Submitted:
08 June 2024
Posted:
11 June 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Quantifying the Cross-Sectoral Intersecting Discrepancies
| Algorithm 1 Quantifying the Intersecting Discrepancies within Multiple Groups |
|
3. Related Work
4. Experiments
4.1. The Anonymous Project
4.2. EVENS
4.3. Census 2021 (England and Wales)
5. Conclusion and Limitations
Appendix A. The Anonymous Project
| Anonymous project’s Target Ethnic Group | England | Scotland | Total |
|---|---|---|---|
| African | 176 | 37 | 213 |
| Bangladeshi | 97 | 41 | 138 |
| Indian | 93 | 40 | 133 |
| Chinese | 63 | 39 | 102 |
| Pakistani | 62 | 40 | 102 |
| Caribbean | 47 | 32 | 79 |
| Mixed or Multiple ethnic groups | 56 | 55 | 111 |
| Total | 594 | 284 | 878 |


Appendix B. Census 2021 (England and Wales)
| Pearson | Spearman | |
|---|---|---|
| 0-20% | 0.9802 | 1 |
| 20-40% | 0.9769 | 1 |
| 40-60% | 0.9949 | 0.9 |
| 60-80% | 0.9829 | 1 |
| 80-100% | 0.9830 | 1 |
![]() |
Appendix C. Experiment Details
| Hardware | |
|---|---|
| CPU | 12th Gen Intel(R) Core(TM) i9-12950HX 2.30 GHz |
| GPU | NVIDIA GeForce RTX 3080 Ti Laptop GPU |
| Memory | 1TB |
| RAM | 64.0 GB |
| OS | Windows 11 Pro |
References
- R. Bardazzi, D. Charlier, B. Legendre, and M. G. Pazienza. Energy vulnerability in mediterranean countries: A latent class analysis approach. Energy Economics 2023, 126, 106883. [CrossRef]
- M. D. Byrne. Reducing bias in healthcare artificial intelligence. Journal of PeriAnesthesia Nursing 2021, 36, 313–316. [CrossRef] [PubMed]
- L. A. Celi, J. Cellini, M.-L. Charpignon, E. C. Dee, F. Dernoncourt, R. Eber, W. G. Mitchell, L. Moukheiber, J. Schirmer, J. Situ, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review. PLOS Digital Health 2022, 1, e0000022. [CrossRef] [PubMed]
- D. Cirillo, S. Catuara-Solarz, C. Morey, E. Guney, L. Subirats, S. Mellino, A. Gigante, A. Valencia, M. J. Rementeria, A. S. Chadha, et al. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 2020, 3, 81.
- L. M. Collins and S. T. Lanza. Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. John Wiley & Sons, 2009; Volume 718. [Google Scholar]
- I. Data and A. Team. Shedding light on ai bias with real world examples. Security Intelligence 2023.
- R. Drummond and M. Pratt. Updating ethnic and religious contrasts in deaths involving the coronavirus (covid-19), england: 24 january 2020 to 23 november 2022, Feb 2023. URL https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/ updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19englandandwales/24january2020to23november2022.
- G. Fenu, R. Galici, and M. Marras. Experts’ view on challenges and needs for fairness in artificial intelligence for education. In International Conference on Artificial Intelligence in Education, pages 243–255. Springer, 2022.
- E. Ferrara. Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci 2023, 6, 3. [CrossRef]
- C. Garattini, J. Raffle, D. N. Aisyah, F. Sartain, and Z. Kozlakidis. Big data analytics, infectious diseases and associated ethical impacts. Philosophy & technology 2019, 32, 69–85.
- L. A. Goodman. The analysis of systems of qualitative variables when some of the variables are unobservable. part ia modified latent structure approach. American Journal of Sociology 1974, 79, 1179–1259. [CrossRef]
- GOV.UK. National statistics english indices of deprivation 2019, 2019. URL https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019.
- J. A. Hagenaars and A. L. McCutcheon. Applied latent class analysis; Cambridge University Press, 2002. [Google Scholar]
- P. F. Lazarsfeld. The logical and mathematical foundation of latent structure analysis. Studies in social psychology in world war II Vol. IV: Measurement and prediction 1950, 362–412.
- G. Lemaître, F. Nogueira, and C. K. Aridas. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research http://jmlr.org/papers/v18/16-365. 2017, 18, 1–5.
- D. Leslie, A. Mazumder, A. Peppin, M. K. Wolters, and A. Hagerty. Does “ai” stand for augmenting inequality in the era of covid-19 healthcare? bmj 2021, 372.
