Submitted:
31 July 2024
Posted:
01 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Orsay 1981-1983
3. Institut Jacques Monod 1983-1986
4. Leicester 1986-1996
5. Rouen 1996-Present
6. Miscellaneous Research
7. Future Projects
8. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wikipedia. The hnting of the snark. https://en.wikipedia.org/wiki/The_Hunting_of_the_Snark (17 April 2024),.
- Kelly, R.M. Lewis carroll. Twayne: Boston, MA, 1990; p 190.
- Sanchez-Rivas, C.; Lévi-Meyrueis, C.; Lazard-Monier, F.; Schaeffer, P. Diploid state of phenotypically recombinant progeny arising after protoplast fusion in Bacillus subtilis. Mol. Genet. Genom. 1982, 188, 272–278, . [CrossRef]
- Grandjean, V.; Hauck, Y.; Beloin, C.; Le Hégarat, F.; Hirschbein, L. Chromosomal inactivation of Bacillus subtilis exfusants: a prokaryotic model of epigenetic regulation. Biol Chem. 1998, 379, 553–557.
- Zouine, M.; Beloin, C.; Ghelis, C.; Le Hégarat, F. The L17 ribosomal protein of Bacillus subtilis binds preferentially to curved DNA. Biochimie 2000, 82, 85–91, . [CrossRef]
- Autret, S.; Levine, A.; Vannier, F.; Fujita, Y.; Séror, S.J. The replication checkpoint control in Bacillus subtilis: identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent response. Mol. Microbiol. 1999, 31, 1665–1679, . [CrossRef]
- Norris, V.; Alliotte, T.; Jaffé, A.; D'Ari, R. DNA replication termination in Escherichia coli parB (a dnaG allele), parA, and gyrB mutants affected in DNA distribution. J. Bacteriol. 1986, 168, 494–504, . [CrossRef]
- Jaffé, A.; D'Ari, R.; Norris, V. SOS-independent coupling between DNA replication and cell division in Escherichia coli. J. Bacteriol. 1985, 165, 66–71, . [CrossRef]
- Donachie, W.D. Relationship between Cell Size and Time of Initiation of DNA Replication. Nature 1968, 219, 1077–1079, . [CrossRef]
- Pritchard, R.H.; Barth, P.T.; Collins, T. Control of DNA synthesis in bacteria. Symp Soc Gen Microbiol 1969, 19, 263-297.
- Jacob, F.; Brenner, S. [On the regulation of DNA synthesis in bacteria: the hypothesis of the replicon]. C R Hebd Seances Acad Sci. 1963, 256, 298–300.
- Nordström, K. The replicon theory 40 years: An EMBO workshop held in Villefranche sur Mer, France, January 18–23, 2003. Plasmid 2003, 49, 269–280, . [CrossRef]
- Kohiyama, M.; Lanfrom, H.; Brenner, S.; Jacob, F. [modifications of indispensable functions in thermosensitive escherichia coli mutants. On a mutation preventing replication of the bacterial chromosome]. C R Hebd Seances Acad Sci 1963, 257, 1979-1981.
- Koch, A.L. The surface stress theory: Non-vitalism in action. In Bacterial growth and form, Koch, A.L., Ed. Springer Netherlands: Dordrecht, 2001; pp 161-190.
- Foley, M.; Brass, J.M.; Birmingham, J.; Cook, W.R.; Garland, P.B.; Higgins, C.F.; Rothfield, L.I. Compartmentalization of the periplasm at cell division sites in Escherichia coli as shown by fluorescence photobleaching experiments. Mol. Microbiol. 1989, 3, 1329–1336, . [CrossRef]
- Mulder, E.; Woldringh, C.L. Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J. Bacteriol. 1989, 171, 4303–4314, . [CrossRef]
- Cook, W.R.; Rothfield, L.I. Nucleoid-Independent Identification of Cell Division Sites in Escherichia coli. J. Bacteriol. 1999, 181, 1900–1905, . [CrossRef]
- Taghbalout, A.; Rothfield, L. RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton. Proc. Natl. Acad. Sci. 2007, 104, 1667–1672, . [CrossRef]
- Mendelson, N.H. A model of bacterial DNA segregation based upon helical geometry. J. Theor. Biol. 1984, 112, 25–39, . [CrossRef]
- Newman, E.B.; D'Ari, R.; Lin, R.T. The leucine-lrp regulon in e. Coli: A global response in search of a raison d'etre. Cell 1992, 68, 617-619.
