Preprint Article Version 1 This version is not peer-reviewed

Parametrization of Fluid Models for Electrical Breakdown of Nitrogen at Atmospheric Pressure

Version 1 : Received: 9 July 2024 / Approved: 10 July 2024 / Online: 10 July 2024 (12:47:28 CEST)

How to cite: Dhali, S. K. Parametrization of Fluid Models for Electrical Breakdown of Nitrogen at Atmospheric Pressure. Preprints 2024, 2024070838. https://doi.org/10.20944/preprints202407.0838.v1 Dhali, S. K. Parametrization of Fluid Models for Electrical Breakdown of Nitrogen at Atmospheric Pressure. Preprints 2024, 2024070838. https://doi.org/10.20944/preprints202407.0838.v1

Abstract

In transient phase of an atmospheric-pressure discharge, the avalanche turns into a streamer discharge with time. Hydrodynamic fluid models are frequently used to describe the formation and propagation of streamers, where charge particle transport is dominated by the creation of space charge. The required electron transport data and rate coefficients for the fluid model are parameterized using the local mean-energy approximation (LMEA) and the local field approximation (LFA). In atmospheric pressure applications, the excited species produced in the electrical discharge determine the subsequent conversion chemistry. We performed the fluid model simulation of streamers in nitrogen gas at atmospheric pressure using three different parametrizations for transport and electron excitation rate data. We present the spatial and temporal development of several macroscopic properties such as electron density and energy, and the electric field during the transient phase. The species production efficiency which is important to understand the efficacy of any application of non-thermal plasmas is also obtained for the three different parametrizations. Our results suggest that at atmospheric pressure all three schemes predicted essentially the same macroscopic properties. Therefore, a lower order method such as LFA which does not require the solution of the energy conservation equation should be adequate to determine the streamer macroscopic properties to inform most plasma-assisted applications of nitrogen containing gases at atmospheric pressure.

Keywords

fluid models; local mean energy approximation; local field approximation; streamers; non-thermal plasma; space charge dominated transport

Subject

Physical Sciences, Fluids and Plasmas Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.