Altmetrics
Downloads
127
Views
51
Comments
0
This version is not peer-reviewed
Submitted:
02 May 2024
Posted:
03 May 2024
You are already at the latest version
Algorithm 1: Initialization algorithm |
Triangular Fuzzy Numbers | Trapezoidal Fuzzy Numbers | Generalized Trapezoidal Fuzzy Numbers |
be two triangular fuzzy numbers then • • |
be two trapezoidal fuzzy numbers then • • |
be two generalized trapezoidal fuzzy numbers then • • |
No | From Journal | Name | Problem Size | Type | Optimal Solution |
---|---|---|---|---|---|
1 | Ebrahimnejad (2014) | Pr. 01 | 3·3 | Generalized Trapezoidal Fuzzy Number | 64.35 |
2 | Kumar and Subramanian (2018) | Pr. 02 | 4·4 | Classic Triangular Fuzzy Number | 853.35 |
3 | Farikhin et al. (2020) | Pr. 03 | 3·4 | Classic Triangular Fuzzy Number | 817.17 |
4 | Mathur and Srivastava (2020) | Pr. 04 | 3·4 | Generalized Trapezoidal Fuzzy Number | 196 |
5 | Srivastava and Bisht (2018) | Pr. 05 | 3·3 | Classic Triangular Fuzzy Number | 166 |
6 | Srivastava and Bisht (2018) | Pr. 06 | 3·4 | Classic Triangular Fuzzy Number | 101 |
7 | Sam'an et al. (2018) | Pr. 07 | 3·3 | Classic Trapezoidal Fuzzy Number | 1770 |
8 | Pandian and Natarajan (2011) | Pr. 08 | 3·4 | Classic Trapezoidal Fuzzy Number | 199 |
9 | Mathur et al. (2016) | Pr. 09 | 3·3 | Classic Trapezoidal Fuzzy Number | 155.25 |
10 | Singh and Saxena (2017) | Pr. 10 | 3·4 | Classic Trapezoidal Fuzzy Number | 126 |
11 | Ekanayake and Ekanayake (2023) | Pr. 11 | 4·4 | Classic Triangular Fuzzy Number | 294 |
12 | Ekanayake and Ekanayake (2023) | Pr. 12 | 3·4 | Classic Triangular Fuzzy Number | 65.8 |
13 | Ekanayake and Ekanayake (2023) | Pr. 13 | 2·3 | Classic Triangular Fuzzy Number | 7735.5 |
14 | Ekanayake and Ekanayake (2023) | Pr. 14 | 4·4 | Classic Triangular Fuzzy Number | 130.68 |
15 | Srinivasan et al. (2020) | Pr. 15 | 6·6 | Classic Triangular Fuzzy Number | 2170 |
16 | Ekanayake and Ekanayake (2023) | Pr. 16 | 3·3 | Classic Trapezoidal Fuzzy Number | 951.25 |
17 | Ekanayake and Ekanayake (2023) | Pr. 17 | 4·3 | Classic Trapezoidal Fuzzy Number | 821.25 |
18 | Ekanayake and Ekanayake (2023) | Pr. 18 | 3·4 | Classic Triangular Fuzzy Number | 149 |
19 | Ekanayake and Ekanayake (2023) | Pr. 19 | 3·4 | Classic Trapezoidal Fuzzy Number | 67.25 |
20 | Hussain and Jayaraman (2014) | Pr. 20 | 3·3 | Classic Triangular Fuzzy Number | 3640.56 |
21 | Hussain and Jayaraman (2014) | Pr. 21 | 4·4 | Classic Trapezoidal Fuzzy Number | 3844 |
