signaling
10. A. Accessible Membrane Cholesterol
10. B. Hedgehog Signaling in Preeclampsia
10. C. Wnt/βcatenin Signaling
10. D. Endothelial Nitric Oxide Synthase Signaling
10. E. Dyslipidemia and Accessible Cholesterol
11. Dietary Lipids and Oxidative Stress
12. Lipids in Preeclampsia Screening and Epidemiology
| Condition | Relative risk |
|---|---|
| Previous pregnancy with preeclampsia | 8.4 |
| Chronic hypertension | 5.1 |
| Pregestational Diabetes | 3.7 |
| Multiple gestation | 2.9 |
| Pre-pregnancy BMI > 30 | 2.8 |
| Anti-phospholipid Antibodies | 2.8 |
| Reduced maternal serum omega-3 fatty acids | 7.6 |
| Increased maternal RBC TUFA | 3 to 7.4 |
| Increased dietary PUFA | 2.6 to 5 |
13. Diets and Preeclampsia
13. A. Diets Affect Preeclampsia Incidence
13. B. Increased Dietary PUFA Increases Preeclampsia Incidence
13. C. Dietary Intervention Studies
13. D. Choline deficiency and Preeclampsia
13. E. Preeclampsia with PUFA Deficiency
13. F. Dietary Cholesterol
14. Discussion
- Reduce oxidative stress With very low melting-point PUFA as the driving force for oxidative stress, replacing dietary PUFA with medium-chain saturated fatty acids such as lauric acid (C12:0) in coconut oil, monounsaturated fatty acids such as oleic acid (C18:1) in olive oil, or short-chain saturated fatty acids such as butyric (C2-5:0) which are found in milk products or as products of gut bacteria should markedly reduce oxidative stress as these lipids are less vulnerable to oxidative damage. Avoiding dietary oxysterols which are found in dehydrated milk, eggs, and proteins also reduces oxidative stress[232]. These measures should lower blood pressure, restore normal angiogenic signaling, and reduce protein misfolding.
- Reduce lipid raft formation and hypoxia Reduction of dietary PUFA reduces disparity in membrane lipid melting points and reduces the need for endogenous LCSFA synthesis, thus reducing lipid raft formation and hypoxia. Reduction of membrane PUFA also reduces cholesterol crystallization, cholesterol/cholesterol bilayer domains which markedly impair the movement of oxygen across placental membranes. LCSFAs such as palmitoleic (C:16) and stearic acid (C18:0) found in beef, pork, lamb, and chicken may also stimulate excessive lipid raft formation and are elevated in some with preeclampsia[233,234], so intake should be low or moderate. supplementation of moderate melting point fatty acids to inhibit raft formation and of choline in those who are deficient should be beneficial[235].
- Increase accessible membrane cholesterol Increasing dietary cholesterol allows esterification and removal of damaged fatty acids as well as reducing oxidative stress. Reducing dietary TUFA by avoiding foods cooked at high temperature in oil and meats produced with feeds using spent deep fryer oils should reduce cholesterol sequestration in rafts and cholesterol esters. Supplementing dietary cholesterol provides accessible cholesterol to restore normal Wnt, Hh, and eNOS signaling, aids angiogenesis, improves vasodilation, and restores normal membrane rheology and permeability.
- Reduce the omega 6:3 ratio to less than 4:1 Monitoring the omega 6:3 ratio allows determination of cases in which an elevated 6:3 ratio (> 4:1) is clinically significant and whether supplementation has been effective. This measure should reduce inflammation and thrombosis.
15. Conclusions
References
- Williams, M.A.; King, I.B.; Sorensen, T.K.; Zingheim, R.W.; Troyer, B.L.; Zebelman, A.M.; Luthy, D.A. Risk of preeclampsia in relation to elaidic acid (trans fatty acid) in maternal erythrocytes. Gynecol Obstet Invest. 1998, 46, 84–7. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.; Slott, M.; Solvoll, K.; Drevon, C.A.; Vollset, S.E.; Henriksen, T. High intake of energy, sucrose, and polyunsaturated fatty acids is associated with increased risk of preeclampsia. Am J Obstet Gynecol. 2001, 185, 451–8. [Google Scholar] [CrossRef] [PubMed]
- Irwinda, R.; Hiksas, R.; Siregar, A.A.; Saroyo, Y.B.; Wibowo, N. Long-chain polyunsaturated fatty acid (LC-PUFA) status in severe preeclampsia and preterm birth: a cross sectional study. Sci Rep. 2021, 11, 14701. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.A.; Zingheim, R.W.; King, I.B.; Zebelman, A.M. Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology. 1995, 6, 232–7. [Google Scholar] [CrossRef] [PubMed]
- Wojcik-Baszko, D.; Charkiewicz, K.; Laudanski, P. Role of dyslipidemia in preeclampsia-A review of lipidomic analysis of blood, placenta, syncytiotrophoblast microvesicles and umbilical cord artery from women with preeclampsia. Prostaglandins Other Lipid Mediat. 2018, 139, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Poornima, I.G.; Indaram, M.; Ross, J.D.; Agarwala, A.; Wild, R.A. Hyperlipidemia and risk for preclampsia. J Clin Lipidol. 2022, 16, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Odenkirk, M.T.; Stratton, K.G.; Gritsenko, M.A.; Bramer, L.M.; Webb-Robertson, B.M.; Bloodsworth, K.J.; et al. Unveiling molecular signatures of preeclampsia and gestational diabetes mellitus with multi-omics and innovative cheminformatics visualization tools. Mol. Omics. 2020, 16, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Melland-Smith, M.; Ermini, L.; Chauvin, S.; Craig-Barnes, H.; Tagliafetto, A.; Todros, T.; et al. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preclampsia. Autophagy 2015, 11, 653–669. [CrossRef]
- Brown, S.H.; Eather, S.R.; Freeman, D.J.; Meyer, B.J.; Mitchell, T.W. A Lipidomic Analysis of Placenta in Preeclampsia: Evidence for Lipid Storage. PLoS One. 2016, 11, e0163972. [Google Scholar] [CrossRef]
- Del Gaudio, I.; Sasset, L.; Lorenzo, A.D.; and Wadsack, C. Sphingolipid signature of human feto- placental vasculature in preeclampsia. Int. J. Mol. Sci. 2020, 21, 1019. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Lv, Y.; Ding, H. Dissecting the Roles of Lipids in Preeclampsia. Metabolites. 2022, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Al, M.D.; van Houwelingen, A.C.; Badart-Smook, A.; Hasaart, T.H.; Roumen, F.J.; and Hornstra, G. The essential fatty acid status of mother and child in pregnancy-induced hypertension: A prospective longitudinal study. Am. J. Obstet. Gynecol. 1995, 172, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Young, S.; Esplin, M.S.; Peaden, B.; Tolley, H.D.; Porter, T.F.; et al. Detection and confirmation of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry. J. Lipid Res. 2016, 57, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Korkes HA, et al Lipidomic assessment of plasma and placenta of women with early-onset preeclampsia. PLoS One. 2014, 9, e110747.