- Kepes, F.; Kepes, A. Long - lasting synchrony of the division of enteric bacteria. Biochem. Biophys. Res. Commun. 1981, 99, 761–767, . [CrossRef]
- Marcaud, H.; Gabarro-Arpa, J.; Ehrlich, R.; Reiss, C. An algorithm for studying cooperative transitions in DNA. Nucleic Acids Res. 1986, 14, 551–558, . [CrossRef]
- Norris, V.; Engel, M.; Demarty, M. Modelling Biological Systems with Competitive Coherence. Adv. Artif. Neural Syst. 2012, 2012, 1–20, . [CrossRef]
- Herrick, J. The dynamic replicon: adapting to a changing cellular environment. BioEssays 2010, 32, 153–164, . [CrossRef]
- Watts, F.Z.; Miller, D.M.; Orr, E. Identification of myosin heavy chain in Saccharomyces cerevisiae. Nature 1985, 316, 83–85, . [CrossRef]
- Eliasson, .; Nordström, K. Replication of minichromosomes in a host in which chromosome replication is random. Mol. Microbiol. 1997, 23, 1215–1220, . [CrossRef]
- Niki, H.; Jaffé, A.; Imamura, R.; Ogura, T.; Hiraga, S. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli.. EMBO J. 1991, 10, 183–193, . [CrossRef]
- Norris, V.; Seror, S.; Casaregola, S.; Holland, I. A single calcium flux triggers chromosome replication, segregation and septation in bacteria: a model. J. Theor. Biol. 1988, 134, 341–350, . [CrossRef]
- Swan, D.G.; Hale, R.S.; Dhillon, N.; Leadlay, P.F. A bacterial calcium-binding protein homologous to calmodulin. Nature 1987, 329, 84–85, . [CrossRef]
- Chen, M.; Bouquin, N.; Norris, V.; Casarégola, S.; Séror, S.; Holland, I. A single base change in the acceptor stem of tRNA(3Leu) confers resistance upon Escherichia coli to the calmodulin inhibitor, 48/80.. EMBO J. 1991, 10, 3113–3122, . [CrossRef]
- Norris, V.; Chen, M.; Goldberg, M.; Voskuil, J.; McGurk, G.; Holland, I.B. Calcium in bacteria: A solution to which problem? Mol Microbiol 1991, 5, 775-778.
- Norris, V.; Grant, S.; Freestone, P.; Canvin, J.; Sheikh, F.N.; Toth, I.; Trinei, M.; Modha, K.; I Norman, R. Calcium signalling in bacteria. J. Bacteriol. 1996, 178, 3677–3682, . [CrossRef]
- Naseem, R.; Wann, K.T.; Holland, I.B.; Campbell, A.K. ATP Regulates Calcium Efflux and Growth in E. coli. J. Mol. Biol. 2009, 391, 42–56, . [CrossRef]
- Das, S.; Lengweiler, U.D.; Seebach, D.; Reusch, R.N. Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from ( R )-3-hydroxybutanoic acid and inorganic polyphosphate. Proc. Natl. Acad. Sci. 1997, 94, 9075–9079, . [CrossRef]
- Norris, V.; Baldwin, T.J.; Sweeney, S.T.; Williams, P.H.; Leach, K.L. A protein kinase C-like activity in Escherichia coli. Mol. Microbiol. 1991, 5, 2977–2981, . [CrossRef]
- Cozzone, A.J. Protein phosphorylation in prokaryotes. Annu Rev Microbiol 1988, 42, 97-125.
- Freestone, P.; Grant, S.; Trinei, M.; Onoda, T.; Norris, V. Protein phosphorylation in Escherichia coli L. form NC-7. Microbiology 1998, 144, 3289–3295, . [CrossRef]
- Onoda, T.; Enokizono, J.; Kaya, H.; Oshima, A.; Freestone, P.; Norris, V. Effects of Calcium and Calcium Chelators on Growth and Morphology of Escherichia coli L-Form NC-7. J. Bacteriol. 2000, 182, 1419–1422, . [CrossRef]
- Freestone, P.; Grant, S.; Toth, I.; Norris, V. Identification of phosphoproteins in Escherichia coli. Mol. Microbiol. 1995, 15, 573–580, . [CrossRef]
- Freestone, P.; Nyström, T.; Trinei, M.; Norris, V. The universal stress protein, UspA, of Escherichia coli is phosphorylated in response to stasis. J. Mol. Biol. 1997, 274, 318–324, . [CrossRef]
- Freestone, P.; Trinei, M.; Clarke, S.C.; Nyström, T.; Norris, V. Tyrosine phosphorylation in Escherichia coli. J. Mol. Biol. 1998, 279, 1045–1051, . [CrossRef]
- Norris, V. Phospholipid flip-out controls the cell cycle of Escherichia coli. J. Theor. Biol. 1989, 139, 117–128, . [CrossRef]
- Norris, V. Hypothesis: Chromosome separation in escherichia coli involves autocatalytic gene expression, transertion and membrane-domain formation. Mol Microbiol 1995, 16, 1051-1057.