- M. C. Martínez-Monteagudo, B. Delgado, C. J. Inglés, and R. Escortell. Cyberbullying and social anxiety: a latent class analysis among spanish adolescents. International journal of environmental research and public health 2020, 17, 406. [CrossRef] [PubMed]
- N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias and fairness in machine learning. ACM computing surveys (CSUR) 2021, 54, 1–35.
- S. Morin, R. S. Morin, R. Legault, Z. Bakk, C.-É. Giguère, R. de la Sablonnière, and É. Lacourse. Stepmix: A python package for pseudo-likelihood estimation of generalized mixture models with external variables. arXiv preprint arXiv:2304.03853, 2023. [Google Scholar]
- J. Morley, C. C. Machado, C. Burr, J. Cowls, I. Joshi, M. Taddeo, and L. Floridi. The ethics of ai in health care: a mapping review. Social Science & Medicine 2020, 260, 113172.
- B. Muthén and L. K. Muthén. Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and experimental research 2000, 24, 882–891. [CrossRef]
- ONS. Census 2021 data and analysis from census 2021, 2022. URL https://www.ons.gov.uk/.
- J. Sarpong. Bame we’re not the same: Chinese, 2024. URL https://www.bbc.com/creativediversity/nuance-in-bame/chinese.
- D. Satz and S. White. What is wrong with inequality. Inequality: The IFS Deaton Review. The IFS 2021.
- P. Sinha, D. Furfaro, M. J. Cummings, D. Abrams, K. Delucchi, M. V. Maddali, J. He, A. Thompson, M. Murn, J. Fountain, et al. Latent class analysis reveals covid-19–related acute respiratory distress syndrome subgroups with differential responses to corticosteroids. American journal of respiratory and critical care medicine 2021, 204, 1274–1285.
- W. So, P. Lohia, R. Pimplikar, A. Hosoi, and C. D’Ignazio. Beyond fairness: Reparative algorithms to address historical injustices of housing discrimination in the us. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pages 988–1004, 2022.
- J. E. Stiglitz. The price of inequality: How today’s divided society endangers our future; WW Norton & Company, 2012. [Google Scholar]
- C. Trocin, P. C. Trocin, P. Mikalef, Z. Papamitsiou, and K. Conboy. Responsible ai for digital health: a synthesis and a research agenda. Information Systems Frontiers 2023, 25, 2139–2157. [Google Scholar] [CrossRef]
- UNSDG. Universal values principle two: leave no one behind, 2022. URL https://unsdg.un.org/2030-agenda/universal-values/leave-no-one-behind#:~:text=Universal%20Values&text=It%20represents%20the%20unequivocal%20commitment,of%20humanity%20as%20a%20whole.
- J. K. Vermunt and J. Magidson. Latent class analysis. The sage encyclopedia of social sciences research methods 2004, 2, 549–553.
- B. E. Weller, N. K. Bowen, and S. J. Faubert. Latent class analysis: a guide to best practice. Journal of Black Psychology 2020, 46, 287–311. [CrossRef]
- H. Wu, M. Wang, A. Sylolypavan, and S. Wild. Quantifying health inequalities induced by data and ai models. arXiv preprint arXiv:2205.01066, 2022.
- Y. Zhang and L. Zhou. Fairness assessment for artificial intelligence in financial industry. arXiv preprint arXiv:1912.07211, 2019.
