Submitted:
31 May 2024
Posted:
03 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Materials and Methods
2.1. Ray-tracing modelling
2.1.1. Ground mesh
2.1.2. Convergence threshold
- Creation the mesh as described previously by unit square of 1 m by 1 m;
- Set the sun at an elevation of 90°;
- Launch rays from the solar pane on each of the squares repeatedly with increasing number of rays.
2.1.3. Meshing of the sky vault
3. Results
3.1. Shade at different heights
3.2. Shading for the different rows
3.3. Monthly radiation assessment
4. Discussion
- Activation of cooling mode whenever the average temperature in the previous hour is higher than 27 °C;
- Activation of heating mode whenever the average temperature in the previous hour is lower than 18 °C;
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BIPV | Building Integrated Photovoltaics |
| BIST | Building Integrated Solar Thermal |
| CRS | Central Receiver System |
| CST | Concentrated Solar Technology |
| DNI | Direct Normal Irradiation |
| LFR | Linear Fresnel Reflector |
| PTC | Parabolic Trough Collectors |
| PV | Photovoltaics |
Appendix A. Meshing

Appendix B. Shading at extra heights



References
- Siva Reddy, V.; Kaushik, S.; Ranjan, K.; Tyagi, S. State-of-the-art of solar thermal power plants—A review. Renewable and Sustainable Energy Reviews 2013, 27, 258–273. [Google Scholar] [CrossRef]
- Alami, A.H.; Olabi, A.; Mdallal, A.; Rezk, A.; Radwan, A.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Concentrating solar power (CSP) technologies: Status and analysis. International Journal of Thermofluids 2023, 18, 100340. [Google Scholar] [CrossRef]
- Zhu, G.; Wendelin, T.; Wagner, M.J.; Kutscher, C. History, current state, and future of linear Fresnel concentrating solar collectors. Solar Energy 2014, 103, 639–652. [Google Scholar] [CrossRef]
- Haberle, A. Linear Fresnel Collectors. In Solar Thermal Energy; Alexopoulos, S., Kalogirou, S.A., Eds.; Springer US: New York, NY, 2022; pp. 55–62. [Google Scholar] [CrossRef]
- Serag-Eldin, M.A. Thermal design of a roof-mounted CLFR collection system for a desert absorption chiller. International Journal of Sustainable Energy 2013, 33, 506–524. [Google Scholar] [CrossRef]
- Barbón, A.; Barbón, N.; Bayón, L.; Sánchez-Rodríguez, J. Optimization of the distribution of small scale linear Fresnel reflectors on roofs of urban buildings. Applied Mathematical Modelling 2018, 59, 233–250. [Google Scholar] [CrossRef]
- Esfanjani, P.; Jahangiri, S.; Heidarian, A.; Valipour, M.S.; Rashidi, S. A review on solar-powered cooling systems coupled with parabolic dish collector and linear Fresnel reflector. Environmental Science and Pollution Research 2022, 29, 42616–42646. [Google Scholar] [CrossRef] [PubMed]
- Guerrero Delgado, M.; Sánchez Ramos, J.; Castro Medina, D.; Palomo Amores, T.R.; Cerezo-Narváez, A.; Álvarez Domínguez, S. Fresnel solar cooling plant for buildings: Optimal operation of an absorption chiller through inverse modelling. Energy Reports 2022, 8, 3189–3212. [Google Scholar] [CrossRef]
- Pulido-Iparraguirre, D.; Valenzuela, L.; Serrano-Aguilera, J.J.; Fernández-García, A. Optimized design of a Linear Fresnel reflector for solar process heat applications. Renewable Energy 2019, 131, 1089–1106. [Google Scholar] [CrossRef]
- Hofer, A.; Büchner, D.; Kramer, K.; Fahr, S.; Heimsath, A.; Platzer, W.; Scholl, S. Comparison of Two Different (Quasi-) Dynamic Testing Methods for the Performance Evaluation of a Linear Fresnel Process Heat Collector. Energy Procedia 2015, 69, 84–95, International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014. [Google Scholar] [CrossRef]
- Disney, M.; Lewis, P.; North, P. Monte Carlo ray tracing in optical canopy reflectance modelling. Remote Sensing Reviews 2000, 18, 163–196. [Google Scholar] [CrossRef]
- Jakica, N. State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics. Renewable and Sustainable Energy Reviews 2018, 81, 1296–1328. [Google Scholar] [CrossRef]
- Rungasamy, A.; Craig, K.; Meyer, J. A review of linear Fresnel primary optical design methodologies. Solar Energy 2021, 224, 833–854. [Google Scholar] [CrossRef]