- Norris, V.; Misevic, G.; Delosme, J.-M.; Oshima, A. Hypothesis: A Phospholipid Translocase Couples Lateral and Transverse Bilayer Asymmetries in Dividing Bacteria. J. Mol. Biol. 2002, 318, 455–462, . [CrossRef]
- Norris, V.; Madsen, M.S. Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: A model. J Mol Biol 1995, 253, 739-748.
- Amir, A. Is cell size a spandrel? Elife 2017, 6.
- Norris, V. Sequestration of Origins of Chromosome Replication in Escherichia coli by Lipid Compartments: The Pocket Hypothesis. J. Theor. Biol. 1993, 164, 239–244, . [CrossRef]
- Norris, V. Hypothesis: transcriptional sensing and membrane-domain formation initiate chromosome replication in Escherichia coli. Mol. Microbiol. 1995, 15, 985–987, . [CrossRef]
- Fröhlich, H. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 1968, 2, 641–649, . [CrossRef]
- Matsuhashi, M.; Pankrushina, A.N.; Endoh, K.; Watanabe, H.; Mano, Y.; Hyodo, M.; Fujita, T.; Kunugita, K.; Kaneko, T.; Otani, S. Studies on carbon material requirements for bacterial proliferation and spore germination under stress conditions: a new mechanism involving transmission of physical signals. J. Bacteriol. 1995, 177, 688–693, . [CrossRef]
- Norris, V.; Hyland, G.J. Do bacteria sing? Sonic intercellular communication between bacteria may reflect electromagnetic intracellular communication involving coherent collective vibrational modes that could integrate enzyme activities and gene expression. Mol. Microbiol. 1997, 24, 879–880, . [CrossRef]
- Norris, V.; Manners, B. Deformations in the cytoplasmic membrane of Escherichia coli direct the synthesis of peptidoglycan. The hernia model. Biophys. J. 1993, 64, 1691–1700, . [CrossRef]
- Rajnicek, A.M.; McCaig, C.D.; A Gow, N. Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli, and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth. J. Bacteriol. 1994, 176, 702–713, . [CrossRef]
- Madsen, M.S.; Snelling, D.F.; Heaphy, S.; Norris, V. Antiviruses as Therapeutic Agents: A Mathematical Analysis of Their Potential. J. Theor. Biol. 1997, 184, 111–116, . [CrossRef]
- Norris, V.; Madsen, M.S.; Heaphy, S. Designer antiviruses for HIV. Trends Microbiol. 1993, 1, 355–357, . [CrossRef]
- Norris, V.; Ovádi, J. Role of Multifunctional Cytoskeletal Filaments in Coronaviridae Infections: Therapeutic Opportunities for COVID-19 in a Nutshell. Cells 2021, 10, 1818, . [CrossRef]
- Kalamvoki, M.; Norris, V. A Defective Viral Particle Approach to COVID-19. Cells 2021, 11, 302, . [CrossRef]
- Goodwin, B. How the leopard changed its spots.
- the evolution of complexity. Princeton University Press: 2001.
- Ho, M.-W. The rainbow and the worm. World Scientific: 2008; p 408.
- Kauffman, S. At home in the universe, the search for the laws of complexity. Penguin: London, 1996; p 1-321.
- E Kubitschek, H. Increase in cell mass during the division cycle of Escherichia coli B/rA. J. Bacteriol. 1986, 168, 613–618, . [CrossRef]
- Cooper, S. What is the bacterial growth law during the division cycle? J Bacteriol 1988, 170, 5001-5005.
- Cooper, S.; Shedden, K. Microarray analysis of gene expression during the cell cycle. Cell Chromosom. 2003, 2, 1–1, . [CrossRef]
- Norris, V.; Ayala, J.A.; Begg, K.; Bouche, J.P.; Bouloc, P.; Boye, E.; Canvin, J.; Casaregola, S.; Cozzone, A.J.; Crooke, E., et al. Cell cycle control: Prokaryotic solutions to eukaryotic problems? Journal of theoretical biology 1994, 168, 227-230.
- Thornton, M.; Armitage, M.; Maxwell, A.; Dosanjh, B.; Howells, A.J.; Norris, V.; Sigee, D.C. Immunogold localization of GyrA and GyrB proteins in Escherichia coli. Microbiology 1994, 140, 2371–2382, . [CrossRef]
- Norris, V.; Turnock, G.; Sigee, D. The Escherichia coli enzoskeleton. Mol. Microbiol. 1996, 19, 197–204, . [CrossRef]
- Norris, V. Bacteria as tools for studies of consciousness. In Toward a science of consciousness ii: The second tucson discussions and debates., Hameroff, S.; Kaszniak, A.; Scott, A., Eds. MIT Press: Cambridge, USA, 1998; pp 397-405.
