Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Mitochondrial Dysfunction in Glycogen Storage Disorders (GSDs)

Version 1 : Received: 30 June 2024 / Approved: 1 July 2024 / Online: 1 July 2024 (17:56:45 CEST)

How to cite: Mishra, K.; Kakhlon, O. Mitochondrial Dysfunction in Glycogen Storage Disorders (GSDs). Preprints 2024, 2024070143. https://doi.org/10.20944/preprints202407.0143.v1 Mishra, K.; Kakhlon, O. Mitochondrial Dysfunction in Glycogen Storage Disorders (GSDs). Preprints 2024, 2024070143. https://doi.org/10.20944/preprints202407.0143.v1

Abstract

Glycogen storage disorders (GSDs) are a group of inherited metabolic disorders characterized by defects in enzymes involved in glycogen metabolism. Deficiencies in enzymes responsible for glycogen breakdown and synthesis can impair mitochondrial function. For instance, in GSD type II (Pompe disease), acid alpha-glucosidase deficiency leads to lysosomal glycogen accumulation, which secondarily impacts mitochondrial function through dysfunctional mitophagy, which disrupts mitochondrial quality control generating oxidative stress. In GSD type III (Cori disease), the lack of the debranching enzyme causes glycogen accumulation and affects mitochondrial dynamics and biogenesis by disrupting the integrity of muscle fibers. Malfunctional glycogen metabolism can disrupt various cascades thus causing mitochondrial and cell metabolic dysfunction through various mechanisms. These dysfunctions include altered mitochondrial morphology, impaired oxidative phosphorylation, increased production of reactive oxygen species (ROS), and defective mitophagy. The oxidative burden typical of GSDs compromises mitochondrial integrity and exacerbates the metabolic derangements observed in GSDs. The intertwining of mitochondrial dysfunction and GSDs underscores the complexity of these disorders and has significant clinical implications. GSD patients often present with multisystem manifestations, including hepatomegaly, hypoglycemia, and muscle weakness, which can be exacerbated by mitochondrial impairment. Moreover, mitochondrial dysfunction may contribute to the progression of GSD-related complications, such as cardiomyopathy and neurocognitive deficits. Targeting mitochondrial dysfunction thus represents a promising therapeutic avenue in GSDs. Potential strategies include antioxidants to mitigate oxidative stress, compounds that enhance mitochondrial biogenesis, and gene therapy to correct the underlying mitochondrial enzyme deficiencies. Mitochondrial dysfunction plays a critical role in the pathophysiology of GSDs. Recognizing and addressing this aspect can lead to more comprehensive and effective treatments, improving the quality of life of GSD patients. This review aims to elaborate on the intricate relationship between mitochondrial dysfunction and various types of GSDs. The review presents challenges and treatment options for several GSD

Keywords

mitochondrial dysfunction; glycogen storage disorders; reactive oxygen species, oxidative stress; autophagy and mitophagy, myopathy

Subject

Biology and Life Sciences, Life Sciences

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.