- Baig, S.; Lim, J.Y.; Fernandis, A.Z.; Wenk, M.R.; Kale, A.; Su, L.L.; et al. Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta 2013, 34, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Thangaratinam, S.; Rogozińska, E.; Jolly, K.; Glinkowski, S.; Duda, W.; Borowiack, E.; Roseboom, T.; Tomlinson, J. ; J; Kunz, R. ; Mol, B.W.; Coomarasamy, A.; Khan, K.S. Interventions to reduce or prevent obesity in pregnant women: a systematic review. Health Technol AssWalczakess. 2012, 16, iii–iv, 1. [Google Scholar] [CrossRef] [PubMed]
- Alamolhoda, S.H.; Simbar, M.; Mirmiran, P.; and Mirabi, P. Effect of low trans-fatty acid intakes on preeclampsia: A randomized controlled trial. J. Res. Med. Sci. 2020, 25, 112. [Google Scholar] [CrossRef] [PubMed]
- Hedegaard, S.; Nohr, E.A.; Olsen, S.F.; Halldorsson, T.I.; Renault, K.M. Adherence to different forms of plant-based diets and pregnancy outcomes in the Danish National Birth Cohort: A prospective observational study. Acta Obstet Gynecol Scand. 2024 Jan 24. Epub ahead of print. [CrossRef] [PubMed]
- Irwinda R, Hiksas R, Siregar AA, Saroyo YB, Wibowo N. polyunsaturated fatty acid (LC-PUFA) status in severe preeclampsia and preterm birth: a cross sectional study. Sci Rep. 2021, 11, 14701. [CrossRef]
- Kinshella MW, Omar S, Scherbinsky K, Vidler M, Magee LA, von Dadelszen P, Moore SE, Elango R, The Precise Conceptual Framework Working Group. Effects of Maternal Nutritional Supplements and Dietary Interventions on Placental Complications: An Umbrella Review, Meta-Analysis and Evidence Map. Nutrients. 2021, 13, 472. [CrossRef]
- [1] Li SN, Liu YH, Luo ZY, Cui YF, Cao Y, Fu WJ, Dou WF, Duan DD, Zhao XL, Chen YM, Lyu QJ, Chen QS, Zeng FF. The association between dietary fatty acid intake and the risk of developing preeclampsia: a matched case-control study. Sci Rep. 2021, 11, 4048. [CrossRef]
- Bakrania, B.A.; George, E.M.; Granger, J.P. Animal models of preeclampsia: investigating pathophysiology and therapeutic targets. Am J Obstet Gynecol. [CrossRef]
- Colson, A.; Depoix, C.L.; Lambert, I.; Leducq, C.; Bedin, M.; De Beukelaer, M.; Gatto, L.; Loriot, A.; Peers de Nieuwburgh, M.; Bouhna, K.; Baldin, P.; Hubinont, C.; Sonveaux, P.; Debiève, F. Specific HIF-2α (Hypoxia-Inducible Factor-2) Inhibitor PT2385 Mitigates Placental Dysfunction In Vitro and in a Rat Model of Preeclampsia (RUPP). Hypertension. 2023 May;80, 1011-1023. [CrossRef]
- Rajakumar, A.; Whitelock, K.A.; Weissfeld, L.A.; Daftary, A.R.; Markovic, N.; Conrad, K.P. Selective overexpression of the hypoxia-inducible transcription factor, HIF-2alpha, in placentas from women with preeclampsia. Biol Reprod. 2001, 64, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B. Placental physioxia is based on spatial and temporal variations of placental oxygenation throughout pregnancy. J Reprod Immunol. 2023, 158, 103985. [Google Scholar] [CrossRef] [PubMed]
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr. 2011, 93, 950–62, Epub 2011 Mar 2. [Google Scholar] [CrossRef]
- Gerrior, S.; Bente, L.; and Hiza, H. (2004). Nutrient content of the U.S. Food supply, 1909-2000. (Home economics research report No. 56), Washington, DC: U.S. Department of Agriculture, Center for Nutrition Policy and Promotion.
- USDA/ERS U.S (2021). Department of agriculture, food availability (per capita) data system, Undated July 21.
- Craig-Schmidt, M.C. World-wide consumption of trans fatty acids. Atheroscler. Suppl. 2006, 7, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wanders, A.J.; Zock, P.L.; and Brouwer, I.A. Trans fat intake and its dietary sources in general populations worldwide: A systematic review. Nutrients 2017, 9, 840. [Google Scholar] [CrossRef] [PubMed]
- 31. Federal Register, 1: Health and Human Services, Food and Drug Administration Revocation of Uses of Partially Hydrogenated Oils in Foods, Rules and Regulations, Action: Direct final rule: Vol. 88, 2023.
- World Health Organization Replace Trans Fat; an Action Pacakage to Eliminate Industrially produced Trans-Fatty Acids Executive Summary WHO/NMH/NHD/18.4 https://www.who.int/docs/default-source/documents/replace-transfats/replace-action-package.pdf.
- Bhardwaj, S.; Passi, S.J.; Misra, A.; Pant, K.K.; Anwar, K.; Pandey, R.; et al. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation. Food Chem. 2016, 212, 663–670. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Miller, J.B.; Eaton, S.B.; Mann, N.; Holt, S.H.; and Speth, J.D. Plant–animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am. J. Clin. Nutr. 2000, 71, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Eaton, S.B.; Miller, J.B.; Mann, N.; and Hill, K. The paradoxical nature of hunter-gatherer diets: Meat-based, yet non-atherogenic. Eur. J. Clin. Nutr. 2002, 56, S42–S52. [Google Scholar] [CrossRef]
- Xu, Z.; McClure, S.T.; and Appel, L.J. Dietary cholesterol intake and sources among U.S adults: Results from national health and nutrition examination surveys (NHANES), 2001⁻2014. Nutrients 2018, 10, 771. [Google Scholar] [CrossRef]
- Gogna, P.; Villeneuve, P.J.; Borghese, M.M.; King, W.D. An exposure-response meta-analysis of ambient PM2. 5 during pregnancy and preeclampsia. Environ Res. 2022, 210, 112934. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Stayner, L.; Slama, R.; Sørensen, M.; Figueras, F.; Nieuwenhuijsen, M.J.; Raaschou-Nielsen, O.; Dadvand, P. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis. Hypertension. 2014, 64, 494–500, Epub 2014 Jun 16. [Google Scholar] [CrossRef]
- van den Hooven EH, de Kluizenaar Y, Pierik FH, Hofman A, van Ratingen SW, Zandveld PY, Mackenbach JP, Steegers EA, Miedema HM, Jaddoe VW. Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy: the generation R study. Hypertension. 2011, 57, 406–12. [CrossRef] [PubMed]
- National Toxicology Program. NTP monograph on the systematic review of traffic-related air pollution and hypertensive disorders of pregnancy. NTP Monogr. 2019 Dec;(7):NTP-MGRAPH-7. [CrossRef]
- Pereira, G.; Haggar, F.; Shand, A.W.; Bower, C.; Cook, A.; Nassar, N. Association between pre-eclampsia and locally derived traffic-related air pollution: a retrospective cohort study. J Epidemiol Community Health. 2013, 67, 147–52. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Yamamoto, S. Effect of indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women. Indoor Air. 2015, 25, 341–52, Epub 2014 Aug 11. [Google Scholar] [CrossRef]
- Robbins, T.; Kuhrt, K.; Vousden, N.; Seed, P.; Shennan, A. Household air pollution and incidence of eclampsia in eight low- and middle-income countries. Int J Gynaecol Obstet. 2023, 160, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Nobles, C.J.; Williams, A.; Ouidir, M.; Sherman, S.; Mendola, P. Differential Effect of Ambient Air Pollution Exposure on Risk of Gestational Hypertension and Preeclampsia. Hypertension. 2019, 74, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Assibey-Mensah, V.; Glantz, J.C.; Hopke, P.K.; Jusko, T.A.; Thevenet-Morrison, K.; Chalupa, D.; Rich, D.Q. Wintertime Wood Smoke, Traffic Particle Pollution, and Preeclampsia. Hypertension. 2020, 75, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Basagaña, X.; Figueras, F.; Amoly, E.; Tobias, A.; de Nazelle, A.; Querol, X.; Sunyer, J.; Nieuwenhuijsen, M.J. Saharan dust episodes and pregnancy. J Environ Monit. 2011, 13, 3222–8. [Google Scholar] [CrossRef]
- Bogan, M.; Al, B.; Kul, S.; Zengin, S.; Oktay, M.; Sabak, M.; Gümüşboğa, H.; Bayram, H. The effects of desert dust storms, air pollution, and temperature on morbidity due to spontaneous abortions and toxemia of pregnancy: 5-year analysis. Int J Biometeorol. 2021, 65, 1733–1739. [Google Scholar] [CrossRef]
- Michikawa, T.; Morokuma, S.; Yamazaki, S.; Takami, A.; Sugata, S.; Yoshino, A.; Takeda, Y.; Nakahara, K.; Saito, S.; Hoshi, J.; Kato, K.; Nitta, H.; Nishiwaki, Y. Exposure to chemical components of fine particulate matter and ozone, and placenta-mediated pregnancy complications in Tokyo: a register-based study. J Expo Sci Environ Epidemiol. 2022, 32, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Wrońska-Nofer, T.; Rosin, J.; Bartosz, G. Interaction of ethanol and xylene in their effects on erythrocytes and other haematological parameters in the rat. J Appl Toxicol. 1991, 11, 289–92. [Google Scholar] [CrossRef] [PubMed]