- Norris, V. Competitive Coherence Generates Qualia in Bacteria and Other Living Systems. Biology 2021, 10, 1034, . [CrossRef]
- Ripoll, C.; Guespin-Michel, J.; Norris, V.; Thellier, M. Defining integrative biology. Complexity 1998, 4, 19–20, . [CrossRef]
- Thomas, R.; D'Ari, R. Biological feedback. CRC Press: 1990; p 328.
- Laurent, M.; Charvin, G.; Guespin-Michel, J. Bistability and hysteresis in epigenetic regulation of the lactose operon. Since Delbrück, a long series of ignored models. Cell Mol Biol (Noisy-le-grand) 2005, 51, 583–94.
- Alexandre, S.; Colé, G.; Coutard, S.; Monnier, C.; Norris, V.; Margolin, W.; Yu, X.; Valleton, J. Interaction of FtsZ protein with a DPPE Langmuir film. Colloids Surfaces B: Biointerfaces 2002, 23, 391–395, . [CrossRef]
- Alexandre; Dérue; Garah; Monnier; Norris; Valleton. Submolecular structures in dipalmytoylphosphatidylethanolamine langmuir-blodgett films observed by scanning force microscopy. Journal of colloid and interface science 2000, 227 2, 585-587.
- Lafontaine, C.; Valleton, J.-M.; Orange, N.; Norris, V.; Mileykovskaya, E.; Alexandre, S. Behaviour of bacterial division protein FtsZ under a monolayer with phospholipid domains. Biochim. et Biophys. Acta (BBA) - Biomembr. 2007, 1768, 2812–2821, . [CrossRef]
- Zerrouk, Z.; Alexandre, S.; Lafontaine, C.; Norris, V.; Valleton, J.-M. Inner membrane lipids of Escherichia coli form domains. Colloids Surfaces B: Biointerfaces 2008, 63, 306–310, . [CrossRef]
- Cabin-Flaman, A.; Monnier, A.-F.; Coffinier, Y.; Audinot, J.-N.; Gibouin, D.; Wirtz, T.; Boukherroub, R.; Migeon, H.-N.; Bensimon, A.; Jannière, L.; et al. Combed Single DNA Molecules Imaged by Secondary Ion Mass Spectrometry. Anal. Chem. 2011, 83, 6940–6947, . [CrossRef]
- Cabin-Flaman, A.; Monnier, A.-F.; Coffinier, Y.; Audinot, J.-N.; Gibouin, D.; Wirtz, T.; Boukherroub, R.; Migeon, H.-N.; Bensimon, A.; Jannière, L.; et al. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling. F1000Research 2016, 5, 1437, . [CrossRef]
- Norris, V.; Koch, I.; Amar, P.; Kepes, F.; Janniere, L. Hypothesis: Local variations in the speed of individual DNA replication forks determine the phenotype of daughter cells. Medical Research Archives 2017, 5.
- Bouligand, Y.; Norris, V. Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. Biochimie 2001, 83, 187-192.
- Reich, Z.; Wachtel, E.J.; Minsky, A. Liquid-Crystalline Mesophases of Plasmid DNA in Bacteria. Science 1994, 264, 1460–1463, . [CrossRef]
- Abadi, M.; Serag, M.F.; Habuchi, S. Entangled polymer dynamics beyond reptation. Nat. Commun. 2018, 9, 5098, . [CrossRef]
- Norris, V.; Blaauwen, T.D.; Doi, R.H.; Harshey, R.M.; Janniere, L.; Jiménez-Sánchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; Minsky, A.; et al. Toward a Hyperstructure Taxonomy. Annu. Rev. Microbiol. 2007, 61, 309–329, . [CrossRef]
- Norris, V.; Blaauwen, T.D.; Cabin-Flaman, A.; Doi, R.H.; Harshey, R.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; et al. Functional Taxonomy of Bacterial Hyperstructures. Microbiol. Mol. Biol. Rev. 2007, 71, 230–253, . [CrossRef]
- Norris, V.; Gascuel, P.; Guespin-Michel, J.; Ripoll, C.; Saier, M.H. Metabolite-induced metabolons: the activation of transporter–enzyme complexes by substrate binding. Mol. Microbiol. 1999, 31, 1592–1595, . [CrossRef]
- Thellier, M.; Legent, G.; Amar, P.; Norris, V.; Ripoll, C. Steady-state kinetic behaviour of functioning-dependent structures. The FEBS journal 2006, 273, 4287-4299.
- Norris, V.; Alexandre, S.; Bouligand, Y.; Cellier, D.; Demarty, M.; Grehan, G.; Gouesbet, G.; Guespin, J.; Insinna, E.; Le Sceller, L., et al. Hypothesis: Hyperstructures regulate bacterial structure and the cell cycle. Biochimie 1999, 81, 915-920.
