1. Introduction
Rice blast is one of the most dangerous diseases [1-2], the causative agent of which is the parasitic fungus
Magnaporthe oryzae. The defeat of rice by pathogen in the early stages of development leads to a decrease in seed germination, sparseness of crops and death of seedlings. Blast causes the greatest harm during heading and flowering, which is associated with the formation of underdeveloped or feeble seeds, which significantly reduces grain quality [
3]. Blast reduces rice production in the world, causing crop losses from 15-40% and reaching up to 80-100% in epiphytotic years [
4].
Global climate change affects the evolution of pathogen biotypes, which challenges breeders and forces them to increase rice productivity by creating and introducing new cultivars resistant to changing races or isolates of
Magnaporthe oryzae [
5]. Currently, more than 100 blast resistance genes have been discovered [5, 6] [7-15]. Most of them with broad spectrum resistance to pathogen [5-6, 16-19], there are some major genes with a wide spectrum of resistance, such as:
Pi-z5 (
Pi-2) [
20],
Pi-9 (
t) [
21],
Pi-ta [
22],
Pi-1 and
Pi- 33 [7-14, 23], which serve as indicators of blast resistance gene clusters, which is important when choosing parent pairs for hybridization. Most blast resistance genes are dominant, some of them are quantitative [
24]. Moreover, many resistance genes are clustered on chromosomes 6, 9, 11, and 12 [25-26]. Disease resistance is controlled by one or two [27-28], three [
29] or more pairs of genes [
30]. Typically, rice has one or two dominant resistance genes that are effective against one race of the fungus [
31].
Determination of resistance genes in genetically different rice material is important for identifying new sources of resistance to blast. DNA markers are used to identify resistance genes [
26]. The most effective way to combat blast is cultivate resistant cultivars of rice. However, cultivar lost resistance after a few years due to the high variability of rice pathogens [32-33]. The selection of disease-resistant cultivars based on conventional breeding methods is complicated due to the difficulty of determining the presence of the desired allele of a particular gene. The use of molecular markers closely linked to genes that provide resistance to a pathogen greatly facilitates breeding work [
34]. Therefore, the main factor in rice breeding for resistance to blast is the selection of resistance donors based on the identification of genes that control this trait in rice and the creation of new cultivars with a high level of resistance [
35].
Success to combat with rice blast was achieved by introducing and pyramiding of major blast resistant genes using Marker Assisted Selection (MAS) [6-14]. Most resistance genes ensure that rice is immune only to certain races of the pathogen. It is known that such genes, when pyramided in one genotype, can provide stable resistance to the disease.
Pyramiding is the combination of several pathogen resistance genes in one genotype. Pyramiding multiple resistance genes in a single genotype is the most efficient strategy in breeding for resistance to a variable population of Magnaporthe oryzae. Cultivars that combine combinations of 3-5 resistance genes are more resistant, as they show an increase and expansion of the spectrum of resistance to blast. Thus, the most promising is the introduction of genes by combining (pyramiding) several blast resistance genes in one genotype [7-14, 35]. Screening cultivars for the presence of resistance genes to Magnaporthe oryzae, as well as introducing and pyramiding of resistance genes to the pathogen contributes to a significant reduction in the time for creation rice cultivars. Introducing resistance genes into cultivar is the preferred strategy in a rice breeding program to prevent disease.
The aim of the work is to improve resistance of rice to Magnaporthe oryzae based on the introducing and pyramiding of major blast resistance genes using MAS.