- Moghe, A.; Ghare, S.; Lamoreau, B.; Mohammad, M.; Barve, S.; McClain, C.; Joshi-Barve, S. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci. 2015, 143, 242–55. [Google Scholar] [CrossRef] [PubMed]
- Shan, Q.; Li, H.; Chen, N.; Qu, F.; Guo, J. Understanding the Multiple Effects of PCBs on Lipid Metabolism. Diabetes Metab Syndr Obes. 2020, 13, 3691–3702. [Google Scholar] [CrossRef] [PubMed]
- Wikström, S.; Lindh, C.H.; Shu, H. Early pregnancy serum levels of perfluoroalkyl substances and risk of preeclampsia in Swedish women. Sci Rep 2019, 9, 9179. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Chen, Q.; Zhang, L.; Luo, K.; Chen, L.; Zhao, S.; Feng, L.; Zhang, J. Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and the risk of hypertensive disorders of pregnancy. Environ Health. 2019, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Bommarito, P.A.; Ferguson, K.K.; Meeker, J.D.; McElrath, T.F.; Cantonwine, D.E. Maternal Levels of Perfluoroalkyl Substances (PFAS) during Early Pregnancy in Relation to Preeclampsia Subtypes and Biomarkers of Preeclampsia Risk. Environ Health Perspect. 2021, 129, 107004. [Google Scholar] [CrossRef]
- Eslami, B.; Malekafzali, H.; Rastkari, N.; Rashidi, B.H.; Djazayeri, A.; Naddafi, K. Association of serum concentrations of persistent organic pollutants (POPs) and risk of pre-eclampsia: a case-control study. J Environ Health Sci Eng. 2016, 14, 17. [Google Scholar] [CrossRef]
- Soleymanlou, N.; Jurisica, I.; Nevo, O.; Ietta, F.; Zhang, X.; Zamudio, S.; Post, M.; Caniggia, I. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab. 2005, 90, 4299–308. [Google Scholar] [CrossRef]
- Higgins, D.F.; Kimura, K.; Iwano, M.; Haase, V.H. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle. 2008, 7, 1128–32. [Google Scholar] [CrossRef]
- Tirpe, A.A.; Gulei, D.; Ciortea, S.M.; Crivii, C.; Berindan-Neagoe, I. Hypoxia: Overview on Hypoxia-Mediated Mechanisms with a Focus on the Role of HIF Genes. Int J Mol Sci. 2019, 20, 6140. [Google Scholar] [CrossRef] [PubMed]
- Korkes, H.A.; De Oliveira, L.; Sass, N.; Salahuddin, S.; Karumanchi, S.A.; Rajakumar, A. Relationship between hypoxia and downstream pathogenic pathways in preeclampsia. Hypertens Pregnancy. 2017, 36, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Chang, C.; Hao, M.; Chen, M.; Woodley, D.T.; Schönthal, A.H.; Li, W. Heat shock protein-90alpha (Hsp90α) stabilizes hypoxia-inducible factor-1α (HIF-1α) in support of spermatogenesis and tumorigenesis. Cancer Gene Ther. 2021, 28, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.S.; Qiao, X.; Reslan, O.M.; Xia, Y.; Raffetto, J.D.; Paleolog, E.; Davies, A.H.; Khalil, R.A. Prolonged mechanical stretch is associated with upregulation of hypoxia-inducible factors and reduced contraction in rat inferior vena cava. J Vasc Surg. 2011, 53, 764–73. [Google Scholar] [CrossRef] [PubMed]
- Tafani, M.; Sansone, L.; Limana, F.; Arcangeli, T.; De Santis, E.; Polese, M.; Fini, M.; Russo, M.A. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression. Oxid Med Cell Longev. 2016;2016:3907147. [CrossRef]
- Lum, J.J.; Bui, T.; Gruber, M.; Gordan, J.D.; DeBerardinis, R.J.; Covello, K.L.; Simon, M.C.; Thompson, C.B. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007, 21, 1037–49. [Google Scholar] [CrossRef] [PubMed]
- Zera, K.; Zastre, J. Stabilization of the hypoxia-inducible transcription Factor-1 alpha (HIF-1α) in thiamine deficiency is mediated by pyruvate accumulation. Toxicol Appl Pharmacol. 2018, 355, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Watts, E.R.; Walmsley, S.R. Inflammation and Hypoxia: HIF and PHD Isoform Selectivity. Trends Mol Med. 2019, 25, 33–46. [Google Scholar] [CrossRef]
- Déry, M.A.; Michaud, M.D.; Richard, D.E. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005, 37, 535–40. [Google Scholar] [CrossRef]
- Schönenberger, M.J.; Kovacs, W.J. Hypoxia signaling pathways: modulators of oxygen-related organelles. Front Cell Dev Biol. 2015, 3, 42. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.J.; Lin, Q.D. Study on the expressions of PHD and HIF in placentas from normal pregnant women and patients with preeclampsia. Int J Biol Sci. 2014, 10, 278–84. [Google Scholar] [CrossRef]
- Fuenzalida, B.; Yañez, M.J.; Mueller, M.; Mistry, H.D.; Leiva, A.; Albrecht, C. Evidence for hypoxia-induced dysregulated cholesterol homeostasis in preeclampsia: Insights into the mechanisms from human placental cells and tissues. FASEB J. 2024, 38, e23431. [Google Scholar] [CrossRef] [PubMed]
- Coates, H.W.; Capell-Hattam, I.M.; Olzomer, E.M.; Du, X.; Farrell, R.; Yang, H.; Byrne, F.L.; Brown, A.J. Hypoxia truncates and constitutively activates the key cholesterol synthesis enzyme squalene monooxygenase. Elife. 2023, 12, e82843. [Google Scholar] [CrossRef] [PubMed]
- Diet induced experimental toxemia and cation transport. Nutr Rev. 1965, 23, 309–11. [CrossRef] [PubMed]
- Wang, G.L.; Semenza, G.L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 1993, 90, 4304–8. [Google Scholar] [CrossRef] [PubMed]
- Caniggia, I.; Winter, J.; Lye, S.J.; Post, M. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000 Mar-Apr;21 Suppl A:S25-30. [CrossRef]
- Carter, A.M. Placental Gas Exchange and the Oxygen Supply to the Fetus. Compr Physiol. 2015, 5, 1381–403. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, E.S.; Brownbill, P.; Jones, N.W.; Abrahams, V.M.; Baker, P.N.; Sibley, C.P.; Crocker, I.P. Utero-placental haemodynamics in the pathogenesis of pre-eclampsia. Placenta. 2009, 30, 634–41. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, T.M.; Manwani, R.; Ohadike, C.; Wijesekara, J.; Baker, P.N. The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances. Placenta. 2007 Feb-Mar;28(2-3):233-8. [CrossRef]
- Subczynski, W.K.; Widomska, J.; Stein, N.; Swartz, H.M. Factors determining barrier properties to oxygen transport across model and cell plasma membranes based on EPR spin-label oximetry. Appl Magn Reson. 2021, 52, 1237–1260. [Google Scholar] [CrossRef] [PubMed]
- Plesnar, E.; Szczelina, R.; Subczynski, W.K.; Pasenkiewicz-Gierula, M. Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens? Biochim Biophys Acta Biomembr. 2018, 1860, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Albert, A.D.; Boesze-Battaglia, K. The role of cholesterol in rod outer segment membranes. Prog Lipid Res. 2005 Mar-May;44(2-3):99-124. [CrossRef]
- Zuniga-Hertz, J.P.; Patel, H.H. The Evolution of Cholesterol-Rich Membrane in Oxygen Adaption: The Respiratory System as a Model. Front Physiol. 2019, 10, 1340. [Google Scholar] [CrossRef]
- Subczynski, W.K.; Widomska, J.; Stein, N.; Swartz, H.M. Factors determining barrier properties to oxygen transport across model and cell plasma membranes based on EPR spin-label oximetry. Appl Magn Reson. 2021, 52, 1237–1260. [Google Scholar] [CrossRef]
- Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.; Merrill, A.H.; Bandyopadhyay, S.; Jones, K.N.; Kelly, S.; Shaner, R.L.; Sullards, C.M.; Wang, E.; Murphy, R.C.; Barkley, R.M.; Leiker, T.J.; Raetz, C.R.; Guan, Z.; Laird, G.M.; Six, D.A.; Russell, D.W.; McDonald, J.G.; Subramaniam, S.; Fahy, E.; Dennis, E.A. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010, 51, 3299–305. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.L.; Mitchell, D.C.; and Litman, B.J. Trans fatty acid derived phospholipids show increased membrane cholesterol and reduced receptor activation as compared to their cis analogs. Biochemistry 2005, 44, 4458–4465. [Google Scholar] [CrossRef] [PubMed]
- Baumer, Y.; McCurdy, S.; Weatherby, T.M.; Mehta, N.N.; Halbherr, S.; Halbherr, P.; Yamazaki, N.; Boisvert, W.A. Hyperlipidemia-induced cholesterol crystal production by endothelial cells promotes atherogenesis. Nat Commun. 2017, 8, 1129. [Google Scholar] [CrossRef] [PubMed]
- Ekroos, K.; Ejsing, C.S.; Bahr, U.; Karas, M.; Simons, K.; Shevchenko, A. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J Lipid Res. 2003, 44, 2181–92. [Google Scholar] [CrossRef] [PubMed]
- Sinensky, M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974, 71, 522–5. [Google Scholar] [CrossRef]
- Levental KR, Malmberg E, Symons JL, Fan YY, Chapkin RS, Ernst R, Levental I. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nat Commun. 2020, 11, 1339.