- Le Sceller, L.; Ripoll, C.; Demarty, M.; Cabin-Flaman, A.; Nyström, T.; Saier Jnr., M.; Norris, V. Modelling bacterial hyperstructures with cellular automata. Interjournal of Complex Systems 2000, Paper 366, http://www.lri.fr/~pa/Hsim/InterJournal.pdf.
- Amar, P.; Bernot, G.; Norris, V. Hsim: A simulation programme to study large assemblies of proteins. Journal of Biological Physics and Chemistry 2004, 4, 124--130.
- Amar, P.; Legent, G.; Thellier, M.; Ripoll, C.; Bernot, G.; Nystrom, T.; SaierJr, M.H.; Norris, V. A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Syst. Biol. 2008, 2, 27–27, . [CrossRef]
- Norris, V.; Verrier, C.; Feuilloley, M. Hybolites revisited. Recent Pat Antiinfect Drug Discov 2016, 11, 16-31.
- Legent, G.; Norris, V. Hybolites: novel therapeutic tools for targeting hyperstructures in bacteria.. Recent Patents Anti-Infective Drug Discov. 2009, 4, 90–95, . [CrossRef]
- Norris, V.; Amar, P. Chromosome Replication in Escherichia coli: Life on the Scales. Life 2012, 2, 286–312, . [CrossRef]
- Norris, V. Why do bacteria divide? Front Microbiol 2015, 6, 322.
- Norris, V. Speculations on the initiation of chromosome replication in Escherichia coli: The dualism hypothesis. Med Hypotheses 2011, 76, 706–716, . [CrossRef]
- Norris, V.; Amar, P. Chromosome Replication in Escherichia coli: Life on the Scales. Life 2012, 2, 286–312, . [CrossRef]
- Rocha, E.P.C.; Fralick, J.; Vediyappan, G.; Danchin, A.; Norris, V. A strand-specific model for chromosome segregation in bacteria. Mol. Microbiol. 2003, 49, 895–903, . [CrossRef]
- Konto-Ghiorghi, Y.; Norris, V. Hypothesis: nucleoid-associated proteins segregate with a parental DNA strand to generate coherent phenotypic diversity. Theory Biosci. 2021, 140, 17–25, . [CrossRef]
- Norris, V.; Kayser, C.; Muskhelishvili, G.; Konto-Ghiorghi, Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol. Rev. 2022, 47, . [CrossRef]
- Nana, G.Y.G.; Ripoll, C.; Cabin-Flaman, A.; Gibouin, D.; Delaune, A.; Janniere, L.; Grancher, G.; Chagny, G.; Loutelier-Bourhis, C.; Lentzen, E.; et al. Division-Based, Growth Rate Diversity in Bacteria. Front. Microbiol. 2018, 9, 849, . [CrossRef]
- Meselson, M.; Stahl, F.W. The replication of DNA in Escherichia coli. Proc. Natl. Acad. Sci. 1958, 44, 671–682, . [CrossRef]
- Norris, V.; Ripoll, C. Generation of Bacterial Diversity by Segregation of DNA Strands. Front. Microbiol. 2021, 12, . [CrossRef]
- Norris, V.; Raine, D.J. A Fission-Fusion Origin for Life. Orig. life Evol. biosphere 1998, 28, 523–537, . [CrossRef]
- Raine, D.; Norris, V. Lipid domain boundaries as prebiotic catalysts of peptide bond formation. J. Theor. Biol. 2006, 246, 176–185, . [CrossRef]
- Hunding, A.; Kepes, F.; Lancet, D.; Minsky, A.; Norris, V.; Raine, D.; Sriram, K.; Root-Bernstein, R. Compositional complementarity and prebiotic ecology in the origin of life. BioEssays 2006, 28, 399–412, . [CrossRef]
- Segré, D.; Ben-Eli, D.; Lancet, D. Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl. Acad. Sci. 2000, 97, 4112–4117, . [CrossRef]
- Norris, V.; Loutelier-Bourhis, C.; Thierry, A. How did metabolism and genetic replication get married? Orig Life Evol Biosph 2012, 42, 487-495.
- Norris, V.; Reusch, R.N.; Igarashi, K.; Root-Bernstein, R. Molecular complementarity between simple, universal molecules and ions limited phenotype space in the precursors of cells. Biol. Direct 2015, 10, 1–20, . [CrossRef]
- Demongeot, J.; Moreira, A. A possible circular RNA at the origin of life. J. Theor. Biol. 2007, 249, 314–324, . [CrossRef]
- Norris, V.; Demongeot, J. The Ring World: Eversion of Small Double-Stranded Polynucleotide Circlets at the Origin of DNA Double Helix, RNA Polymerization, Triplet Code, Twenty Amino Acids, and Strand Asymmetry. Int. J. Mol. Sci. 2022, 23, 12915, . [CrossRef]
- Bak, P. How nature works: The science of self-organized criticality. Copernicus: New York, 1996.
