Preprint Review Version 1 This version is not peer-reviewed

Plant-Soil Microbial Interaction: Differential Adaptations of Beneficial vs. Pathogenic Bacterial and Fungal Communities to Climate-Induced Drought and Desiccation Stresses

Version 1 : Received: 15 July 2024 / Approved: 16 July 2024 / Online: 16 July 2024 (10:18:00 CEST)

How to cite: Loiko, N.; Islam, M. N. Plant-Soil Microbial Interaction: Differential Adaptations of Beneficial vs. Pathogenic Bacterial and Fungal Communities to Climate-Induced Drought and Desiccation Stresses. Preprints 2024, 2024071261. https://doi.org/10.20944/preprints202407.1261.v1 Loiko, N.; Islam, M. N. Plant-Soil Microbial Interaction: Differential Adaptations of Beneficial vs. Pathogenic Bacterial and Fungal Communities to Climate-Induced Drought and Desiccation Stresses. Preprints 2024, 2024071261. https://doi.org/10.20944/preprints202407.1261.v1

Abstract

Climate change and the increasing frequency and severity of drought events pose significant challenges for sustainable agriculture worldwide. Soil microorganisms, both beneficial and pathogenic, play a crucial role in mediating plant-environment interactions and shaping the overall functioning of agroecosystems. This review synthesizes the current knowledge on the contrasting adaptive mechanisms utilized by different groups of plant-soil microorganisms focusing on beneficial and pathogenic bacterial and fungal communities in response to drought and desiccation stresses. The review examines the common survival strategies employed by microbes specifically rhizobacteria and arbuscular mycorrhizal fungi, such as the production of osmoprotectants, altered gene expression, and biofilm formation. It also highlights the distinct adaptive mechanisms of pathogenic versus mutualistic microbes, with pathogens tending to prioritize virulence factors and suppress plant growth, while beneficial microbes enhance plant growth and stress tolerance. Genetic exchange such as horizontal gene transfer (HGT) is identified as a key adaptive mechanism, allowing both pathogenic and non-pathogenic microbes to acquire beneficial traits like stress tolerance and virulence factors. Environmental stressors like drought can promote increased genetic exchange and the spread of pathogenic traits within the soil microbiome. The complex interplay between drought-adapted microbes and their interactions with plants is discussed, emphasizing the need for a deeper understanding of soil microbiome dynamics under climate change. This knowledge can be utilized in sustainable agricultural practices to mitigate the impacts of drought on plant health and productivity. This review provides insights into the divergent survival strategies of soil microorganisms in response to drought and desiccation, for managing the resilience of agroecosystems to climate change.

Keywords

soil; plant; microorganisam; gene transfer; drought; desiccation

Subject

Biology and Life Sciences, Agricultural Science and Agronomy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.