- Irwinda, R.; Hiksas, R.; Siregar, A.A.; et al. Long-chain polyunsaturated fatty acid (LC-PUFA) status in severe preeclampsia and preterm birth: a cross sectional study. Sci Rep. [CrossRef]
- Brown, S.H.; Eather, S.R.; Freeman, D.J.; Meyer, B.J.; and Mitchell, T.W. A lipidomic analysis of placenta in preeclampsia: Evidence for lipid storage. PLoS One 2016, 11, e0163972. [Google Scholar] [CrossRef]
- Anand, S.; Young, S.; Esplin, M.S.; Peaden, B.; Tolley, H.D.; Porter, T.F.; Varner, M.W.; D'Alton, M.E.; Jackson, B.J.; Graves, S.W. Detection and confirmation of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry. J Lipid Res. 2016, 57, 687–96. [Google Scholar] [CrossRef]
- Clausen, T.; Slott, M.; Solvoll, K.; Drevon, C.A.; Vollset, S.E.; Henriksen, T. High intake of energy, sucrose, and polyunsaturated fatty acids is associated with increased risk of preeclampsia. Am J Obstet Gynecol. 2001, 185, 451–8. [Google Scholar] [CrossRef] [PubMed]
- Schauf, B.; Lang, U.; Stute, P.; Schneider, S.; Dietz, K.; Aydeniz, B.; Wallwiener, D. Reduced red blood cell deformability, an indicator for high fetal or maternal risk, is found in preeclampsia and IUGR. Hypertens Pregnancy. 2002;21, 147-60. [CrossRef]
- Csiszar, B.; Galos, G.; Funke, S.; Kevey, D.K.; Meggyes, M.; Szereday, L.; Kenyeres, P.; Toth, K.; Sandor, B. Peripartum Investigation of Red Blood Cell Properties in Women Diagnosed with Early-Onset Preeclampsia. Cells. 2021, 10, 2714. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, L. Blood rheology and pregnancy. Baillieres Clin Haematol. 1987, 1, 777–99. [Google Scholar] [CrossRef] [PubMed]
- Kazushi Tsuda, Ichiro Nishio, Membrane fluidity and hypertension:, American Journal of Hypertension, Volume 16, Issue 3, March 2003, Pages 259–261,doi.org/10.1016/S0895-7061(02)032570.
- Lühr Jennifer, J.; Amon, L.; Kräter, M.; Kubánková, M.; Sezgin, E.; et al. Maturation of monocyte derived DCs leads to increased cellular stiffness, higher membrane fluidity, and changed lipid composition. Front. Immunol. 2020, 11, 590121. [Google Scholar] [CrossRef] [PubMed]
- Efremov, Y.M.; Velay-Lizancos, M.; Weaver, C.J.; Athamneh, A.I.; Zavattieri, P.D.; Suter, D.M.; et al. Anisotropy vs isotropy in living cell indentation with AFM. Sci. Rep. 2019, 9, 5757. [Google Scholar] [CrossRef] [PubMed]
- Shentu, T.P.; Singh, D.K.; Oh, M.J.; Sun, S.; Sadaat, L.; Makino, A.; et al. The role of oxysterols in control of endothelial stiffness. J. Lipid Res. 2012, 53, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- Byfield, F.J.; Aranda-Espinoza, H.; Romanenko, V.G.; Rothblat, G.H.; Levitan, I. Cholesterol depletion increases membrane stiffness of aortic endothelial cells. Biophys J. 2004, 87, 3336–43. [Google Scholar] [CrossRef] [PubMed]
- Schauf, B.; Becker, S.; Abele, H.; Klever, T.; Wallwiener, D.; Aydeniz, B. Effect of magnesium on red blood cell deformability in pregnancy. Hypertens Pregnancy. 2005;24, 17-27. [CrossRef]
- Prescott, A.R.; Comerford, J.G.; Magrath, R.; Lamb, N.J.; Warn, R.M. Effects of elevated intracellular magnesium on cytoskeletal integrity. J Cell Sci. 1988 Mar;89 ( Pt 3):321-9. [CrossRef]
- Simons, K.; and Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Lorent, J.H.; Skinkle, A.D.; Levental, K.R.; Waxham, M.N.; Gorfe, A.A.; et al. Domain stability in biomimetic membranes driven by lipid polyunsaturation. J. Phys. Chem. B 2016, 120, 11930–11941. [Google Scholar] [CrossRef] [PubMed]
- Turk, H.F.; Chapkin, R.S. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2013, 88, 43–7. [Google Scholar] [CrossRef] [PubMed]
- Sviridov, D.; Mukhamedova, N.; Miller, Y.I. Lipid rafts as a therapeutic target. J Lipid Res. 2020, 61, 687–695. [Google Scholar] [CrossRef]
- Riquelme, G.; Vallejos, C.; de Gregorio, N.; Morales, B.; Godoy, V.; Berrios, M.; Bastías, N.; Rodríguez, C. Lipid rafts and cytoskeletal proteins in placental microvilli membranes from preeclamptic and IUGR pregnancies. J Membr Biol. 2011, 241, 127–40. [Google Scholar] [CrossRef]
- Lee, S.M.; Moon, J.Y.; Lim, B.Y.; Kim, S.M.; Park, C.W.; Kim, B.J.; Jun, J.K.; Norwitz, E.R.; Choi, M.H.; Park, J.S. Increased biosynthesis and accumulation of cholesterol in maternal plasma, but not amniotic fluid in pre-eclampsia. Sci Rep. 2019, 9, 1550. [Google Scholar] [CrossRef] [PubMed]
- Olsen, B.N.; Bielska, A.A.; Lee, T.; Daily, M.D.; Covey, D.F.; Schlesinger, P.H.; Baker, N.A.; Ory, D.S. The structural basis of cholesterol accessibility in membranes. Biophys J. 2013, 105, 1838–47. [Google Scholar] [CrossRef] [PubMed]
- Woollett, L.A. Review: Transport of maternal cholesterol to the fetal circulation. Placenta. 2011 Mar;32 Suppl 2(0 2):S218-21. [CrossRef]
- Horne, H.; Holme, A.M.; Roland, M.C.P.; Holm, M.B.; Haugen, G.; Henriksen, T.; Michelsen, T.M. Maternal-fetal cholesterol transfer in human term pregnancies. Placenta. 2019, 87, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhu, L.; Wang, M.; Sun, Q. Associations between Per- and Polyfluoroalkyl Substances Exposures and Blood Lipid Levels among Adults-A Meta-Analysis. Environ Health Perspect. 2023, 131, 56001. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.H.; Soh, S.X.H.; Wang, M.X.; Ong, J.; Seah, A.; Wong, Y.; Fang, Z.; Sim, S.; Lim, J.T. Perfluoroalkyl substances and lipid concentrations in the blood: A systematic review of epidemiological studies. Sci Total Environ. 2022, 850, 158036. [Google Scholar] [CrossRef] [PubMed]
- Tazuma S, Ochi H, Teramen K, Yamashita Y, Horikawa K, Miura H, Hirano N, Sasaki M, Aihara N, Hatsushika S, et al. Degree of fatty acyl chain unsaturation in biliary lecithin dictates cholesterol nucleation and crystal growth. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):74-8. [CrossRef]