22 | Ekanayake and Ekanayake (2023) | Pr. 22 | 3·3 | Classic Triangular Fuzzy Number | 295.9 |
23 | Ekanayake and Ekanayake (2023) | Pr. 23 | 3·3 | Classic Triangular Fuzzy Number | 551.03 |
24 | Ebrahimnejad (2014) | Pr. 24 | 4·6 | Generalized Trapezoidal Fuzzy Number | 4300.2 |
25 | Kumar (2016) | Pr. 25 | 3·4 | Classic Trapezoidal Fuzzy Number | 68 |
26 | Kumar(2016) | Pr. 26 | 3·4 | Classic Trapezoidal Fuzzy Number | 141 |
27 | Thota and Raja (2020) | Pr. 27 | 3·3 | Generalized Trapezoidal Fuzzy Number | 91.45 |
28 | Thota and Raja (2020) | Pr. 28 | 3·4 | Generalized Trapezoidal Fuzzy Number | 75.6 |
Pr | NWC | LCM | VAM | MOMC | TrigAC-PSO | Optimal |
---|---|---|---|---|---|---|
01 | 64.35 | 67.6 | 67.6 | 67.6 | 65.1 | 64.35 |
02 | 1046.67 | 870.05 | 853.35 | 855 | 853.35 | 853.35 |
03 | 861.53 | 894.66 | 817.17 | 1000.67 | 817.17 | 817.17 |
04 | 233 | 266.5 | 268 | 266.5 | 196 | 196 |
05 | 166 | 190 | 172 | 172 | 166 | 166 |
06 | 125 | 120.5 | 101 | 105 | 101 | 101 |
07 | 2025 | 1790 | 1770 | 1800 | 1770 | 1770 |
08 | 233 | 223 | 203 | 199 | 199 | 199 |
09 | 155.25 | 178.25 | 159.25 | 164.5 | 155.25 | 155.25 |
10 | 144.25 | 140 | 130 | 126 | 126 | 126 |
11 | 376 | 294 | 294 | 375 | 294 | 294 |
12 | 110.67 | 65.8 | 65.8 | 66 | 65.8 | 65.8 |
13 | 7736.67 | 7735.5 | 7735.5 | 7736.67 | 7735.5 | 7735.5 |
14 | 196 | 130.68 | 130.68 | 130.68 | 130.68 | 130.68 |
15 | 4285 | 2.455 | 2.310 | 2620 | 2261 | 2170 |
16 | 1035 | 971.25 | 951.25 | 951.25 | 951.25 | 951.25 |
17 | 967.5 | 887.5 | 821.25 | 826.25 | 821.25 | 821.25 |
18 | 176 | 152 | 149 | 150 | 149 | 149 |
19 | 93 | 67.25 | 67.25 | 77 | 67.25 | 67.25 |
20 | 5070.33 | 3740.58 | 3644.58 | 3944.34 | 3640.56 | 3640.56 |
21 | 4172 | 4172 | 4091 | 3932 | 3844 | 3844 |
22 | 486.67 | 339.92 | 295.9 | 340 | 295.9 | 295.9 |
23 | 592.67 | 557.71 | 557.71 | 581 | 551.03 | 551.03 |
24 | 6549.9 | 7567.8 | 4414.95 | 4452.9 | 4386.45 | 4300.2 |
25 | 93 | 73 | 70 | 68 | 68 | 68 |
26 | 169 | 148 | 141 | 141 | 141 | 141 |
27 | 108.8 | 97.5 | 97.45 | 97.5 | 91.45 | 91.45 |
28 | 134.175 | 95 | 75.6 | 95 | 82.5 | 75.6 |
NWM | LCM | VAM | MOMC | TrigAC-PSO | |
---|---|---|---|---|---|
Pr.01 | 0 | 0.05050505 | 0.05050505 | 0.05050505 | 0.011655011 |
Pr.02 | 0.22654245 | 0.01956993 | 0 | 0.001933556 | 0 |
Pr.03 | 0.05428491 | 0.094827269 | 0 | 0.224555478 | 0 |
Pr.04 | 0.18877551 | 0.359693877 | 0.36734694 | 0.359693877 | 0 |