2. Materials and Methods
2.1. Plant Materials
The objects of research were 35 parental genotypes of local and foreign selection from the rice collection of Institute of Plant Biology and Biotechnology: 04636, 19-14, 57-14, 03-27, 04468, 04470, 04469, 95-06, 25-14, 04888, 212-05, 7653, 7662, 7663, 7664, 7666, 7667, 7668, 7679, 7683, 7684, 7686, 7689, 7690, 7695, 7698, 7701, 7702, 7712, 7824, Don 7712, Bakanasski, Fatima, Aisaule, Aru and obtained by crossing 54 hybrid lines of generation F2 (F2 Bakanasski/7668 (var. subuzbekistanica Kond.), F2 Bakanasski / 04470 (var. vulgaris Koern.), F2 Bakanasski/7653 (var. subuzbekistanica Kond.), F2 Bakanasski/7653 (var. subjanthoseros Brsch.), F2 Bakanasski/7684 (var. subvulgaris Brsch.), F2 Bakanasski/7684 (var. vulgaris Koern.), F2 7824/Aisaule (var. italica Alef.), F2 7824/Aisaule (var. subuzbekistanica Kond.), F2 Aru/04468 (var. subvulgaris Brsch.), F27698/Bakanasski (var. subvulgaris Brsch.), F2 7698/Bakanasski (var. italica Alef.), F2 Aru/7701 (var. vulgaris Koern.), F2 Bakanasski/0327 (var. vulgaris Koern.), F2 Aisaule/7679 (var. subvulgaris Brsch.), F2 7698/Aisaule (var. italica Alef.), F2 7698/Aisaule (var. suberythroseros Kan.), F2 Aru/7702 (var. erythroceros Koern.), F2 Aisaule/7689 (var. zeravschanica Brsch.), F2 Aru/0327 (var. vulgaris Koern.), F2 Aru/0327 (var. subpyrocarpa Alef.), F2 Bakanasski/7667 (var. subjanthoseros Brsch.), F2 Bakanasski/7667 (var. vulgaris Koern.), F2 Bakanasski/7701 (var. vulgaris Koern.), F2 Aisaule/7664 (var. italica Alef.), F2 Aisaule/7664 (var. subvulgaris Brsch.), F2 Aisaule/04470 (var. subvulgaris Brsch.), F2 Aisaule/04470 (var. italica Alef.), F2 Aisaule/Don 7712 (var. sundensis Koern.), F2 Aisaule/Don 7712 (var. italica Alef.), F2 Fatima/7695 (var. italica Alef.), F2 Fatima/7695 (var. breviaristata Vav.), F2 Bakanasski/7683 (var. subjanthoseros Brsch.), F2 7698/Aru (var. erythroceros Koern.), F2 7698/Aru (var. suberythroseros Kan.), F2 Bakanasski/Don 7712, F2 Bakanasski/Don 7712 (var. Desvauxii Koern.), F2Aru/212-05 (var. vulgaris Koern.), F2 Aru/7668 (var. vulgaris Koern.), F2 Aisaule/04468 (var. italica Alef.), F2 Aru/04636 (var. vulgaris Koern.), F2 Bakanasski/7690 (var. subjanthoseros Brsch.), F2 Bakanasski/7690 (var. vulgaris Koern.), F2 Bakanasski/04468 (var. subvulgaris Brsch.), F2 Bakanasski/04468 (var. vulgaris Koern.), F2 Aru/7666 (var. suberythroseros Kan.), F2Fatima/7653 (var. persica Kan.), F2 Fatima/7689 (var. italica Alef.), F2 Aru/Don 7712 (var. erythroceros Koern.), F2 Aru/Don 7712 (var. Desvauxii Koern.), F2 Aru/Don 7712 (var. vulgaris Koern.), F2 Aru/Don 7712 (var. Desvauxii Koern.) semi-awned, F2 ♀ Aru/7683 (var. janthoceros Koern.), F2 Aru/7683 (var. vulgaris Koern.), F2 Aisaule/7663 (var. italica Alef.)).
2.2. Hybridization Method
Hybridization was carried out using pneumocastration (three-channel pneumocastrator) and the "TWEL" plant pollination method [
36]. 31 genotypes were used as donors, the genome of which contains genes of resistance to rice blast (
Pi-1, Pi-2, Pi-33 and
Pi-ta), and the recipients were highly productive zoned local cultivars, such as Bakanasski, Fatima, Aisaule and Aru.
2.3. Plant Genomic DNA Isolation
Genomic DNA isolation from two-week-old seedlings was performed according to the CTAB method [
37] by CTAB reagent (PanReac, AppliChem, Germany).
2.4. Multiplex PCR Analysis
PCR was performed on a T100 amplifier (BioRad, Germany). Multiplex PCR analysis allows to determine the presence of two or more genes in the genotype. SSR (simple sequence repeat) markers were used to identify genes. The list of SSR markers (Syntol, Russia) for
Pi complex genes is given in
Table 1. The annealing temperature is the same for all primers, 65º C.
The following genotypes were used as differentiator cultivars that are carriers of resistance genes: C101-Lac (+) for Pi-1, Pi-33 genes, C101-A51 (+) for Pi-2 gene and IR 36 (+) for Pi-ta gene. The cultivar Flagman (-) was used as a negative control for all studied genes.