- Ioannou, G.N.; Subramanian, S.; Chait, A.; Haigh, W.G.; Yeh, M.M.; Farrell, G.C.; Lee, S.P.; Savard, C. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH. J Lipid Res. 2017, 58, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Moon, J.Y.; Lim, B.Y.; Kim, S.M.; Park, C.W.; Kim, B.J.; Jun, J.K.; Norwitz, E.R.; Choi, M.H.; Park, J.S. Increased biosynthesis and accumulation of cholesterol in maternal plasma, but not amniotic fluid in pre-eclampsia. Sci Rep. 2019, 9, 1550. [Google Scholar] [CrossRef] [PubMed]
- Horne, H.; Holme, A.M.; Roland, M.C.P.; Holm, M.B.; Haugen, G.; Henriksen, T.; Michelsen, T.M. Maternal-fetal cholesterol transfer in human term pregnancies. Placenta. 2019, 87, 23–29. [Google Scholar] [CrossRef]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ Res. 2019, 124, 1094–1112, Erratum in: Circ Res. 2020, 126, e8. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, S.; Song, T.; Yin, Y.; Tan, C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr. 2021, 12, 2415–2434. [Google Scholar] [CrossRef]
- Wang, C.Y.; Tsai, P.Y.; Chen, T.Y.; Tsai, H.L.; Kuo, P.L.; and Su, M.T. Elevated miR-200a and miR-141 inhibit endocrine gland-derived vascular endothelial growth factor expression and ciliogenesis in preeclampsia. J. Physiol. 2019, 597, 3069–3083. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.D.; Vogel, A.M.; and Weinstein, B.M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell. 2002, 3, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Takai, H.; Kondoh, E.; Mogami, H.; Kawasaki, K.; Chigusa, Y.; Sato, M.; Kawamura, Y.; Murakami, R.; Matsumura, N.; Konishi, I.; Mandai, M. Placental Sonic Hedgehog Pathway Regulates Fetal Growth via the IGF Axis in Preeclampsia. J Clin Endocrinol Metab. 2019, 104, 4239–4252. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, A.; Rohatgi, R.; and Siebold, C. Cholesterol access in cellular membranes controls Hedgehog signaling. Nat. Chem. Biol. 2020, 16, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Kinnebrew, M.; Iverson, E.J.; Patel, B.B.; Pusapati, G.V.; Kong, J.H.; Johnson, K.A.; Luchetti, G.; Eckert, K.M.; McDonald, J.G.; Covey, D.F.; Siebold, C.; Radhakrishnan, A.; Rohatgi, R. Cholesterol accessibility at the ciliary membrane controls hedgehog signaling. Elife. 2019, 8, e50051. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.R. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci. 2023, 10, 1173030. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, S.; Song, T.; Yin, Y.; Tan, C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr. 2021, 12, 2415–2434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Wang, X.; Zhang, L.; Shi, Y.; Wang, J.; Yan, H. Wnt/β-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia (Review). Mol Med Rep. 2017, 16, 1007–1013, Epub 2018 Mar 30. Erratum in: J Mol Histol. 2022, 53, 145-147. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Zeng, X.; Wang, J.; Zhang, L.; Song, W.; et al. Wnt/β-catenin signaling pathway in severe preeclampsia. J. Mol. Histol. 2022, 49, 317–327. [Google Scholar] [CrossRef] [PubMed]
- DiFederico, E.; Genbacev, O.; Fisher, S.J. Preeclampsia is associated with widespread apoptosis of placental cytotrophoblasts within the uterine wall. Am J Pathol. 1999, 155, 293–301. [Google Scholar] [CrossRef]
- Sheng, R.; Kim, H.; Lee, H.; Xin, Y.; Chen, Y.; Tian, W.; et al. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat. Commun. 2014, 5, 4393. [Google Scholar] [CrossRef] [PubMed]
- Osol, G.; Ko, N.L.; Mandalà, M. Altered Endothelial Nitric Oxide Signaling as a Paradigm for Maternal Vascular Maladaptation in Preeclampsia. Curr Hypertens Rep. 2017, 19, 82. [Google Scholar] [CrossRef] [PubMed]
- Guerby, P.; Tasta, O.; Swiader, A.; Pont, F.; Bujold, E.; Parant, O.; Vayssiere, C.; Salvayre, R.; Negre-Salvayre, A. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 1018. [Google Scholar] [CrossRef]
- Goligorsky, M.S.; Li, H.; Brodsky, S.; Chen, J. Relationships between caveolae and eNOS: everything in proximity and the proximity of everything. Am J Physiol Renal Physiol. 2002, 283, F1–F10. [Google Scholar] [CrossRef]
- Rodal, S.K.; Skretting, G.; Garred, O.; Vilhardt, F.; van Deurs, B.; Sandvig, K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell. 1999, 10, 961–74. [Google Scholar] [CrossRef] [PubMed]
- Plenz, G.A.; Hofnagel, O.; Robenek, H. Differential modulation of caveolin-1 expression in cells of the vasculature by statins. Circulation. 2004, 109, e7–e8. [Google Scholar] [CrossRef]
- Salvary, T.; Gambert-Nicot, S.; Brindisi, M.C.; Meneveau, N.; Schiele, F.; Séronde, M.F.; Lorgis, L.; Zeller, M.; Cottin, Y.; Kantelip, J.P.; Gambert, P.; Davani, S. Pravastatin reverses the membrane cholesterol reorganization induced by myocardial infarction within lipid rafts in CD14(+)/CD16(-) circulating monocytes. Biochim Biophys Acta. 2012. Sep;1821, 1287-94. [CrossRef]
- Blair, A.; Shaul, P.W.; Yuhanna, I.S.; Conrad, P.A.; Smart, E.J. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999, 274, 32512–9. [Google Scholar] [CrossRef]
- Levitan, I.; Shentu, T.P. Impact of oxLDL on Cholesterol-Rich Membrane Rafts. J Lipids. 2011;2011:730209. [CrossRef]
- Gliozzi, M.; Scicchitano, M.; Bosco, F.; Musolino, V.; Carresi, C.; Scarano, F.; Maiuolo, J.; Nucera, S.; Maretta, A.; Paone, S.; Mollace, R.; Ruga, S.; Zito, M.C.; Macrì, R.; Oppedisano, F.; Palma, E.; Salvemini, D.; Muscoli, C.; Mollace, V. Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development. Int J Mol Sci. 2019, 20, 3294. [Google Scholar] [CrossRef]
- Palei, A.C.; Granger, J.P.; Spradley, F.T. Placental Ischemia Says "NO" to Proper NOS-Mediated Control of Vascular Tone and Blood Pressure in Preeclampsia. Int J Mol Sci. 2021, 22, 11261. [Google Scholar] [CrossRef]
- Sizar, O.; Khare, S.; Jamil, R.T.; Talati, R. Statin Medications. 2023 Feb 5. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. [PubMed]