Pr.05 | 0 | 0.014457831 | 0.03614458 | 0.036144578 | 0 |
Pr.06 | 0.237623762 | 0.193069306 | 0 | 0.03960396 | 0 |
Pr.07 | 0.144067796 | 0.011299435 | 0 | 0.016949152 | 0 |
Pr.08 | 0.170854271 | 0.120603015 | 0.0201005 | 0 | 0 |
Pr.09 | 0 | 0.148148148 | 0.0257649 | 0.05958132 | 0 |
Pr.10 | 0.144841269 | 0.111111111 | 0.03174603 | 0 | 0 |
Pr.11 | 0.278911564 | 0 | 0 | 0.275510204 | 0 |
Pr.12 | 0.681914893 | 0 | 0 | 0.003039514 | 0 |
Pr.13 | 0.000151251 | 0 | 0 | 0.000151251 | 0 |
Pr.14 | 0.499846954 | 0 | 0 | 0 | 0 |
Pr.15 | 0.974654377 | 0.131336405 | 0.06060606 | 0.207373271 | 0.041935483 |
Pr.16 | 0.088042049 | 0.021019442 | 0 | 0 | 0 |
Pr.17 | 0.178082192 | 0.080669711 | 0 | 0.00608828 | 0 |
Pr.18 | 0.181208054 | 0.020134228 | 0 | 0.006711409 | 0 |
Pr.19 | 0.382899628 | 0 | 0 | 0.144981413 | 0 |
Pr.20 | 0.392733535 | 0.027523238 | 0.00110423 | 0.083443207 | 0 |
Pr.21 | 0.085327784 | 0.085327784 | 0.06425598 | 0.02289282 | 0 |
Pr.22 | 0.644711051 | 0.148766475 | 0 | 0.149036837 | 0 |
Pr.23 | 0.075567573 | 0.012122752 | 0.01212275 | 0.054389053 | 0 |
Pr.24 | 0.501813869 | 0.73852379 | 0.00533696 | 0.035509976 | 0.020057207 |
Pr.25 | 0.367647059 | 0.073529412 | 0.02941176 | 0 | 0 |
Pr.26 | 0.177304965 | 0.04964539 | 0 | 0 | 0 |
Pr.27 | 0.189721159 | 0.06615637 | 0.06560962 | 0.06615637 | 0 |
Pr.28 | 0.774801587 | 0.256613757 | 0 | 0.256613757 | 0.091269841 |
Average | 0.27294034 | 0.101237633 | 0.02750198 | 0.075030869 | 0.005889912 |
No | NWM | LCM | VAM | MOMC | TrigAC-PSO |
---|---|---|---|---|---|
Pr. 01 | 1 | 0.9767 | 0.9767 | 0.9767 | 0.995 |
Pr. 02 | 0.7115 | 0.9985 | 1 | 0.9999 | 1 |
Pr. 03 | 0.6022 | 0.3488 | 1 | 0.0304 | 1 |
Pr. 04 | 0.7844 | 0.4699 | 0.4553 | 0.4699 | 1 |
Pr. 05 | 1 | 0.9137 | 0.9944 | 0.9944 | 1 |
Pr. 06 | 0.614 | 0.7183 | 1 | 0.9862 | 1 |
Pr. 07 | 0.7561 | 0.9983 | 1 | 0.9961 | 1 |
Pr. 08 | 0.8319 | 0.8319 | 0.9949 | 1 | 1 |
Pr. 09 | 1 | 0.9981 | 0.9697 | 0.9868 | 1 |
Pr. 10 | 0.7483 | 0.8445 | 0.9862 | 1 | 1 |
Pr. 11 | 0.6045 | 1 | 1 | 0.6139 | 1 |
Pr. 12 | 0 | 1 | 1 | 1 | 1 |
Pr. 13 | 0.998 | 1 | 1 | 0.998 | 1 |
Pr. 14 | 0.2271 | 1 | 1 | 1 | 1 |
Pr. 15 | 0 | 0.1311 | 0.6147 | 0.006 | 0.987 |
Pr. 16 | 0.9947 | 0.9951 | 1 | 1 | 1 |
Pr. 17 | 0.9974 | 0.9709 | 1 | 0.9995 | 1 |
Pr. 18 | 0.4868 | 0.9911 | 1 | 0.9999 | 1 |
Pr. 19 | 0.7559 | 1 | 1 | 0.9692 | 1 |
Pr. 20 | 0.4762 | 0.9924 | 0.9999 | 0.9665 | 1 |
Pr. 21 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 1 |
