Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Rhythmic Mastery: Biomechanical Investigation of Cycle-tempo Induced Motor Control Changes in Elite Jump Rope Athletes

Version 1 : Received: 2 June 2024 / Approved: 3 June 2024 / Online: 3 June 2024 (08:59:02 CEST)

How to cite: Zhou, Q.; Liu, Y.; Kong, J.; Wang, X.; Zhang, K.; Shan, G. Rhythmic Mastery: Biomechanical Investigation of Cycle-tempo Induced Motor Control Changes in Elite Jump Rope Athletes. Preprints 2024, 2024060029. https://doi.org/10.20944/preprints202406.0029.v1 Zhou, Q.; Liu, Y.; Kong, J.; Wang, X.; Zhang, K.; Shan, G. Rhythmic Mastery: Biomechanical Investigation of Cycle-tempo Induced Motor Control Changes in Elite Jump Rope Athletes. Preprints 2024, 2024060029. https://doi.org/10.20944/preprints202406.0029.v1

Abstract

Jump rope is a widely-applied basic training in various sports, yet it is understudied biomechanically. This study investigates the impact of cycle-tempo-induced motor control changes in elite jump rope athletes, addressing the biomechanical gap of cyclic skill control. The hypothesis posited two accelerations per jump cycle—one in front of and one behind the body—and anticipated that increased cycle frequency would alter the distribution of acceleration time within a cycle. Using 3D motion analysis, kinematic parameters were obtained and analyzed. The results confirmed the presence of two distinct accelerations per cycle. As tempo increased, the percentage of rear acceleration time increased while front acceleration time decreased, along with peak velocities increasing significantly (p<0.01). Rope trajectory analysis indicated a consistent movement pattern across tempos, primarily in the sagittal plane. Variations in skill control showed shorter contact phases and reduced vertical range of motion for the center of gravity and feet at higher tempos (p<0.05), along with significant reductions in joint range of motion for the lower limbs (p<0.01). These findings enhance the understanding of motor control adaptations to different tempos and have practical implications for developing coaching programs aimed at optimizing performance, stability, and efficiency in jump rope training.

Keywords

3D motion analysis; biomechanical modeling; rope trajectory; acceleration characteristics; COG; ROM; contact time

Subject

Engineering, Bioengineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.