- Goldberg, I.J.; Holleran, S.; Ramakrishnan, R.; Adams, M.; Palmer, R.H.; Dell, R.B.; Goodman, D.S. Lack of effect of lovastatin therapy on the parameters of whole-body cholesterol metabolism. J Clin Invest. 1990, 86, 801–8. [Google Scholar] [CrossRef]
- Schonewille, M.; de Boer, J.F.; Mele, L.; Wolters, H.; Bloks, V.W.; Wolters, J.C.; Kuivenhoven, J.A.; Tietge, U.J.; Brufau, G.; Groen, A.K. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. J Lipid Res. 2016, 57, 1455–64. [Google Scholar] [CrossRef]
- Afonso, Milessa Silva, et al. “Molecular Pathways Underlying Cholesterol Homeostasis.” Nutrients 2018 Jun;10, 760. [CrossRef]
- Zhou, X.; Mott, M.M.; Yiannakou, I.; Bradlee, M.L.; Singer, M.R.; Moore, L.L. Eggs and a Fiber-Rich Diet Are Beneficially Associated with Lipid Levels in Framingham Offspring Study Adults. Curr Dev Nutr. 2024, 8, 102062. [Google Scholar] [CrossRef] [PubMed]
- Dias, Irundika H K et al. “Simvastatin reduces circulating oxysterol levels in men with hypercholesterolaemia.” Redox biology vol. 16 (2018): 139-145. [CrossRef]
- Wang, C.; Enssle, J.; Pietzner, A.; Schmöcker, C.; Weiland, L.; Ritter, O.; Jaensch, M.; Elbelt, U.; Pagonas, N.; Weylandt, K.H. Essential Polyunsaturated Fatty Acids in Blood from Patients with and without Catheter-Proven Coronary Artery Disease. Int J Mol Sci. 2022, 23, 766. [Google Scholar] [CrossRef]
- Stark, J.M. Pre-eclampsia and cytokine induced oxidative stress. Br J Obstet Gynaecol. 1993, 100, 105–9. [Google Scholar] [CrossRef] [PubMed]
- Goulopoulou, S.; Davidge, S.T. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol Med. 2015, 21, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczak, K.; Łanocha-Arendarczyk, N.; Malinowski, W.; Ziętek, P.; Kosik-Bogacka, D. Oxidative Stress in Pregnancy. Biomolecules. 2023, 13, 1768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- McCord, J.M. The evolution of free radicals and oxidative stress. Am J Med. 2000, 108, 652–9. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, M.; Mileykovskaya, E.; Dowhan, W. Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. Subcell Biochem. 2008;49:197-239. [CrossRef]
- Koshy, C.; Ziegler, C. Structural insights into functional lipid-protein interactions in secondary transporters. Biochim Biophys Acta. 2015, 1850, 476–87. [Google Scholar] [CrossRef]
- Mahler, C.A.; Snoke, D.B.; Cole, R.M.; Angelotti, A.; Sparagna, G.C.; Baskin, K.K.; Ni, A.; Belury, M.A. Consuming a Linoleate-Rich Diet Increases Concentrations of Tetralinoleoyl Cardiolipin in Mouse Liver and Alters Hepatic Mitochondrial Respiration. J Nutr. 2023 Dec 30:S0022-3166(23)72826-5. [CrossRef]
- Funai, K.; Summers, S.A.; Rutter, J. Reign in the membrane: How common lipids govern mitochondrial function. Curr Opin Cell Biol. 2020, 63, 162–173, Epub 2020 Feb 24. [Google Scholar] [CrossRef]
- Paradies, G.; Ruggiero, F.M.; Petrosillo, G.; Quagliariello, E. Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations. FEBS Lett. 1998, 424, 155–8. [Google Scholar] [CrossRef]
- Bellanti, F.; Villani, R.; Tamborra, R.; Blonda, M.; Iannelli, G.; di Bello, G.; Facciorusso, A.; Poli, G.; Iuliano, L.; Avolio, C.; Vendemiale, G.; Serviddio, G. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression. Redox Biol. 2018, 15, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Pamplona, R.; Portero-Otin, M.; Sanz, A.; Requena, J.; Barja, G. Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. Exp Gerontol. 2004, 39, 725–33. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med. 1991, 91, 14S–22S. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Noguchi, N.; Niki, E. Cholesterol is more readily oxidized than phospholipid linoleates in cell membranes to produce cholesterol hydroperoxides. Free Radic Biol Med. 2024, 211, 89–95. [Google Scholar] [CrossRef]
- Girao, H.; Mota, C.; and Pereira, P. Cholesterol may act as an antioxidant in lens membranes. Curr. Eye Res. 1999, 18, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.L. Another cholesterol hypothesis: cholesterol as antioxidant. Free Radic Biol Med. 1991;11, 47-61. [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011, 25, 287–99. [Google Scholar] [CrossRef] [PubMed]
- Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014, 24, R453–R462. [CrossRef] [PubMed]
- Schäfer, G.; Cramer, T.; Suske, G.; Kemmner, W.; Wiedenmann, B.; Höcker, M. Oxidative stress regulates vascular endothelial growth factor-A gene transcription through Sp1- and Sp3-dependent activation of two proximal GC-rich promoter elements. J Biol Chem. 2003, 278, 8190–8. [Google Scholar] [CrossRef] [PubMed]
- Rumbold, A.; Duley, L.; Crowther, C.A.; Haslam, R.R. Antioxidants for preventing pre-eclampsia. Cochrane Database Syst Rev. 2008, 2008, CD004227. [Google Scholar] [CrossRef]
- Salles, A.M.; Galvao, T.F.; Silva, M.T.; Motta, L.C.; Pereira, M.G. Antioxidants for preventing preeclampsia: a systematic review. ScientificWorldJournal. 2012;2012:243476. Epub 2012 Apr 19. [CrossRef] [PubMed]
- Tenório, M.B.; Ferreira, R.C.; Moura, F.A.; Bueno, N.B.; Goulart, M.O.F.; Oliveira, A.C.M. Oral antioxidant therapy for prevention and treatment of preeclampsia: Meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2018, 28, 865–876. [Google Scholar] [CrossRef]
- Di Fabrizio, C.; Giorgione, V.; Khalil, A.; Murdoch, C.E. Antioxidants in Pregnancy: Do We Really Need More Trials? Antioxidants (Basel). 2022, 11, 812. [Google Scholar] [CrossRef] [PubMed]
- Korkes HA, et al “Lipidomic assessment of plasma and placenta of women with early-onset preeclampsia. ” PLoS One. 2014, 9, e110747.
- Cohen, J.M.; Beddaoui, M.; Kramer, M.S.; Platt, R.W.; Basso, O.; Kahn, S.R. Maternal Antioxidant Levels in Pregnancy and Risk of Preeclampsia and Small for Gestational Age Birth: A Systematic Review and Meta=Analysis. PLoS One. 2015 Aug 6;(8):eO!#%!(@.