Pr. 22 | 0.9718 | 0.9921 | 1 | 0.992 | 1 |
Pr. 23 | 0.9093 | 0.9967 | 0.9967 | 0.9514 | 1 |
Pr. 24 | 0 | 0 | 0.9995 | 0.993 | 0.9999 |
Pr. 25 | 0.2235 | 0.9893 | 1 | 1 | 1 |
Pr. 26 | 0.259 | 0.975 | 1 | 1 | 1 |
Pr. 27 | 0.019 | 0.9998 | 0.9998 | 0.9997 | 1 |
Pr. 28 | 0 | 0 | 1 | 0 | 0.993 |
Average | 0.606125 | 0.826146 | 0.963846 | 0.854621 | 0.999103571 |
Ranking function for two classical fuzzy numbers [7] |
Ranking function for generalized trapezoidal fuzzy numbers [18] |
• Let a triangular fuzzy number then, • Let a trapezoidal fuzzy number then, |
• Let and be two generalized trapezoidal fuzzy numbers and . Then and |
Pr. | Ekanayake Optimal Solution | TrigAC-PSO Optimal Solution | Ekanayake Membership Value | TrigAC-PSO Membership Value |
---|---|---|---|---|
Pr. 02 | (400, 845, 1315) | (400, 845, 1315) | 1 | 1 |
Pr. 11 | (144, 285, 453) | (144, 285, 453) | 1 | 1 |
Pr. 12 | (20, 89, 89) | (20, 89, 89) | 1 | 1 |
Pr. 13 | (5960, 7620, 9630) | (5960, 7620, 9630) | 1 | 1 |
Pr. 14 | (64, 124, 206) | (64, 124, 206) | 1 | 1 |
Pr. 16 | (370, 735, 1145, 1595) | (370, 715, 1085, 1635) | 0.9951 | 1 |
Pr. 17 | (400, 640, 875, 1370) | (400, 640, 875, 1370) | 1 | 1 |
Pr. 18 | (105, 150, 195) | (104, 149, 194) | 0.9999 | 1 |
Pr. 22 | (148, 322, 418) | (148, 322, 418) | 1 | 1 |
Pr. 23 | (347, 566, 760) | (347, 554, 752) | 0.995 | 1 |
Pr. 25 | (12, 55, 88, 117) | (12, 55, 88, 117) | 1 | 1 |
Pr. 26 | (52, 106, 176, 230) | (52, 106, 176, 230) | 1 | 1 |
Pr. | Ebrahimnejad | Thota and Raja | Kaur and Kuman | Mathur et al. | TrigAC-PSO |
---|---|---|---|---|---|
Pr. 01 | (117, 205, 352, 613; 0.2) | (117, 205, 35, 613; 0.2) | (147, 220, 382, 603; 0.2) | (197, 240, 382, 643; 0.2) | (147, 220, 382, 553; 0.2) |
Pr. 04 | (315, 810, 1220, 1575; 0.2) | (318, 813, 1220, 1582; 0.2) | (315, 810, 1220, 1575; 0.2) | (415, 970, 1460, 1865; 0.2) | (315, 810, 1220, 1575; 0.2) |
Pr. 24 | (5148, 6475, 7802, 9244; 0.6) | (5148, 6475, 7802, 9244; 0.6) | (5307, 6794, 7.872, 9460; 0.6) | (5307, 6794, 7.872, 9460; 0.6) | (3170.4, 4052.4, 4717.2, 5628; 0.6) |
Pr. 27 | (376, 436, 474, 543; 0.2) | (376, 436, 474, 543; 0.2) | (413, 459, 506, 572; 0.2) | (411, 455, 509, 563; 0.2) | (404, 460, 502, 559; 0.2) |
Pr.28 | (294, 348, 408, 462; 0.2) | (294, 348, 408, 462; 0.2) | (294, 348, 408, 462; 0.2) | (294, 348, 408, 462; 0.2) | (294, 348, 408, 462; 0.2) |
Pr. | Ebrahimnejad | Thota and Raja | Kaur and Kuman | Mathur et al. | TrigAC-PSO |