- Raine, D.J.; Norris, V. Metabolic cycles and self-organised criticality. Interjournal of complex systems 2000, Paper 361, http://www.interjournal.org.
- Demarty, M.; Gleyse, B.; Raine, D.; Ripoll, C.; Norris, V. Modelling autocatalytic networks with artificial microbiology. Comptes Rendus Biol. 2003, 326, 459–466, . [CrossRef]
- Dittrich, P.; Ziegler, J.; Banzhaf, W. Artificial chemistries--a review. Artif Life 2001, 7, 225-275.
- Raine, D.J.; Grondin, Y.; Thellier, M.; Norris, V. Networks as constrained thermodynamic systems. Comptes Rendus Biol. 2003, 326, 65–74, . [CrossRef]
- Grondin, Y.; Raine, D.J.; Norris, V. The correlation between architecture and mRNA abundance in the genetic regulatory network of Escherichia coli. BMC Syst. Biol. 2007, 1, 30–30, . [CrossRef]
- Hirota, Y.; Ryter, A.; Jacob, F. Thermosensitive Mutants of E. coli Affected in the Processes of DNA Synthesis and Cellular Division. Cold Spring Harb. Symp. Quant. Biol. 1968, 33, 677–693, . [CrossRef]
- Norris, V.; Nana, G.G.; Audinot, J.-N. New approaches to the problem of generating coherent, reproducible phenotypes. Theory Biosci. 2014, 133, 47–61, . [CrossRef]
- Mayer, F. Cytoskeletal Elements in Bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as Revealed by Electron Microscopy. Microb. Physiol. 2006, 11, 228–243, . [CrossRef]
- Wichmann, C.; Naumann, P.; Spangenberg, O.; Konrad, M.; Mayer, F.; Hoppert, M. Liposomes for microcompartmentation of enzymes and their influence on catalytic activity. Biochem. Biophys. Res. Commun. 2003, 310, 1104–1110, . [CrossRef]
- Wiggins, P. Life Depends upon Two Kinds of Water. PLOS ONE 2008, 3, e1406, . [CrossRef]
- Ripoll, C.; Norris, V.; Thellier, M. Ion condensation and signal transduction. BioEssays 2004, 26, 549–557, . [CrossRef]
- Sweetman, G.; Trinei, M.; Modha, J.; Kusel, J.; Freestone, P.; Fishov, I.; Joseleau-Petit, D.; Redman, C.; Farmer, P.; Norris, V. Electrospray ionization mass spectrometric analysis of phospholipids of Escherichia coli. Mol. Microbiol. 1996, 20, 233–238, . [CrossRef]
- Oursel, D.; Loutelier-Bourhis, C.; Orange, N.; Chevalier, S.; Norris, V.; Lange, C.M. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Commun. Mass Spectrom. 2007, 21, 1721–1728, . [CrossRef]
- Oursel, D.; Loutelier-Bourhis, C.; Orange, N.; Chevalier, S.; Norris, V.; Lange, C.M. Identification and relative quantification of fatty acids in Escherichia coli membranes by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3229–3233, . [CrossRef]
- Norris, V.; Mileykovskaya, E.; Matsumoto, K. Extending the transertion hypothesis. Biochemistry and Analytical Biochemistry 2015, 4, 4.