2.5. Gel Electrophoresis
Separation of amplification products with microsatellite primers was carried out by using 8% polyacrylamide gel in vertical electrophoresis chamber (Helicon, Russia) based on 1× TRIS borate electrode buffer. The gels were studied using a gel documentation system (BioRad, USA). DNA marker 100 bp (Syntol, Russia) was used in this work.
2.6. Phytopathological Screening
The test of 54 hybrid rice lines for resistance to populations
Magnaporthe oryzae was carried out in 2023 in an artificial infectious nursery at the FSBSI “FSRC” in accordance with the methodological guidelines [
38]. The rice cultivar Pobeda 65 was used as a susceptible control, and the rice cultivar Avangard was used as a resistant control.
Rice plants was infected with a culture of the fungus M. oryzae in the booting phase by spraying a suspension of a conidial mixture.
The degree of plant damage (in percentage) was taken into account on the 14th day after inoculation, according to the express method for assessing rice varietal resistance to blast. The assessment was carried out taking into account the type of reaction (in points) on a ten-point scale of the International Rice Research Institute, using the designations: resistant lines - R, moderately resistant - MR and susceptible - S.
2.7. Analysis of Structural Elements of Yield of Hybrid Rice Lines
Evaluation of productivity of hybrid lines in comparison with standard cultivar Bakanasski was carried out according to biometric parameters of yield structure elements (“bushiness, pc”, “plant height, cm”, “panicle length, cm”, “number of grains from the main panicle, pc”, “weight of seeds from the main panicle, g”, “weight of 1000 seeds, g” and etc.) [
39]
2.8. Statistical Analyses
To characterize the productivity of hybrid lines in comparison with Bakanasski cultivar, which is the standard for Almaty region, we used such statistical parameters as mean value, standard deviation for main trait characterizing rice productivity “weight of 1000 seeds, g”. Analysis of variance (one-way ANOVA) was performed to compare the mean values of the data groups. Data processing was carried out in Microsoft Excel 2021 using a data analysis package.
Figure 1.
Electropherogram of PCR products of samples for the presence of Pi-1 and Pi-2 genes. (A): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51(+Pi-2), 4 – Flagman (-), 5 – 04636, 6 – 03-27, 7 – 04468, 8 – 04470, 9 – 04469, 10 – 25-14, 11 – 04888, 12 – 212-05, 13 – 7653, 14 – 7662, 15 – 7663, 16 – 7664, 17 – 7666, 18 – 7667, 19 – 7668. (Б): M – Molecular marker 100bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51(+Pi-2), 4 – Flagman (-), 5 – 7679, 6 – 7683, 7 – 7684, 8 – 7689, 9 – 7690, 10 – 7695, 11 – 7701, 12 – 7702, 13 – 7712, 14 – 7824, 15 – Don 7712, 16 – Bakanasski, 17 – Fatima, 18 – Aisaule, 19 – Aru.
Figure 1.
Electropherogram of PCR products of samples for the presence of Pi-1 and Pi-2 genes. (A): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51(+Pi-2), 4 – Flagman (-), 5 – 04636, 6 – 03-27, 7 – 04468, 8 – 04470, 9 – 04469, 10 – 25-14, 11 – 04888, 12 – 212-05, 13 – 7653, 14 – 7662, 15 – 7663, 16 – 7664, 17 – 7666, 18 – 7667, 19 – 7668. (Б): M – Molecular marker 100bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51(+Pi-2), 4 – Flagman (-), 5 – 7679, 6 – 7683, 7 – 7684, 8 – 7689, 9 – 7690, 10 – 7695, 11 – 7701, 12 – 7702, 13 – 7712, 14 – 7824, 15 – Don 7712, 16 – Bakanasski, 17 – Fatima, 18 – Aisaule, 19 – Aru.
Figure 2.
Electropherogram of PCR products of samples for the presence of Pi-33 and Pi-ta genes. (A): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-33); 2 – Flagman (-); 3 – IR36 (+Pi-ta); 4 – Flagman (-); 5 – 04636; 6 – 19-14; 7 – 57-14; 8 – 03-27; 9 – 04468; 10 – 04470; 11 – 04469; 12 – 25-14; 13 – 04888; 14 – 212-05; 15 – 7653; 16 – 7662; 17 – 7663; 18 – 7664; 19 – 7666. (B): M – Molecular marker, 1 – C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR 36 (+Pi-ta), 4 – Flagman (-), 5 – 7667, 6 – 7668, 7 – 7679, 8 – 7683, 9 – 7684, 10 – 7686, 11 – 7689, 12 – 7690, 13 – 7695, 14 – 7698, 15 – 7701, 16 – 7702, 17 – 7712, 18 – 7824. (C): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – Don 7712, 6 – Bakanasski, 7 – Fatima, 8 - Aisaule, 9 – Aru.