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ Res. 2019, 124, 1094–1112, Erratum in: Circ Res. 2020, 126, e8. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.A.; Zingheim, R.W.; King, I.B.; Zebelman, A.M. Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology. 1995, 6, 232–7. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Sanchez, S.E.; Larrabure, G.; David, R.; Bralley, J.A.; Williams, M.A. Erythrocyte omega-3 and omega-6 polyunsaturated fatty acids and preeclampsia risk in Peruvian women. Arch Gynecol Obstet. 2006, 274, 97–103, Epub 2006 Mar 7. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zu, L.; Cai, W.; Cheng, Q.; Hua, T.; Peng, L.; Li, G.; Zhang, X. Metabolomics revealed decreased level of omega-3 PUFA-derived protective eicosanoids in pregnant women with pre-eclampsia. Clin Exp Pharmacol Physiol. 2019, 46, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.A.; King, I.B.; Sorensen, T.K.; Zingheim, R.W.; Troyer, B.L.; Zebelman, A.M.; Luthy, D.A. Risk of preeclampsia in relation to elaidic acid (trans fatty acid) in maternal erythrocytes. Gynecol Obstet Invest. 1998, 46, 84–7. [Google Scholar] [CrossRef] [PubMed]
- Mahomed, K.; Williams, M.A.; King, I.B.; Mudzamiri, S.; Woelk, G.B. Erythrocyte omega-3, omega-6 and trans fatty acids in relation to risk of preeclampsia among women delivering at Harare Maternity Hospital, Zimbabwe. Physiol Res. 2007;56, 37-50. [CrossRef]
- Clausen, T.; Slott, M.; Solvoll, K.; Drevon, C.A.; Vollset, S.E.; Henriksen, T. High intake of energy, sucrose, and polyunsaturated fatty acids is associated with increased risk of preeclampsia. Am J Obstet Gynecol. 2001, 185, 451–8. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Young, S.; Esplin, M.S.; Peaden, B.; Tolley, H.D.; Porter, T.F.; Varner, M.W.; D'Alton, M.E.; Jackson, B.J.; Graves, S.W. Detection and confirmation of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry. J Lipid Res. 2016, 57, 687–96. [Google Scholar] [CrossRef]
- Wada, Y.; Yoshida-Yamamoto, S.; Wada, Y.; Nakayama, M.; Mitsuda, N.; and Kitajima, H. Trans fatty acid accumulation in the human placenta. J. Mass Spectrom. 2017, 52, 139–143. [Google Scholar] [CrossRef]
- Brown, S.H.; Eather, S.R.; Freeman, D.J.; Meyer, B.J.; and Mitchell, T.W. A lipidomic analysis of placenta in preeclampsia: Evidence for lipid storage. PLoS One 2016, 11, e0163972. [Google Scholar] [CrossRef] [PubMed]
- Irwinda, R.; Hiksas, R.; Siregar, A.A.; et al. Long-chain polyunsaturated fatty acid (LC-PUFA) status in severe preeclampsia and preterm birth: a cross sectional study. Sci Rep, 2021; 11, 14701. [Google Scholar] [CrossRef]
- Chavarro, J.E.; Halldorsson, T.I.; Leth, T.; Bysted, A.; Olsen, S.F. A prospective study of trans fat intake and risk of preeclampsia in Denmark. Eur J Clin Nutr. 2011, 65, 944–51, Epub 2011 May 11. [Google Scholar] [CrossRef]
- Arvizu, M.; Minguez-Alarcon, L.; Wang, S.; Mitsunami, M.; Stuart, J.J.; Rich-Edwards, J.W.; Rosner, B.; Chavarro, J.E. Pre-pregnancy fat intake in relation to hypertensive disorders of pregnancy. Am J Clin Nutr. 2022, 116, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Alamolhoda, S.H.; Simbar, M.; Mirmiran, P.; Mirabi, P. Effect of low trans-fatty acid intakes on preeclampsia: A randomized controlled trial. J Res Med Sci. 2020, 25, 112. [Google Scholar] [CrossRef]
- Baig, S.; Lim, J.Y.; Fernandis, A.Z.; Wenk, M.R.; Kale, A.; Su, L.L.; Biswas, A.; Vasoo, S.; Shui, G.; Choolani, M. Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta. 2013, 34, 436–42. [Google Scholar] [CrossRef] [PubMed]
- Bartho, L.A.; Keenan, E.; Walker, S.P.; MacDonald, T.M.; Nijagal, B.; Tong, S.; Kaitu'u-Lino, T.J. Plasma lipids are dysregulated preceding diagnosis of preeclampsia or delivery of a growth restricted infant. EBioMedicine. 2023, 94, 104704, Epub 2023 Jul 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, B.; Liu, Y.; Maurya, M.R.; Benny, P.; Lassiter, C.; Li, H.; Subramaniam, S.; Garmire, L.X. The maternal blood lipidome is indicative of the pathogenesis of severe preeclampsia. J Lipid Res. 2021;62:100118. Epub 2021 Sep 20. [CrossRef]
- Brown, S.H.; Eather, S.R.; Freeman, D.J.; Meyer, B.J.; Mitchell, T.W. A Lipidomic Analysis of Placenta in Preeclampsia: Evidence for Lipid Storage. PLoS One. 2016, 11, e0163972. [Google Scholar] [CrossRef] [PubMed]
- Lantzanaki, M.; Vavilis, T.; Harizopoulou, V.C.; Bili, H.; Goulis, D.G.; Vavilis, D. Ceramides during Pregnancy and Obstetrical Adverse Outcomes. Metabolites. 2023, 13, 1136. [Google Scholar] [CrossRef] [PubMed]
- Melland-Smith, M.; Ermini, L.; Chauvin, S.; Craig-Barnes, H.; Tagliaferro, A.; Todros, T.; Post, M.; Caniggia, I. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy. 2015, 11, 653–69. [Google Scholar] [CrossRef]
- Dobierzewska, A.; Soman, S.; Illanes, S.E.; Morris, A.J. Plasma cross-gestational sphingolipidomic analyses reveal potential first trimester biomarkers of preeclampsia. PLoS One. 2017, 12, e0175118. [Google Scholar] [CrossRef]
- Patanapirunhakit, P.; Karlsson, H.; Mulder, M.; Ljunggren, S.; Graham, D.; Freeman, D. Sphingolipids in HDL - Potential markers for adaptation to pregnancy? Biochim Biophys Acta Mol Cell Biol Lipids. 2021, 1866, 158955. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Hao, S.; You, J.; Yao, X.; Li, Z.; Schilling, J.; Thyparambil, S.; Liao, W.L.; Zhou, X.; Mo, L.; Ladella, S.; Davies-Balch, S.R.; Zhao, H.; Fan, D.; Whitin, J.C.; Cohen, H.J.; McElhinney, D.B.; Wong, R.J.; Shaw, G.M.; Stevenson, D.K.; Sylvester, K.G.; Ling, X.B. Early-pregnancy prediction of risk for pre-eclampsia using maternal blood leptin/ceramide ratio: discovery and confirmation. BMJ Open. 2021, 11, e050963. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Kang, Y.; Lee, E.M.; Jung, Y.M.; Hong, S.; Park, S.J.; Park, C.W.; Norwitz, E.R.; Lee, D.Y.; Park, J.S. Metabolomic biomarkers in midtrimester maternal plasma can accurately predict the development of preeclampsia. Sci Rep. 2020, 10, 16142. [Google Scholar] [CrossRef] [PubMed]
- Kummerow, F.A. Modification of cell membrane composition by dietary lipids and its implications for atherosclerosis. Ann N Y Acad Sci. 1983;414:29-43. [CrossRef] [PubMed]
- Hong, L.; Zhu, L.; Zhang, J.; Fu, Y.; Qi, X.; Zhao, M. Association of dietary inflammatory index with risk of gestational diabetes mellitus and preeclampsia: a systematic review and meta-analysis. Br J Nutr. 2024, 131, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.; Slott, M.; Solvoll, K.; Drevon, C.A.; Vollset, S.E.; Henriksen, T. High intake of energy, sucrose, and polyunsaturated fatty acids is associated with increased risk of preeclampsia. Am J Obstet Gynecol. 2001, 185, 451–8. [Google Scholar] [CrossRef] [PubMed]
- Mu, T.S.; Duran-Stanton, A.; Stone, E.A.; Zarzabal, L.A.; Loewendorf, A. Rates of Preeclampsia and Post-preeclamptic Cardiovascular Disease Among US Military Servicewomen: A Retrospective Case-cohort Study. Mil Med. 2023 Aug 4:usad300. [CrossRef]
- Hedegaard, S.; Nohr, E.A.; Olsen, S.F.; Halldorsson, T.I.; Renault, K.M. Adherence to different forms of plant-based diets and pregnancy outcomes in the Danish National Birth Cohort: A prospective observational study. Acta Obstet Gynecol Scand. 2024 Jan 24. Epub ahead of print. PMID: 38263894. [CrossRef]
- Yang, J.; Song, Y.; Gaskins, A.J.; Li, L.J.; Huang, Z.; Eriksson, J.G.; Hu, F.B.; Chong, Y.S.; Zhang, C. Mediterranean diet and female reproductive health over lifespan: a systematic review and meta-analysis. Am J Obstet Gynecol. 2023, 229, 617–631, Epub 2023 Jul 26. [Google Scholar] [CrossRef] [PubMed]
- Scholl, T.O.; Leskiw, M.; Chen, X.; Sims, M.; Stein, T.P. Oxidative stress, diet, and the etiology of preeclampsia. Am J Clin Nutr. 2005, 81, 1390–6. [Google Scholar] [CrossRef] [PubMed]