- Matsumoto, K.; Hara, H.; Fishov, I.; Mileykovskaya, E.; Norris, V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front. Microbiol. 2015, 6, 572, . [CrossRef]
- Kusaka, J.; Shuto, S.; Imai, Y.; Ishikawa, K.; Saito, T.; Natori, K.; Matsuoka, S.; Hara, H.; Matsumoto, K. Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Res. Microbiol. 2016, 167, 202–214, . [CrossRef]
- Bray, D.; Levin, M.D.; Morton-Firth, C.J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 1998, 393, 85–88, . [CrossRef]
- Cabin-Flaman, A.; Ripoll, C.; Jr., M.H.S.; Norris, V. Hypothesis: Chemotaxis in Escherichia coli Results from Hyperstructure Dynamics. J. Mol. Microbiol. Biotechnol. 2005, 10, 1–14, . [CrossRef]
- Norris, V.; Menu-Bouaouiche, L.; Becu, J.-M.; Legendre, R.; Norman, R.; Rosenzweig, J.A. Hyperstructure interactions influence the virulence of the type 3 secretion system in yersiniae and other bacteria. Appl. Microbiol. Biotechnol. 2012, 96, 23–36, . [CrossRef]
- Norris, V.; Woldringh, C.; Mileykovskaya, E. A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min. FEBS Lett. 2004, 561, 3–10, . [CrossRef]
- Fishov, I.; Woldringh, C.L. Visualization of membrane domains in Escherichia coli. Mol. Microbiol. 1999, 32, 1166–1172, . [CrossRef]
- Kohiyama, M.; Herrick, J.; Norris, V. Open Questions about the Roles of DnaA, Related Proteins, and Hyperstructure Dynamics in the Cell Cycle. Life 2023, 13, 1890, . [CrossRef]
- Nouri, H.; Monnier, A.-F.; Fossum-Raunehaug, S.; Maciąg-Dorszyńska, M.; Cabin-Flaman, A.; Képès, F.; Węgrzyn, G.; Szalewska-Pałasz, A.; Norris, V.; Skarstad, K.; et al. Multiple links connect central carbon metabolism to DNA replication initiation and elongation inBacillus subtilis. DNA Res. 2018, 25, 641–653, . [CrossRef]
- Kreuzer-Martin, H.W.; Ehleringer, J.R.; Hegg, E.L. Oxygen isotopes indicate most intracellular water in log-phase Escherichia coli is derived from metabolism. Proc. Natl. Acad. Sci. 2005, 102, 17337–17341, . [CrossRef]
- Kreuzer-Martin, H.W.; Lott, M.J.; Ehleringer, J.R.; Hegg, E.L. Metabolic Processes Account for the Majority of the Intracellular Water in Log-Phase Escherichia coli Cells As Revealed by Hydrogen Isotopes. Biochemistry 2006, 45, 13622–13630, . [CrossRef]
- Li, H.; Yu, C.; Wang, F.; Chang, S.J.; Yao, J.; Blake, R.E. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO 4. Proc. Natl. Acad. Sci. 2016, 113, 5862–5867, . [CrossRef]
- Saragovi, A.; Zilberman, T.; Yasur, G.; Turjeman, K.; Abramovich, I.; Kuchersky, M.; Gottlieb, E.; Barenholz, Y.; Berger, M. Analysis of cellular water content in T cells reveals a switch from slow metabolic water gain to rapid water influx prior to cell division. J. Biol. Chem. 2022, 298, 101795, . [CrossRef]
- Weiner, T.; Tamburini, F.; Keren, N.; Keinan, J.; Angert, A. Does metabolic water control the phosphate oxygen isotopes of microbial cells? Front Microbiol 2023, 14, 1277349.
- Norris, V. Hypothesis: Bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. ResearchSquare 2024, preprint.
- Zaslavsky, B.Y.; Uversky, V.N. In Aqua Veritas: The Indispensable yet Mostly Ignored Role of Water in Phase Separation and Membrane-less Organelles. Biochemistry 2018, 57, 2437–2451, . [CrossRef]
- Watson, J.L.; Seinkmane, E.; Styles, C.T.; Mihut, A.; Krüger, L.K.; McNally, K.E.; Planelles-Herrero, V.J.; Dudek, M.; McCall, P.M.; Barbiero, S.; et al. Macromolecular condensation buffers intracellular water potential. Nature 2023, 623, 842–852, . [CrossRef]
- Norris, V.; Ripoll, C.; Thellier, M. The theatre management model of plant memory. Plant Signal Behav 2014, 10, e976157.
- Tafforeau, M.; Verdus, M.; Norris, V.; White, G.J.; Cole, M.; Demarty, M.; Thellier, M.; Ripoll, C. Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 2004, 25, 403–407, . [CrossRef]
- Tafforeau, M.; Verdus, M.; Norris, V.; Ripoll, C.; Thellier, M. Memory Processes in the Response of Plants to Environmental Signals. Plant Signal. Behav. 2006, 1, 9–14, . [CrossRef]
- Norris, V.; Amar, P.; Legent, G.; Ripoll, C.; Thellier, M.; Ovádi, J. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor. BMC Biochem. 2013, 14, 1–10, . [CrossRef]
- Oláh, J.; Norris, V.; Ovádi, J. Modeling of sensing potency of cytoskeletal systems decorated with metabolic enzymes. J. Theor. Biol. 2015, 365, 190–196, . [CrossRef]
- Oláh, J.; Szénási, T.; Lehotzky, A.; Norris, V.; Ovádi, J. Challenges in Discovering Drugs That Target the Protein–Protein Interactions of Disordered Proteins. Int. J. Mol. Sci. 2022, 23, 1550, . [CrossRef]
- Oláh, J.; Norris, V.; Lehotzky, A.; Ovádi, J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024, 13, 338, . [CrossRef]
- Norris, V.; Oláh, J.; Krylov, S.N.; Uversky, V.N.; Ovádi, J. The Sherpa hypothesis: Phenotype-Preserving Disordered Proteins stabilize the phenotypes of neurons and oligodendrocytes. npj Syst. Biol. Appl. 2023, 9, 1–11, . [CrossRef]
- Norris, V.; Molina, F.; Gewirtz, A.T. Hypothesis: Bacteria Control Host Appetites. J. Bacteriol. 2012, 195, 411–416, doi:10.1128/jb.01384-12.