- Said, Z.; Ghodbane, M.; Hachicha, A.A.; Boumeddane, B. Optical performance assessment of a small experimental prototype of linear Fresnel reflector. Case Studies in Thermal Engineering 2019, 16, 100541. [Google Scholar] [CrossRef]
- Negi, B.; Mathur, S.; Kandpal, T. Optical and thermal performance evaluation of a linear fresnel reflector solar concentrator. Solar & Wind Technology 1989, 6, 589–593. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C.; Moghimi, M. Reducing the optical end losses of a linear Fresnel reflector using novel techniques. Solar Energy 2019, 186, 247–256. [Google Scholar] [CrossRef]
- Cheng, Z.D.; Zhao, X.R.; He, Y.L.; Qiu, Y. A novel optical optimization model for linear Fresnel reflector concentrators. Renewable Energy 2018, 129, 486–499. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Z. Optical design of compact linear fresnel reflector systems. Solar Energy Materials and Solar Cells 2018, 176, 239–250. [Google Scholar] [CrossRef]
- Montenon, A.C.; Tsekouras, P.; Tzivanidis, C.; Bibron, M.; Papanicolas, C. Thermo-optical modelling of the linear Fresnel collector at the Cyprus institute. AIP Conference Proceedings 2019, 2126, 100004, https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.5117613/14190431/100004_1_online.pdf. [Google Scholar] [CrossRef]
- Montenon, A.C.; Santos, A.V.; Collares-Pereira, M.; Montagnino, F.M.; Garofalo, R.; Papanicolas, C. Optical performance comparison of two receiver configurations for medium temperature Linear Fresnel Collectors. Solar Energy 2022, 240, 225–236. [Google Scholar] [CrossRef]
- Bellia, L.; Marino, C.; Minichiello, F.; Pedace, A. An Overview on Solar Shading Systems for Buildings. Energy Procedia 2014, 62, 309–317, 6th International Conference on Sustainability in Energy and Buildings, SEB-14. [Google Scholar] [CrossRef]
- Sun, L.; Lu, L.; Yang, H. Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles. Applied Energy 2012, 90, 233–240, Energy Solutions for a Sustainable World, Special Issue of International Conference of Applied Energy, ICA2010, April 21-23, 2010, Singapore. [Google Scholar] [CrossRef]
- Taşer, A.; Koyunbaba, B.K.; Kazanasmaz, T. Thermal, daylight, and energy potential of building-integrated photovoltaic (BIPV) systems: A comprehensive review of effects and developments. Solar Energy 2023, 251, 171–196. [Google Scholar] [CrossRef]
- Bot, K.; Aelenei, L.; da Glória Gomes, M.; Silva, C.S. A literature review on Building Integrated Solar Energy Systems (BI-SES) for facades - photovoltaic, thermal and hybrid systems. Renewable Energy and Environmental Sustainability 2022, 7, 7. [Google Scholar] [CrossRef]
- Institute, T.C. Tonatiuh ++ software, 2023. Accessed: 2023-09-23.
- Montenon, A.C.; Papanicolas, C. Economic Assessment of a PV Hybridized Linear Fresnel Collector Supplying Air Conditioning and Electricity for Buildings. Energies 2021, 14. [Google Scholar] [CrossRef]
- Montenon, A.C.; Fylaktos, N.; Montagnino, F.; Paredes, F.; Papanicolas, C.N. Concentrated solar power in the built environment. AIP Conference Proceedings 2017, 1850, 040006, [https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.4984402/13745652/040006_1_online.pdf]. [Google Scholar] [CrossRef]
- Mamun, M.A.A.; Dargusch, P.; Wadley, D.; Zulkarnain, N.A.; Aziz, A.A. A review of research on agrivoltaic systems. Renewable and Sustainable Energy Reviews 2022, 161, 112351. [Google Scholar] [CrossRef]
- Montenon, A.C. Direct solar Radiation (DNI) data in Aglantzia Cyprus July 2016- December 2020, 2024. [CrossRef]
- Cyprus, Energy mix. https://www.iea.org/countries/cyprus/energy-mix. Accessed: 2024-05-22.
















| Installation height | As installed | 1.5 m | 2.0 m | 2.5 m | 3.0 m | 3.5 m | 4.0 m |
|---|---|---|---|---|---|---|---|
| Summer Radiation blocked () | 456 | 419 | 388 | 337 | 257 | 174 | 119 |
| Ratio Radiation blocked | 0.53 | 0.49 | 0.45 | 0.39 | 0.30 | 0.20 | 0 |
| Winter Radiation blocked () | 62 | 52 | 47 | 40 | 30 | 20 | 16 |
| Ratio Radiation blocked | 0.53 | 0.45 | 0.41 | 0.34 | 0.26 | 0.1 | 0 |
| Difference Summer vs Winter () | 394 | 367 | 341 | 297 | 227 | 154 | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