---|---|---|---|---|---|
Pr.01 | 0 | 0 | 0.0505 | 0.136 | 0.0117 |
Pr.04 | 0 | 0.0028 | 0 | 0.2015 | 0 |
Pr.24 | 0 | 0 | 0.0278 | 0.0278 | 0.0213 |
Pr.27 | 0 | 0 | 0.0662 | 0.6617 | 0.0524 |
Pr.28 | 0 | 0 | 0 | 0 | 0 |
Average | 0 | 0.00056 | 0.0289 | 0.2054 | 0.01708 |
Pr. | 20 Particles | 35 Particles | 50 Particles | Optimal |
---|---|---|---|---|
01 | 65.1 | 65.1 | 65.1 | 64.35 |
02 | 853.35 | 853.35 | 853.35 | 853.35 |
03 | 817.17 | 817.17 | 817.17 | 817.17 |
04 | 200.5 | 196 | 196 | 196 |
05 | 166 | 166 | 166 | 166 |
06 | 101 | 101 | 101 | 101 |
07 | 1770 | 1770 | 1770 | 1770 |
08 | 199 | 199 | 199 | 199 |
09 | 155.25 | 155.25 | 155.25 | 155.25 |
10 | 126 | 126 | 126 | 126 |
11 | 294 | 294 | 294 | 294 |
12 | 65.8 | 65.8 | 65.8 | 65.8 |
13 | 7735.5 | 7735.5 | 7735.5 | 7735.5 |
14 | 130.68 | 130.68 | 130.68 | 130.68 |
15 | 2327 | 2330 | 2261 | 2170 |
16 | 951.25 | 951.25 | 951.25 | 951.25 |
17 | 821.25 | 821.25 | 821.25 | 821.25 |
18 | 149 | 149 | 149 | 149 |
19 | 67.25 | 67.25 | 67.25 | 67.25 |
20 | 3640.56 | 3640.56 | 3640.56 | 3640.56 |
21 | 3844 | 3844 | 3844 | 3844 |
22 | 295.9 | 295.9 | 295.9 | 295.9 |
23 | 551.03 | 551.03 | 551.03 | 551.03 |
24 | 4389.6 | 4386.45 | 4399.35 | 4392 |
25 | 68 | 68 | 68 | 68 |
26 | 141 | 141 | 141 | 141 |
27 | 96.25 | 96.25 | 96.25 | 96.25 |
28 | 82.5 | 82.5 | 82.5 | 75.6 |
Pr. | 20 Particles | 35 Particles | 50 particles |
---|---|---|---|
01 | 0.95 | 1 | 1 |
02 | 1 | 1 | 1 |
03 | 0.95 | 1 | 0.95 |
04 | 0.05 | 0 | 0.05 |
05 | 1 | 1 | 1 |
06 | 0.15 | 0.75 | 0.9 |
07 | 0.4 | 0.6 | 0.7 |
08 | 1 | 0.75 | 0.9 |
09 | 1 | 1 | 1 |
10 | 0.7 | 0.75 | 0.9 |
11 | 0.8 | 0.95 | 0.95 |
12 | 0.45 | 0.6 | 0.8 |
13 | 1 | 1 | 1 |
14 | 0.85 | 0.9 | 0.95 |
15 | 0 | 0 | 0 |
16 | 1 | 1 | 1 |
17 | 0.35 | 0.727273 | 0.55 |
18 | 0.9 | 1 | 0.95 |
19 | 0.75 | 0.95 | 1 |
20 | 0.65 | 0.65 | 0.7 |
21 | 0.2 | 0.2 | 0.2 |
22 | 1 | 1 | 0.95 |
23 | 1 | 1 | 1 |
24 | 0 | 0 | 0 |
25 | 0.55 | 0.85 | 0.9 |
26 | 0.75 | 1 | 0.8 |
27 | 0.05 | 0.05 | 0 |
28 | 1 | 1 | 1 |
Average | 0.6607143 | 0.74026 | 0.755357 |
20 particles | 35 particles | 50 particles | ||
---|---|---|---|---|
Mean | 65.225 | 65.1 | 65.1 | |
St.Dev | 0.559016994 | 0 | 0 | |
Pr.01 | Min | 65.1 | 65.1 | 65.1 |
Max | 67.6 | 65.1 | 65.1 | |
CV% | 0.857059401 | 0 | 0 | |
Mean | 853.35 | 853.35 | 853.35 | |
St.Dev | 0 | 0 | 0 | |
Pr.02 | Min | 853.35 | 853.35 | 853.35 |
Max | 853.35 | 853.35 | 853.35 | |
CV% | 0 | 0 | 0 | |