- Irwinda R, Hiksas R, Siregar AA, Saroyo YB, Wibowo N. polyunsaturated fatty acid (LC-PUFA) status in severe preeclampsia and preterm birth: a cross sectional study. Sci Rep. 20Long-chain21 Jul 19;11, 14701. [CrossRef]
- Godhamgaonkar, A.A.; Wadhwani, N.S.; Randhir, K.N.; Selukar, S.S.; Dalvi, S.; Dangat, K.; Wagh, G.N.; Lalwani, S.; Chandhiok, N.; Kulkarni, B.; Fall, C.; Sachdev, H.P.S.; Gupte, S.; Joshi, S.R. Erythrocyte fatty acids and desaturase indices in early pregnancy are associated with risk of preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2023, 196, 102583. [Google Scholar] [CrossRef] [PubMed]
- Alamolhoda, S.H.; Simbar, M.; Mirmiran, P.; Mirabi, P. Effect of low trans-fatty acid intakes on preeclampsia: A randomized controlled trial. J Res Med Sci. 2020, 25, 112. [Google Scholar] [CrossRef]
- Nordqvist, M.; Jacobsson, B.; Brantsæter, A.L.; Myhre, R.; Nilsson, S.; Sengpiel, V. Timing of probiotic milk consumption during pregnancy and effects on the incidence of preeclampsia and preterm delivery: a prospective observational cohort study in Norway. BMJ Open. 2018, 8, e018021. [Google Scholar] [CrossRef]
- 6 Cortez-Ribeiro AC, Meireles M, Ferro-Lebres V, Almeida-de-Souza J. Olive oil consumption confers protective effects on maternal-fetal outcomes: A systematic review of the evidence. Nutr Res. 2023, 110, 87–95. [CrossRef] [PubMed]
- Frederick, I.O.; Williams, M.A.; Dashow, E.; Kestin, M.; Zhang, C.; Leisenring, W.M. Dietary fiber, potassium, magnesium and calcium in relation to the risk of preeclampsia. J Reprod Med. 2005, 50, 332–44. [Google Scholar] [PubMed]
- Luqman, A.; Hassan, A.; Ullah, M.; Naseem, S.; Ullah, M.; Zhang, L.; Din, A.U.; Ullah, K.; Ahmad, W.; Wang, G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol. 2024, 15, 1321395. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Wang, X.; Wang, J. Research progress on the correlation between gut microbiota and preeclampsia: microbiome changes, mechanisms and treatments. Front Cell Infect Microbiol. 2023, 13, 1256940. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Chen, Y.; Zhou, Q.; Wang, C.; Chen, L.; Di, W.; Zhang, Y. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin Sci (Lond). 2020, 134, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef] [PubMed]
- Thangaratinam, S.; Rogozińska, E.; Jolly, K.; Glinkowski, S.; Duda, W.; Borowiack, E.; Roseboom, T.; Tomlinson, J.; Walczak, J.; Kunz, R.; Mol, B.W.; Coomarasamy, A.; Khan, K.S. Interventions to reduce or prevent obesity in pregnant women: a systematic review. Health Technol Assess. 2012, 16, iii–iv, 1. [Google Scholar] [CrossRef] [PubMed]
- Kinshella MW, Omar S, Scherbinsky K, Vidler M, Magee LA, von Dadelszen P, Moore SE, Elango R, The Precise Conceptual Framework Working Group. Effects of Maternal Nutritional Supplements and Dietary Interventions on Placental Complications: An Umbrella Review, Meta-Analysis and Evidence Map. Nutrients. 2021, 13, 472. [CrossRef] [PubMed]
- H Al Wattar B, Dodds J, Placzek A, Beresford L, Spyreli E, Moore A, Gonzalez Carreras FJ, Austin F, Murugesu N, Roseboom TJ, Bes-Rastrollo M, Hitman GA, Hooper R, Khan KS, Thangaratinam S. ; ESTEEM study group. Mediterranean-style diet in pregnant women with metabolic risk factors (ESTEEM): A pragmatic multicentre randomised trial. PLoS Med. 2019, 16, e1002857. [CrossRef]
- Assaf-Balut C, García de la Torre N, Duran A, Fuentes M, Bordiú E, Del Valle L, Familiar C, Valerio J, Jiménez I, Herraiz MA, Izquierdo N, Torrejon MJ, Cuadrado MÁ, Ortega I, Illana FJ, Runkle I, de Miguel P, Moraga I, Montañez C, Barabash A, Cuesta M, Rubio MA, Calle-Pascual AL. A Mediterranean Diet with an Enhanced Consumption of Extra Virgin Olive Oil and Pistachios Improves Pregnancy Outcomes in Women Without Gestational Diabetes Mellitus: A Sub-Analysis of the St. Carlos Gestational Diabetes Mellitus Prevention Study. Ann Nutr Metab. 2019;74, 69-79. [CrossRef]
- Sherriff, J.L.; O'Sullivan, T.A.; Properzi, C.; Oddo, J.L.; Adams, L.A. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes. Adv Nutr. 2016, 7, 5–13. [Google Scholar] [CrossRef]
- Sanders, L.M.; Zeisel, S.H. Choline: Dietary Requirements and Role in Brain Development. Nutr Today. 2007;42, 181-186. [CrossRef]
- Wallace TC, Fulgoni VL 3rd. Assessment of Total Choline Intakes in the United States. J Am Coll Nutr. 2016;35, 108-12. [CrossRef]
- Caudill, M.A. Pre- and postnatal health: evidence of increased choline needs. J Am Diet Assoc. 2010, 110, 1198–206. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Chen, L.; Deng, M.G.; Liang, Y.; Liu, F.; Nie, J.Q. Dietary choline intake and non-alcoholic fatty liver disease (NAFLD) in U. S. adults: National Health and Nutrition Examination Survey (NHANES) 2017-2018. Eur J Clin Nutr. 2023, 77, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Sherriff, J.L.; O'Sullivan, T.A.; Properzi, C.; Oddo, J.L.; Adams, L.A. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes. Adv Nutr. 2016, 7, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.S.; Rossi, M.A.; Oliveira, J.S. Pathogenesis of the renal injury in choline deficiency: the role of catecholamines and acetylcholine. Br J Exp Pathol. 1979, 60, 613–9. [Google Scholar] [PubMed]
- Golzarand, M.; Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary choline and betaine intake and risk of hypertension development: a 7.4-year follow-up. Food Funct. 2021, 12, 4072–4078. [Google Scholar] [CrossRef]
- Zhang, J.; Zang, X.; Lv, J.; Zhang, Y.; Lv, Z.; Yu, M. Changes in Lipidomics, Metabolomics, and the Gut Microbiota in CDAA-Induced NAFLD Mice after Polyene Phosphatidylcholine Treatment. Int J Mol Sci. 2023, 24, 1502. [Google Scholar] [CrossRef] [PubMed]
- Kinshella MW, Omar S, Scherbinsky K, Vidler M, Magee LA, von Dadelszen P, Moore SE, Elango R, The Precise Conceptual Framework Working Group. Effects of Maternal Nutritional Supplements and Dietary Interventions on Placental Complications: An Umbrella Review, Meta-Analysis and Evidence Map. Nutrients. 2021, 13, 472. [CrossRef] [PubMed]
- Mohammad, N.S.; Nazli, R.; Zafar, H.; Fatima, S. Effects of lipid based Multiple Micronutrients Supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pak J Med Sci. 2022, 38, 219–226. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Murillo, A.G. Is There a Correlation between Dietary and Blood Cholesterol? Evidence from Epidemiological Data and Clinical Interventions. Nutrients. 2022, 14, 2168. [Google Scholar] [CrossRef]
- Li, S.N.; Liu, Y.H.; Luo, Z.Y.; Cui, Y.F.; Cao, Y.; Fu, W.J.; Dou, W.F.; Duan, D.D.; Zhao, X.L.; Chen, Y.M.; Lyu, Q.J.; Chen, Q.S.; Zeng, F.F. The association between dietary fatty acid intake and the risk of developing preeclampsia: a matched case-control study. Sci Rep. 2021, 11, 4048. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients. 2018, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Addis, P.B. Occurrence of lipid oxidation products in foods. Food Chem Toxicol. 1986 Oct-Nov;24(10-11):1021-30. [CrossRef]
- Herlambang, H.; Puspasari, A.; Maharani, C.; Enis, R.N.; Tarawifa, S.; Fitri, A.D.; Harahap, H.; Harahap, A.H.; Kusdiyah, E.; Syamsunarno, M.R.A.A. Comprehensive fatty acid fractionation profilling in preeclampsia: a case control study with multivariable analysis. BMC Pregnancy Childbirth. 2022, 22, 8. [Google Scholar] [CrossRef]
- Tan, B.; Ma, Y.; Zhang, L.; Li, N.; Zhang, J. The application of metabolomics analysis in the research of gestational diabetes mellitus and preeclampsia. J Obstet Gynaecol Res. 2020, 46, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Sviridov, D.; Mukhamedova, N.; Miller, Y.I. Lipid rafts as a therapeutic target. J Lipid Res. 2020, 61, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, M.K. Nutritional Status and Nutrients Related to Pre-Eclampsia Risk. Am J Lifestyle Med. 2022, 17, 41–45. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).