Preprint Article Version 1 This version is not peer-reviewed

Temperature-Driven Instabilities in High-Pressure Vessel Flat Plates: A Thermal Buckling Study

Version 1 : Received: 13 July 2024 / Approved: 15 July 2024 / Online: 15 July 2024 (10:52:39 CEST)

How to cite: Sadeghi Chahardeh, A.; Abdollahi Mamoudan, F. Temperature-Driven Instabilities in High-Pressure Vessel Flat Plates: A Thermal Buckling Study. Preprints 2024, 2024071145. https://doi.org/10.20944/preprints202407.1145.v1 Sadeghi Chahardeh, A.; Abdollahi Mamoudan, F. Temperature-Driven Instabilities in High-Pressure Vessel Flat Plates: A Thermal Buckling Study. Preprints 2024, 2024071145. https://doi.org/10.20944/preprints202407.1145.v1

Abstract

In the realm of high-pressure vessel simulation, conventional finite element method (FEM) approaches, as per ASME standards, may inadequately predict the behavior of flat surfaces under elevated temperatures. This study challenges the efficacy of shell-type mesh modeling for high-temperature flat plates, demonstrating that the thermal conditions within such high-pressure vessels can induce thermal instability and buckling, not accounted for by traditional FEM methods recommended by ASME. Through comprehensive analytical investigations, we reveal that traditional shell-type meshing techniques, while suitable for certain applications, fail to capture the intricate thermal stresses and deformation patterns inherent in high-temperature flat plate configurations. Our analysis delineates distinct stability regimes governed by key design parameters—including plate thickness, operating temperature, and geometric dimensions—profoundly impacting the structural integrity of heating plates under thermal loading. By elucidating these stability boundaries, this research provides engineers with critical insights necessary for optimizing the design and performance of high-temperature equipment. This includes the design of high-pressure vessels with flat surfaces for heating materials, flanges in high-temperature environments, and fins in heat exchangers across various industries such as oil and gas, pyrolysis, and power plants. The findings presented herein serve as a valuable reference for engineers seeking to comprehend and mitigate instability phenomena in solid mechanics, offering practical guidance for developing robust and reliable high-temperature structures in demanding industrial environments.

Keywords

thermal buckling; high-pressure vessels; temperature-induced deformation; temperature effects; structural instability

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.