Mean | 817.659 | 817.17 | 817.49 | |
St.Dev | 2.186874482 | 0 | 1.431083506 | |
Pr.03 | Min | 817.17 | 817.17 | 817.17 |
Max | 826.95 | 817.17 | 823.57 | |
CV% | 0.267455563 | 0 | 0.175058228 | |
Mean | 204.285 | 203.225 | 200.765 | |
St.Dev | 3.305700817 | 3.247002666 | 1.578898683 | |
Pr.04 | Min | 200.5 | 196 | 196 |
Max | 210.2 | 210.1 | 203.4 | |
CV% | 1.618180883 | 1.597737811 | 0.786441204 | |
Mean | 166 | 166 | 166 | |
St.Dev | 0 | 0 | 0 | |
Pr.05 | Min | 166 | 166 | 166 |
Max | 166 | 166 | 166 | |
CV% | 0 | 0 | 0 | |
Mean | 102.575 | 101.45 | 101.2 | |
St.Dev | 0.712205618 | 0.809483266 | 0.615587011 | |
Pr.06 | Min | 101 | 101 | 101 |
Max | 103 | 103 | 103 | |
CV% | 0.694326705 | 0.79791352 | 0.608287561 | |
Mean | 1818.4125 | 1809.3875 | 1782.35 | |
St.Dev | 76.91593476 | 69.08406754 | 26.25888321 | |
Pr.07 | Min | 1770 | 1770 | 1770 |
Max | 2020 | 2020 | 1870 | |
CV% | 4.229839751 | 3.818091345 | 1.473273106 | |
Mean | 199 | 200.5 | 199.6 | |
St.Dev | 0 | 2.66556995 | 1.846761034 | |
Pr.08 | Min | 199 | 199 | 199 |
Max | 199 | 205 | 205 | |
CV% | 0 | 1.329461322 | 0.925230979 | |
Mean | 155.25 | 155.25 | 155.25 | |
St.Dev | 0 | 0 | 0 | |
Pr.09 | Min | 155.25 | 155.25 | 155.25 |
Max | 155.25 | 155.25 | 155.25 | |
CV% | 0 | 0 | 0 | |
Mean | 126.3 | 126.25 | 126.1 | |
St.Dev | 0.470162346 | 0.444261658 | 0.307793506 | |
Pr.10 | Min | 126 | 126 | 126 |
Max | 127 | 127 | 127 | |
CV% | 0.37225839 | 0.351890422 | 0.24408684 | |
Mean | 294.55 | 295.35 | 295.4 | |
St.Dev | 1.234376041 | 6.037383539 | 6.260990337 | |
Pr.11 | Min | 294 | 294 | 294 |
Max | 298 | 321 | 322 | |
CV% | 0.419071818 | 2.044145434 | 2.119495713 | |
Mean | 69.535 | 67.64 | 66.72 | |
St.Dev | 6.309080757 | 2.312073574 | 1.887800168 | |
Pr.12 | Min | 65.8 | 65.8 | 65.8 |
Max | 94.5 | 70.4 | 70.4 | |
CV% | 9.073244779 | 3.418204574 | 2.829436702 | |
Mean | 7735.5 | 7735.5 | 7735.5 | |
St.Dev | 0 | 0 | 0 | |
Pr.13 | Min | 7735.5 | 7735.5 | 7735.5 |
Max | 7735.5 | 7735.5 | 7735.5 | |
CV% | 0 | 0 | 0 | |
Mean | 132.418 | 132.3165 | 131.4825 | |
St.Dev | 4.483441582 | 5.065924631 | 3.588889104 | |
Pr.14 | Min | 130.68 | 130.68 | 130.68 |
Max | 147.39 | 148.71 | 146.73 | |
CV% | 3.385824874 | 3.828641652 | 2.729556484 | |
Mean | 2703.45 | 2738.7 | 2445.35 | |
St.Dev | 251.6408207 | 400.1072356 | 138.7706457 | |
Pr.15 | Min | 2327 | 2330 | 2261 |
Max | 3275 | 3585 | 2795 | |
CV% | 9.308136665 | 14.60938532 | 5.674878675 | |