Figure 2.
Electropherogram of PCR products of samples for the presence of Pi-33 and Pi-ta genes. (A): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-33); 2 – Flagman (-); 3 – IR36 (+Pi-ta); 4 – Flagman (-); 5 – 04636; 6 – 19-14; 7 – 57-14; 8 – 03-27; 9 – 04468; 10 – 04470; 11 – 04469; 12 – 25-14; 13 – 04888; 14 – 212-05; 15 – 7653; 16 – 7662; 17 – 7663; 18 – 7664; 19 – 7666. (B): M – Molecular marker, 1 – C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR 36 (+Pi-ta), 4 – Flagman (-), 5 – 7667, 6 – 7668, 7 – 7679, 8 – 7683, 9 – 7684, 10 – 7686, 11 – 7689, 12 – 7690, 13 – 7695, 14 – 7698, 15 – 7701, 16 – 7702, 17 – 7712, 18 – 7824. (C): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – Don 7712, 6 – Bakanasski, 7 – Fatima, 8 - Aisaule, 9 – Aru.
Figure 3.
Electropherogram of PCR products of hybrids for the presence of Pi-1 and Pi-2 genes. (A): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51(+Pi-2), 4 – Flagman (-), 5 – Bakanasski/7668 (var. subuzbekistanica Kond.), 6 – Bakanasski/04470 (var. vulgaris Koern.), 7 –Bakanasski/7653 (var. subuzbekistanica Kond.), 8 – Bakanasski/7653 (var. subjanthoseros Brsch.), 9 – Bakanasski/7684 (var. subvulgaris Brsch.), 10 – Bakanasski/7684 (var. vulgaris Koern.), 11 – 7824/Aisaule (var. italica Alef.), 12 – 7824/Aisaule (var. subuzbekistanica Kond.), 13 – Aru/04468 (var. subvulgaris Brsch.), 14 – 7698/Bakanasski (var. subvulgaris Brsch.), 15 – 7698/Bakanasski (var. italica Alef.), 16 – Aru/7701 (var. vulgaris Koern.), 17 – Bakanasski/0327 (var. vulgaris Koern.), 18 – Aisaule/7679 (var. subvulgaris Brsch.), 19 –7698/Aisaule (var. italica Alef.). (B): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51(+Pi-2), 4 – Flagman (-), 5 – 7698/Aisaule (var. suberythroseros Kan.), 6 – Aru/7702 (var. erythroceros Koern.), 7 – Aisaule/7689 (var. zeravschanica Brsch.), 8 – Aru/0327 (var. vulgaris Koern.), 9 – Aru/0327 (var. subpyrocarpa Alef.), 10 – Bakanasski/7667 (var. subjanthoseros Brsch.), 11 – Bakanasski/7667 (var. vulgaris Koern.), 12 – Bakanasski/7701 (var. vulgaris Koern.), 13 – Aisaule/7664 (var. italica Alef.), 14 – Aisaule/7664 (var. subvulgaris Brsch.), 15 – Aisaule/04470 (var. subvulgaris Brsch.), 16 – Aisaule/04470 (var. italica Alef.), 17 – Aisaule/Don 7712 (var. sundensis Koern.), 18 – Aisaule/Don 7712 (var. italica Alef.), 19 – Fatima/7695 (var. italica Alef.). (C): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51 (+Pi-2), 4 – Flagman (-), 5 – Fatima/7695 (var. breviaristata Vav.), 6 – Bakanasski/7683 (var. subjanthoseros Brsch.), 7 – 7698/Aru (var. erythroceros Koern.), 8 – 7698/Aru (var. suberythroseros Kan.), 9 – Bakanasski/Don 7712, 10 – Bakanasski/Don 7712 (var. Desvauxii Koern.), 11 – Aru/212-05 (var. vulgaris Koern.), 12 – Aru/7668 (var. vulgaris Koern.), 13 – Aisaule/04468 (var. italica Alef.), 14 – Aru/04636 (var. vulgaris Koern.), 15 – Bakanasski/7690 (var. subjanthoseros Brsch.), 16 – Bakanasski/7690 (var. vulgaris Koern.), 17 – Bakanasski/04468 (var. subvulgaris Brsch.), 18 – Bakanasski/04468 (var. vulgaris Koern.).
Figure 3.
Electropherogram of PCR products of hybrids for the presence of Pi-1 and Pi-2 genes. (A): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51(+Pi-2), 4 – Flagman (-), 5 – Bakanasski/7668 (var. subuzbekistanica Kond.), 6 – Bakanasski/04470 (var. vulgaris Koern.), 7 –Bakanasski/7653 (var. subuzbekistanica Kond.), 8 – Bakanasski/7653 (var. subjanthoseros Brsch.), 9 – Bakanasski/7684 (var. subvulgaris Brsch.), 10 – Bakanasski/7684 (var. vulgaris Koern.), 11 – 7824/Aisaule (var. italica Alef.), 12 – 7824/Aisaule (var. subuzbekistanica Kond.), 13 – Aru/04468 (var. subvulgaris Brsch.), 14 – 7698/Bakanasski (var. subvulgaris Brsch.), 15 – 7698/Bakanasski (var. italica Alef.), 16 – Aru/7701 (var. vulgaris Koern.), 17 – Bakanasski/0327 (var. vulgaris Koern.), 18 – Aisaule/7679 (var. subvulgaris Brsch.), 19 –7698/Aisaule (var. italica Alef.). (B): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51(+Pi-2), 4 – Flagman (-), 5 – 7698/Aisaule (var. suberythroseros Kan.), 6 – Aru/7702 (var. erythroceros Koern.), 7 – Aisaule/7689 (var. zeravschanica Brsch.), 8 – Aru/0327 (var. vulgaris Koern.), 9 – Aru/0327 (var. subpyrocarpa Alef.), 10 – Bakanasski/7667 (var. subjanthoseros Brsch.), 11 – Bakanasski/7667 (var. vulgaris Koern.), 12 – Bakanasski/7701 (var. vulgaris Koern.), 13 – Aisaule/7664 (var. italica Alef.), 14 – Aisaule/7664 (var. subvulgaris Brsch.), 15 – Aisaule/04470 (var. subvulgaris Brsch.), 16 – Aisaule/04470 (var. italica Alef.), 17 – Aisaule/Don 7712 (var. sundensis Koern.), 18 – Aisaule/Don 7712 (var. italica Alef.), 19 – Fatima/7695 (var. italica Alef.). (C): M – Molecular marker 100 bp, 1 – C101-Lac (+Pi-1), 2 – Flagman (-), 3 – C101-A51 (+Pi-2), 4 – Flagman (-), 5 – Fatima/7695 (var. breviaristata Vav.), 6 – Bakanasski/7683 (var. subjanthoseros Brsch.), 7 – 7698/Aru (var. erythroceros Koern.), 8 – 7698/Aru (var. suberythroseros Kan.), 9 – Bakanasski/Don 7712, 10 – Bakanasski/Don 7712 (var. Desvauxii Koern.), 11 – Aru/212-05 (var. vulgaris Koern.), 12 – Aru/7668 (var. vulgaris Koern.), 13 – Aisaule/04468 (var. italica Alef.), 14 – Aru/04636 (var. vulgaris Koern.), 15 – Bakanasski/7690 (var. subjanthoseros Brsch.), 16 – Bakanasski/7690 (var. vulgaris Koern.), 17 – Bakanasski/04468 (var. subvulgaris Brsch.), 18 – Bakanasski/04468 (var. vulgaris Koern.).
Figure 4.
