Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Towards Non-destructive Quality Testing of Complex Biomedical Devices – a Generalized Closed Loop System Approach Utilizing Real-Time in Line Process Analytical Technology

Version 1 : Received: 26 June 2024 / Approved: 27 June 2024 / Online: 28 June 2024 (13:51:31 CEST)

A peer-reviewed article of this Preprint also exists.

Guha, B.; Moore, S.; Huyghe, J. Towards Non-Destructive Quality Testing of Complex Biomedical Devices—A Generalized Closed-Loop System Approach Utilizing Real-Time In-Line Process Analytical Technology. NDT 2024, 2, 270-285. Guha, B.; Moore, S.; Huyghe, J. Towards Non-Destructive Quality Testing of Complex Biomedical Devices—A Generalized Closed-Loop System Approach Utilizing Real-Time In-Line Process Analytical Technology. NDT 2024, 2, 270-285.

Abstract

This study addresses the critical issue of cardiovascular diseases (CVD) as the leading cause of death globally, emphasizing the importance of stent delivery catheter manufacturing. Traditional manufacturing processes, reliant on destructive end-of-batch sampling, present significant financial and quality challenges. The research highlights the need for non-destructive Process Analytical Technologies (PAT) to meet the increasing demand for these life-saving devices. The study employs a mixed-method approach, combining qualitative literature review and quantitative artefact development, to propose a closed-loop Cyber Physical Production System (CPPS). The proposed system aims to enhance real-time quality control, minimize costs, and improve manufacturing efficiency. Initial results demonstrate the system's effectiveness in reducing cycle times, improving stability, and significantly decreasing production misses. The findings suggest substantial financial savings and quality improvements, underscoring the potential of advanced control strategies in regulated medical device manufacturing. This study proposes a generalized CPPS framework to be applicable across diverse regulated manufacturing environments, ensuring optimal processing conditions and adherence to regulatory standards. The research concludes with the successful demonstration of innovative approaches and technologies, leading to improved product quality, patient safety, and operational efficiency in the medical device industry.

Keywords

Cyber Physical Systems; Process Analytical Technology; Stent Delivery Catheters

Subject

Engineering, Industrial and Manufacturing Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.