Mean | 951.25 | 951.25 | 951.25 | |
St.Dev | 0 | 0 | 0 | |
Pr.16 | Min | 951.25 | 951.25 | 951.25 |
Max | 951.25 | 951.25 | 951.25 | |
CV% | 0 | 0 | 0 | |
Mean | 829.9 | 826.775 | 823.8125 | |
St.Dev | 15.6005651 | 11.11983174 | 3.498002249 | |
Pr.17 | Min | 821.25 | 821.25 | 821.25 |
Max | 878 | 868 | 834.75 | |
CV% | 1.879812641 | 1.344964681 | 0.424611456 | |
Mean | 149.45 | 149 | 149.15 | |
St.Dev | 1.468081455 | 0 | 0.670820393 | |
Pr.18 | Min | 149 | 149 | 149 |
Max | 155 | 149 | 152 | |
CV% | 0.98232282 | 0 | 0.449762248 | |
Mean | 68.1 | 67.4 | 67.25 | |
St.Dev | 2.684507208 | 0.670820393 | 0 | |
Pr.19 | Min | 67.25 | 67.25 | 67.25 |
Max | 79 | 70.25 | 67.25 | |
CV% | 3.942007647 | 0.995282483 | 0 | |
Mean | 3641.096 | 3641.297 | 3641.029 | |
St.Dev | 0.801645676 | 1.265647743 | 0.786771551 | |
Pr.20 | Min | 3640.56 | 3640.56 | 3640.56 |
Max | 3643.24 | 3644.58 | 3643.24 | |
CV% | 0.022016604 | 0.034758157 | 0.021608494 | |
Mean | 3896.4125 | 3896.4125 | 3896.4125 | |
St.Dev | 53.85245896 | 53.85245896 | 53.85245896 | |
Pr.21 | Min | 3844 | 3844 | 3844 |
Max | 4020 | 4020 | 4020 | |
CV% | 1.382103639 | 1.382103639 | 1.382103639 | |
Mean | 295.9 | 298.6665 | 295.9 | |
St.Dev | 0 | 12.37216412 | 0 | |
Pr.22 | Min | 295.9 | 295.9 | 295.9 |
Max | 295.9 | 351.23 | 295.9 | |
CV% | 0 | 4.142467977 | 0 | |
Mean | 551.03 | 551.03 | 551.03 | |
St.Dev | 0 | 0 | 0 | |
Pr.23 | Min | 551.03 | 551.03 | 551.03 |
Max | 551.03 | 551.03 | 551.03 | |
CV% | 0 | 0 | 0 | |
Mean | 4518.15 | 4465.515 | 4446.8775 | |
St.Dev | 106.2485727 | 59.47704135 | 43.52466474 | |
Pr.24 | Min | 4389.6 | 4386.45 | 4399.35 |
Max | 4857.3 | 4629 | 4580.55 | |
CV% | 2.351594629 | 1.331918969 | 0.978769142 | |
Mean | 70.4 | 68.15 | 68.2 | |
Var | 4.159959514 | 0.366347549 | 0.695852374 | |
Pr.25 | Min | 68 | 68 | 68 |
Max | 82 | 69 | 71 | |
CV% | 5.909033401 | 0.537560599 | 1.020311399 | |
Mean | 143.5 | 141 | 143.2 | |
St.Dev | 4.442616583 | 0 | 4.583724066 | |
Pr.26 | Min | 141 | 141 | 141 |
Max | 151 | 141 | 155 | |
CV% | 3.095900058 | 0 | 3.200924627 | |
Mean | 96.19 | 96.13 | 96.55 | |
St.Dev | 1.198420012 | 1.343052297 | 0.53311399 | |
Pr.27 | Min | 91.45 | 91.45 | 96.25 |
Max | 97.45 | 97.45 | 97.45 | |
CV% | 1.245888359 | 1.397120875 | 0.552163635 | |
Mean | 82.5 | 82.5 | 82.5 | |
St.Dev | 0 | 0 | 0 | |
Pr.28 | Min | 82.5 | 82.5 | 82.5 |
Max | 82.5 | 82.5 | 82.5 | |
CV% | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated