Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Pycnogenol-Assisted Alleviation of Titanium Dioxide Nanoparticle-Induced Lung Inflammation via Thioredoxin-Interacting Protein Downregulation

Version 1 : Received: 8 July 2024 / Approved: 8 July 2024 / Online: 9 July 2024 (08:20:44 CEST)

How to cite: Lim, J.-O.; Kim, W.-I.; Pak, S.-W.; Lee, S.-J.; Moon, C.; Shin, I.-S.; Kim, S.-H.; Kim, J.-C. Pycnogenol-Assisted Alleviation of Titanium Dioxide Nanoparticle-Induced Lung Inflammation via Thioredoxin-Interacting Protein Downregulation. Preprints 2024, 2024070679. https://doi.org/10.20944/preprints202407.0679.v1 Lim, J.-O.; Kim, W.-I.; Pak, S.-W.; Lee, S.-J.; Moon, C.; Shin, I.-S.; Kim, S.-H.; Kim, J.-C. Pycnogenol-Assisted Alleviation of Titanium Dioxide Nanoparticle-Induced Lung Inflammation via Thioredoxin-Interacting Protein Downregulation. Preprints 2024, 2024070679. https://doi.org/10.20944/preprints202407.0679.v1

Abstract

Titanium dioxide nanoparticles (TiO2NPs) are used in products that are applied to the human body, such as cosmetics and food, but their biocompatibility remains controversial. Pycnogenol (PYC), a natural extract of pine bark, exerts anti-inflammatory and antioxidant effects. In this study, we investigated whether PYC effectively alleviates pulmonary toxicity induced by airway exposure to TiO2NPs, and the beneficial effects of PYC were explained through the analysis of changes to the mechanism of cytotoxicity. TiO2NPs induced pulmonary inflammation and mucus production, increased the levels of malondialdehyde, and upregulated thioredoxin-interacting protein (TXNIP) and cleaved-caspase 3 (Cas3) in the lungs of mice. However, PYC treatment reduced the levels of all toxicity markers of TiO2NPs and restored glutathione levels. These antioxidant and anti-inflammatory effects of PYC were also demonstrated in TiO2NP-exposed human airway epithelial cells by increasing the mRNA levels of antioxidant enzymes and decreasing the expression of TXNIP, cleaved-Cas3, and inflammatory mediators. Taken together, our results showed that PYC attenuated TiO2NP-induced lung injury via TXNIP downregulation. Therefore, our results suggest the potential of PYC as an effective anti-inflammatory and antioxidant agent against TiO2NP-induced pulmonary toxicity.

Keywords

Titanium dioxide nanoparticle; lung inflammation; pycnogenol; antioxidative effect; thioredoxin-interacting protein

Subject

Medicine and Pharmacology, Pharmacology and Toxicology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.