Preprint Review Version 1 This version is not peer-reviewed

Renewable Hydrogen From Biomass: Technological Pathways and Economic Perspectives

Version 1 : Received: 1 July 2024 / Approved: 2 July 2024 / Online: 2 July 2024 (11:05:13 CEST)

How to cite: Rey, J.; Mateos-Pedrero, C.; Longo, A.; Rijo, B.; Brito, P.; Ferreira, P.; Nobre, C. Renewable Hydrogen From Biomass: Technological Pathways and Economic Perspectives. Preprints 2024, 2024070189. https://doi.org/10.20944/preprints202407.0189.v1 Rey, J.; Mateos-Pedrero, C.; Longo, A.; Rijo, B.; Brito, P.; Ferreira, P.; Nobre, C. Renewable Hydrogen From Biomass: Technological Pathways and Economic Perspectives. Preprints 2024, 2024070189. https://doi.org/10.20944/preprints202407.0189.v1

Abstract

Hydrogen is undoubtedly one of the most promising alternatives for generating energy with low environmental impact. However, most hydrogen produced today is derived from fossil fuels, which negatively impacts the environment. In this context, biomass conversion technologies emerge as a sustainable and environmentally friendly alternative to conventional fossil-based processes for hydrogen production. The main objective of this study is to underscore the potential of biomass-derived hydrogen, as one of the key sustainable energy solutions. This work reviews diverse biological and thermochemical pathways for biomass-derived hydrogen production, noting challenges in technology and feedstock diversity. Biomass offers local availability and economic benefits, potentially yielding negative emissions. Biological methods like bio-photolysis and fermentation promise low-energy, waste-recycling solutions despite operational constraints. Thermochemical processes, influenced by biomass type and energy content, favor economies of scale and conventional gasification for economic viability. Hydrothermal gasification shows promise for high-moisture feedstocks. Overall, while thermochemical processes suit centralized large-scale hydrogen production, biological pathways offer decentralized options, necessitating continued innovation for integration into future energy strategies.

Keywords

renewable hydrogen; biomass; chemical methods; biological methods; membrane separation systems

Subject

Chemistry and Materials Science, Chemical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.