Electropherogram of PCR products of hybrid samples for the presence of Pi-33 and Pi-ta genes. (А): M – Molecular marker 100 bp, 1 - C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – Bakanasski/7668 (var. subuzbekistanica Kond.), 6 – Bakanasski/04470 (var. vulgaris Koern.), 7 – Bakanasski/7653 (var. subuzbekistanica Kond.), 8 – Bakanasski/7653 (var. subjanthoseros Brsch.), 9 – Bakanasski/7684 (var. subvulgaris Brsch.), 10 – Bakanasski/7684 (var. vulgaris Koern.), 11 – 7824/Aisaule (var. italica Alef.), 12 – 7824/Aisaule (var. subuzbekistanica Kond.), 13 – 7698/Bakanasski (var. subvulgaris Brsch.), 14 – 7698/Bakanasski (var. italica Alef.), 15 – Aru/7701 (var. vulgaris Koern.), 16 – Bakanasski/0327 (var. vulgaris Koern.), 17 – Aisaule/7679 (var. subvulgaris Brsch.), 18 – 7698/Aisaule (var. italica Alef.). (В): M – Molecular marker 100 bp, 1 - C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – 7698/Aisaule (var. suberythroseros Kan.), 6 – Aru/7702 (var. erythroceros Koern.), 7 – Aisaule/7689 (var. zeravschanica Brsch.), 8 – Aru/0327 (var. vulgaris Koern.), 9 – Bakanasski/7667 (var. vulgaris Koern.), 10 – Bakanasski/7701 (var. vulgaris Koern.), 11 – Aisaule/7664 (var. italica Alef.), 12 – Aisaule/7664 (var. subvulgaris Brsch.), 13 – Aisaule/04470 (var. subvulgaris Brsch.), 14 – Aisaule/04470 (var. italica Alef.), 15 – Aisaule/Don 7712 (var. sundensis Koern.), 16 – Aisaule/Don 7712 (var. italica Alef.), 17 – Fatima/7695 (var. breviaristata Vav.), 18 – Bakanasski/7683 (var. subjanthoseros Brsch.). (С): M – Molecular marker 100 bp, 1 - C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – Aru/212-05 (var. vulgaris Koern.), 6 – Aru/7668 (var. vulgaris Koern.), 7 – Aisaule/04468 (var. italica Alef.), 8 – Aru/04636 (var. vulgaris Koern.), 9 – Bakanasski/7690 (var. subjanthoseros Brsch.), 10 – Bakanasski/7690 (var. vulgaris Koern.), 11 – Bakanasski/04468 (var. subvulgaris Brsch.), 12 – Bakanasski/04468 (var. vulgaris Koern.), 13 – Aru/7666 (var. suberythroseros Kan.), 14 – Fatima/7653 (var. persica Kan.), 15 – Aru/Don 7712 (var. Desvauxii Koern.) semi-awned, 16 – Aru/7683 (var. janthoceros Koern.), 17 – Aru/7683 (var. vulgaris Koern.), 18 – Aisaule/7663 (var. italica Alef.), 19 – Aru/0327 (var. subpyrocarpa Alef.). (D): M – Molecular marker 100 bp, 1 - C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – Bakanasski/Don 7712, 6 – Fatima/7689 (var. italica Alef.), 7 – Aru/04468 (var. subvulgaris Brsch.), 8 –Bakanasski/7667 (var. subjanthoseros Brsch.), 9 – Bakanasski/Don 7712 (var. Desvauxii Koern.), 10 – Aru/Don 7712 (var. vulgaris Koern.), 11 – 7698/Aru (var. erythroceros Koern.), 12 – 7698/Aru (var. suberythroseros Kan.), 13 – Aru/Don 7712 (var. erythroceros Koern.), 14 – Aru/Don 7712 (var. Desvauxii Koern.).
Figure 4.
Electropherogram of PCR products of hybrid samples for the presence of Pi-33 and Pi-ta genes. (А): M – Molecular marker 100 bp, 1 - C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – Bakanasski/7668 (var. subuzbekistanica Kond.), 6 – Bakanasski/04470 (var. vulgaris Koern.), 7 – Bakanasski/7653 (var. subuzbekistanica Kond.), 8 – Bakanasski/7653 (var. subjanthoseros Brsch.), 9 – Bakanasski/7684 (var. subvulgaris Brsch.), 10 – Bakanasski/7684 (var. vulgaris Koern.), 11 – 7824/Aisaule (var. italica Alef.), 12 – 7824/Aisaule (var. subuzbekistanica Kond.), 13 – 7698/Bakanasski (var. subvulgaris Brsch.), 14 – 7698/Bakanasski (var. italica Alef.), 15 – Aru/7701 (var. vulgaris Koern.), 16 – Bakanasski/0327 (var. vulgaris Koern.), 17 – Aisaule/7679 (var. subvulgaris Brsch.), 18 – 7698/Aisaule (var. italica Alef.). (В): M – Molecular marker 100 bp, 1 - C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – 7698/Aisaule (var. suberythroseros Kan.), 6 – Aru/7702 (var. erythroceros Koern.), 7 – Aisaule/7689 (var. zeravschanica Brsch.), 8 – Aru/0327 (var. vulgaris Koern.), 9 – Bakanasski/7667 (var. vulgaris Koern.), 10 – Bakanasski/7701 (var. vulgaris Koern.), 11 – Aisaule/7664 (var. italica Alef.), 12 – Aisaule/7664 (var. subvulgaris Brsch.), 13 – Aisaule/04470 (var. subvulgaris Brsch.), 14 – Aisaule/04470 (var. italica Alef.), 15 – Aisaule/Don 7712 (var. sundensis Koern.), 16 – Aisaule/Don 7712 (var. italica Alef.), 17 – Fatima/7695 (var. breviaristata Vav.), 18 – Bakanasski/7683 (var. subjanthoseros Brsch.). (С): M – Molecular marker 100 bp, 1 - C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – Aru/212-05 (var. vulgaris Koern.), 6 – Aru/7668 (var. vulgaris Koern.), 7 – Aisaule/04468 (var. italica Alef.), 8 – Aru/04636 (var. vulgaris Koern.), 9 – Bakanasski/7690 (var. subjanthoseros Brsch.), 10 – Bakanasski/7690 (var. vulgaris Koern.), 11 – Bakanasski/04468 (var. subvulgaris Brsch.), 12 – Bakanasski/04468 (var. vulgaris Koern.), 13 – Aru/7666 (var. suberythroseros Kan.), 14 – Fatima/7653 (var. persica Kan.), 15 – Aru/Don 7712 (var. Desvauxii Koern.) semi-awned, 16 – Aru/7683 (var. janthoceros Koern.), 17 – Aru/7683 (var. vulgaris Koern.), 18 – Aisaule/7663 (var. italica Alef.), 19 – Aru/0327 (var. subpyrocarpa Alef.). (D): M – Molecular marker 100 bp, 1 - C101-Lac (+Pi-33), 2 – Flagman (-), 3 – IR36 (+Pi-ta), 4 – Flagman (-), 5 – Bakanasski/Don 7712, 6 – Fatima/7689 (var. italica Alef.), 7 – Aru/04468 (var. subvulgaris Brsch.), 8 –Bakanasski/7667 (var. subjanthoseros Brsch.), 9 – Bakanasski/Don 7712 (var. Desvauxii Koern.), 10 – Aru/Don 7712 (var. vulgaris Koern.), 11 – 7698/Aru (var. erythroceros Koern.), 12 – 7698/Aru (var. suberythroseros Kan.), 13 – Aru/Don 7712 (var. erythroceros Koern.), 14 – Aru/Don 7712 (var. Desvauxii Koern.).
Table 1.
List of tested SSR primers for Pi genes of the blast resistance complex.
Table 1.
List of tested SSR primers for Pi genes of the blast resistance complex.
Gene |
Localization on chromosome |
Name of a marker
|
Forward primer (5′-3′) Reverse sequence (5′-3′) |
Pi-1 |
11 |
Rm 224 |
F - аtсgаtсgаtсttсасgаgg R - tgctataaaaggcattcggg |
Rm144 |
F - tgccctggcgcaaatttgatcc R - gctagaggagatcagatggtagtgcatg |
Pi-2 |
6 |
Rm 527 |
F - ggctcgatctagaaaatccg R - ttgcacaggttgcgatagag |
SSR 140 |
F - aaggtgtgaaacaagctagcaa R - ttctaggggaggggtgtgaa |
Pi-33 |
8 |
Rm 310 |
F - ссggсgаtаааасааtgаg R - gсаtсggtссtаасtааggg |
Rm 72 |
F - ссggсgаtаааасааtgаg R - gсаtсggtссtаасtааggg |
Pi-ta |
12 |
Pita |
F1 - gссgtggсttсtаtсtttасatg R1 - аtссааgtgttаgggссаасаttс |
F2 - ttgасасtсtсаааggасtgggаt R2 - tсааgtсаggttgааgаtgсаtсgа |
Table 2.
Analyses of the productivity of pyramided rice lines by One-way ANOVA.
Table 2.
Analyses of the productivity of pyramided rice lines by One-way ANOVA.
|
SS |
df |
MS |
F |
P-value |
F crit |
Between |
367,1166333 |
6 |
61,18610556* |
27,07338195 |
0,000000000000421.97 |
3,254124603 |
Within |
97,18041667 |
43 |
2,26000969 |
|
|
|