- Norris, V.; Merieau, A. Plasmids as scribbling pads for operon formation and propagation. Res. Microbiol. 2013, 164, 779–787, . [CrossRef]
- Trinei, M.; Vannier, J.; Beurton-Aimar, M.; Norris, V. A hyperstructure approach to mitochondria. Mol. Microbiol. 2004, 53, 41–53, . [CrossRef]
- Norris, V.; Sharov, A.A. A hypothesis about how bacterial cells sustain and change their lives in response to various signals. In Pathways to the origin and evolution of meanings in the universe, Sharov, A.A.; Mikhailovsky, G., Eds. Wiley-Scrivener: Beverly, MA 01915, USA, 2024; p 500.
- Norris, V.; Thierry, A.; Holland, I.B.; Amar, P.; Molina, F. The mimic chain reaction. J Mol Microbiol Biotechnol 2012, 22, 335-343.
- Norris, V.; Krylov, S.N.; Agarwal, P.K.; White, G.J. Synthetic, switchable enzymes. J Mol Microbiol Biotechnol 2017, 27, 117-127.
- Norris, V.; Zemirline, A.; Amar, P.; Audinot, J.N.; Ballet, P.; Ben-Jacob, E.; Bernot, G.; Beslon, G.; Cabin, A.; Fanchon, E.; et al. Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theory Biosci. 2011, 130, 211–228, . [CrossRef]
- Norris, V.; Grondin, Y. DNA Movies and Panspermia. Life 2011, 1, 9–18, . [CrossRef]
- Norris, V.; Grondin, Y. Making bacteriophage DNA into a movie for panspermia. Journal of Cosmology 2011, 16, 7158-7176.
- Schubert, W.; Gieseler, A.; Krusche, A.; Serocka, P.; Hillert, R. Next-generation biomarkers based on 100-parameter functional super-resolution microscopy TIS. New Biotechnol. 2012, 29, 599–610, . [CrossRef]
- Norris, V. In Could phase oscillations occur in bacteria?, Modelling complex biological systems in the context of genomics., Evry, France, 2007; Amar, P.; Kepes, F.; Norris, V.; Bernot, G., Eds. EDP Sciences: Evry, France, pp 89-98.
- Bray, D. The propagation of allosteric states in large multiprotein complexes. J Mol Biol 2012.
- Veetil, R.T.; Malhotra, N.; Dubey, A.; Seshasayee, A.S.N. Laboratory Evolution Experiments Help Identify a Predominant Region of Constitutive Stable DNA Replication Initiation. mSphere 2020, 5, . [CrossRef]
- Norris, V.; Fralick, J.; Danchin, A. A SeqA hyperstructure and its interactions direct the replication and sequestration of DNA. Mol. Microbiol. 2000, 37, 696–702, . [CrossRef]
- Ingber, D.E. From tensegrity to human organs-on-chips: implications for mechanobiology and mechanotherapeutics. Biochem. J. 2023, 480, 243–257, . [CrossRef]
- Norris, V.; Norris, L.; Wong, W.-K. The Positive Feedback Advantages of Combining Buying and Investing. Theor. Econ. Lett. 2015, 05, 659–669, . [CrossRef]
- Whitehouse, D. The sun: A biography. Wiley: 2005; p 334.
- Wiens, J.J. How many species are there on Earth? Progress and problems. PLOS Biol. 2023, 21, e3002388, . [CrossRef]
- Norris, V.; Zaritsky, A. Novel Principles and Methods in Bacterial Cell Cycle Physiology: Celebrating the Charles E. Helmstetter Prize in 2022. Life 2023, 13, 2260, . [CrossRef]
- Cooper, S.; Helmstetter, C.E. Chromosome replication and the division cycle of escherichia coli b/r. J Mol Biol 1968, 31, 519-540.
- Norris, V. Science and prizes : A case for rethinking the criteria for prizes in science (and for rewarding important discoveries in bacterial physiology). EMBO Rep 2024, 25, 944-947.
- Norris, V.; Amar, P.; Bernot, G.; Delaune, A.; Dérue, C.; Cabin-Flaman, A.; Demarty, M.; Grondin, Y.; Legent, G.; Monnier, C., et al. Questions for cell cyclists. Journal of Biological Physics and Chemistry 2004, 4, 124-130.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