| 1 | Project name removed to maintain anonymity |
| 2 | Question 21: Which of the following concerns do you have about communicating with your general practice (GP) through apps, websites, or other online services? |
| 3 | StepMix (https://stepmix.readthedocs.io/en/latest/index.html) Python repository is used to implement LCA in this research. |
| 4 | More dataset details can be found in the Appendix A. |
| 5 |




| England | Scotland | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| African | Bangladeshi | Caribbean | Chinese | Indian | Mixed Group | Pakistani | AVG | African | Bangladeshi | Caribbean | Chinese | Indian | Mixed Group | Pakistani | AVG | |
| African | 0.0000 | 0.0899 | 0.0383 | 0.1810 | 0.0547 | 0.0590 | 0.0517 | 0.0678 | 0.0000 | 0.0666 | 0.0296 | 0.1956 | 0.0342 | 0.0118 | 0.0227 | 0.0515 |
| Bangladeshi | 0.0899 | 0.0000 | 0.1359 | 0.3734 | 0.0200 | 0.2738 | 0.0308 | 0.1320 | 0.0666 | 0.0000 | 0.0324 | 0.3043 | 0.0989 | 0.0563 | 0.0118 | 0.0815 |
| Caribbean | 0.0383 | 0.1359 | 0.0000 | 0.2456 | 0.0764 | 0.1131 | 0.0951 | 0.1006 | 0.0296 | 0.0324 | 0.0000 | 0.3430 | 0.0191 | 0.0546 | 0.0159 | 0.0706 |
| Chinese | 0.1810 | 0.3734 | 0.2456 | 0.0000 | 0.3700 | 0.1201 | 0.2459 | 0.2194 | 0.1956 | 0.3043 | 0.3430 | 0.0000 | 0.3717 | 0.1334 | 0.2438 | 0.2274 |
| Indian | 0.0547 | 0.0200 | 0.0764 | 0.3700 | 0.0000 | 0.2139 | 0.0311 | 0.1094 | 0.0342 | 0.0989 | 0.0191 | 0.3717 | 0.0000 | 0.0821 | 0.0575 | 0.0948 |
| Mixed Group | 0.0590 | 0.2738 | 0.1131 | 0.1201 | 0.2139 | 0.0000 | 0.1987 | 0.1398 | 0.0118 | 0.0563 | 0.0546 | 0.1334 | 0.0821 | 0.0000 | 0.0209 | 0.0513 |
| Pakistani | 0.0517 | 0.0308 | 0.0951 | 0.2459 | 0.0311 | 0.1987 | 0.0000 | 0.0933 | 0.0227 | 0.0118 | 0.0159 | 0.2438 | 0.0575 | 0.0209 | 0.0000 | 0.0532 |
| England | Scotland | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| African | Bangladeshi | Caribbean | Chinese | Indian | Pakistani | AVG | African | Bangladeshi | Caribbean | Chinese | Indian | Pakistani | AVG | |
| African | 0.0000 | 0.0112 | 0.0014 | 0.0038 | 0.0062 | 0.0018 | 0.0040 | 0.0000 | 0.0246 | 0.5408 | 0.0300 | 0.0637 | 0.1800 | 0.1398 |
| Bangladeshi | 0.0112 | 0.0000 | 0.0102 | 0.0031 | 0.0227 | 0.0090 | 0.0094 | 0.0246 | 0.0000 | 0.5283 | 0.0522 | 0.1539 | 0.2697 | 0.1714 |
| Caribbean | 0.0014 | 0.0102 | 0.0000 | 0.0047 | 0.0030 | 0.0002 | 0.0032 | 0.5408 | 0.5283 | 0.0000 | 0.3946 | 0.4505 | 0.2506 | 0.3608 |
| Chinese | 0.0038 | 0.0031 | 0.0047 | 0.0000 | 0.0138 | 0.0048 | 0.0050 | 0.0300 | 0.0522 | 0.3946 | 0.0000 | 0.0662 | 0.1036 | 0.1078 |
| Indian | 0.0062 | 0.0227 | 0.0030 | 0.0138 | 0.0000 | 0.0040 | 0.0083 | 0.0637 | 0.1539 | 0.4505 | 0.0662 | 0.0000 | 0.0589 | 0.1322 |
| Pakistani | 0.0018 | 0.0090 | 0.0002 | 0.0048 | 0.0040 | 0.0000 | 0.0033 | 0.1800 | 0.2697 | 0.2506 | 0.1036 | 0.0589 | 0.0000 | 0.1438 |
| Census | Deprivation | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0-20% | 20-40% | 40-60% | 60-80% | 80-100% | AVG | 0-20% | 20-40% | 40-60% | 60-80% | 80-100% | AVG | |
| 0-20% | 0.0000 | 0.4865 | 0.6783 | 0.8603 | 0.9347 | 0.5920 | 0.0000 | 0.2001 | 0.2896 | 0.3877 | 0.5064 | 0.2768 |
| 20-40% | 0.4865 | 0.0000 | 0.1371 | 0.3934 | 0.5565 | 0.3147 | 0.2001 | 0.0000 | 0.0313 | 0.1123 | 0.2203 | 0.1128 |
| 40-60% | 0.6783 | 0.1371 | 0.0000 | 0.1173 | 0.2744 | 0.2414 | 0.2896 | 0.0313 | 0.0000 | 0.0314 | 0.0963 | 0.0897 |
| 60-80% | 0.8603 | 0.3934 | 0.1173 | 0.0000 | 0.0445 | 0.2831 | 0.3877 | 0.1123 | 0.0314 | 0.0000 | 0.0283 | 0.1119 |
| 80-100% | 0.9347 | 0.5565 | 0.2744 | 0.0445 | 0.0000 | 0.3620 | 0.5064 | 0.2203 | 0.0963 | 0.0283 | 0.0000 | 0.1703 |
![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).


