Altmetrics
Downloads
133
Views
78
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
01 August 2024
Posted:
06 August 2024
You are already at the latest version
Model | Fold | Train Accuracy | Train Loss | Val Accuracy | Val Loss | Jaccard Index | AUC | Specificity | Sensitivity |
---|---|---|---|---|---|---|---|---|---|
Resnet34 | 1 | 98.7508 | 0.0331 | 93.6131 | 0.2175 | 0.7447 | 0.9719 | 0.9604 | 0.8494 |
2 | 97.8192 | 0.0604 | 93.7206 | 0.2092 | 0.7472 | 0.9717 | 0.9638 | 0.8427 | |
3 | 98.8546 | 0.0329 | 93.8111 | 0.2210 | 0.7384 | 0.9760 | 0.9699 | 0.8204 | |
4 | 97.7773 | 0.0596 | 93.8226 | 0.1724 | 0.7466 | 0.9777 | 0.9625 | 0.8491 | |
5 | 98.1767 | 0.0487 | 93.7910 | 0.2399 | 0.7640 | 0.9754 | 0.9518 | 0.8900 | |
ResNet50 | 1 | 98.4818 | 0.0409 | 93.7408 | 0.1936 | 0.8763 | 0.8979 | 0.9682 | 0.8277 |
2 | 96.2419 | 0.0958 | 94.2439 | 0.1880 | 0.8860 | 0.9069 | 0.9703 | 0.8435 | |
3 | 98.4410 | 0.0413 | 93.4971 | 0.2024 | 0.8742 | 0.9042 | 0.9577 | 0.8508 | |
4 | 97.0654 | 0.0769 | 92.7688 | 0.2016 | 0.8601 | 0.9071 | 0.9431 | 0.8711 | |
5 | 93.5411 | 0.1673 | 93.8459 | 0.1869 | 0.8772 | 0.9064 | 0.9648 | 0.8480 | |
VitNet | 1 | 83.6243 | 0.3631 | 83.7591 | 0.3555 | 0.6945 | 0.7132 | 0.9347 | 0.4916 |
2 | 82.9835 | 0.3816 | 84.2836 | 0.3490 | 0.6969 | 0.7076 | 0.9493 | 0.4660 | |
3 | 78.4974 | 0.4755 | 78.8656 | 0.4560 | 0.5946 | 0.5054 | 0.9988 | 0.0121 | |
4 | 82.5612 | 0.3898 | 84.2841 | 0.3505 | 0.6986 | 0.7015 | 0.9488 | 0.4542 | |
5 | 78.3217 | 0.5231 | 77.4105 | 0.5353 | 0.5674 | 0.5 | 1 | 0 | |
VggNet | 1 | 98.7371 | 0.0366 | 93.7591 | 0.2579 | 0.8763 | 0.9746 | 0.9747 | 0.8053 |
2 | 96.2693 | 0.0969 | 94.3341 | 0.1785 | 0.8868 | 0.9757 | 0.9738 | 0.8353 | |
3 | 98.5683 | 0.0417 | 93.9220 | 0.2120 | 0.8763 | 0.9751 | 0.9720 | 0.8178 | |
4 | 94.3224 | 0.1519 | 93.7681 | 0.1621 | 0.8756 | 0.9733 | 0.9685 | 0.8245 | |
5 | 98.3636 | 0.0487 | 93.7910 | 0.2329 | 0.8768 | 0.9724 | 0.9693 | 0.8302 | |
EfficientNet | 1 | 74.9474 | 0.5035 | 75.4057 | 0.5142 | 0.6094 | 0.7478 | 0.7172 | 0.7784 |
2 | 82.4435 | 0.3866 | 83.0474 | 0.3685 | 0.6829 | 0.6726 | 0.9421 | 0.4030 | |
3 | 81.0359 | 0.4139 | 82.3709 | 0.3855 | 0.6704 | 0.6346 | 0.9463 | 0.3229 | |
4 | 82.3379 | 0.3879 | 84.2231 | 0.3531 | 0.6975 | 0.6725 | 0.9419 | 0.4030 | |
5 | 82.6571 | 0.3805 | 83.5210 | 0.3651 | 0.6944 | 0.6816 | 0.9401 | 0.4232 | |
Ensemble | 1 | 98.3587 | 0.0436 | 99.3430 | 0.0252 | 0.9867 | 0.9904 | 0.9957 | 0.9850 |
2 | 98.5187 | 0.0410 | 99.2421 | 0.0211 | 0.9839 | 0.9875 | 0.9962 | 0.9787 | |
3 | 98.6001 | 0.0384 | 99.2056 | 0.0237 | 0.9836 | 0.9898 | 0.9936 | 0.9861 | |
4 | 97.9234 | 0.0627 | 97.8197 | 0.0651 | 0.9562 | 0.9642 | 0.9886 | 0.9398 | |
5 | 98.5642 | 0.0390 | 99.0869 | 0.0221 | 0.9823 | 0.9866 | 0.9943 | 0.9789 |
Model | Fold | Train Accuracy | Train Loss | Val Accuracy | Val Loss | Jaccard Index | AUC | Specificity | Sensitivity |
---|---|---|---|---|---|---|---|---|---|
Resnet34 | 1 | 98.8627 | 0.0327 | 96.8167 | 0.1097 | 0.8347 | 0.9879 | 0.9812 | 0.9075 |
2 | 99.2847 | 0.0187 | 97.0297 | 0.1327 | 0.8444 | 0.9815 | 0.9884 | 0.8884 | |
3 | 98.9145 | 0.0336 | 96.9364 | 0.1025 | 0.8392 | 0.9907 | 0.9901 | 0.8762 | |
4 | 99.1640 | 0.0234 | 96.4475 | 0.1208 | 0.8175 | 0.9879 | 0.9836 | 0.8778 | |
5 | 99.2957 | 0.0214 | 96.6893 | 0.1074 | 0.8149 | 0.9897 | 0.9877 | 0.8642 | |
ResNet50 | 1 | 99.5552 | 0.0125 | 96.7257 | 0.1120 | 0.9316 | 0.9518 | 0.9756 | 0.9281 |
2 | 99.2449 | 0.0213 | 96.9856 | 0.1156 | 0.9372 | 0.9254 | 0.9951 | 0.8557 | |
3 | 99.7229 | 0.0089 | 97.0930 | 0.1198 | 0.9388 | 0.9493 | 0.9833 | 0.9154 | |
4 | 99.5007 | 0.0142 | 96.8166 | 0.1253 | 0.9339 | 0.9379 | 0.9853 | 0.8905 | |
5 | 99.5042 | 0.0147 | 97.0748 | 0.0995 | 0.9379 | 0.9406 | 0.9860 | 0.8951 | |
VitNet | 1 | 86.6963 | 0.3109 | 87.4715 | 0.2875 | 0.7518 | 0.7395 | 0.9488 | 0.5301 |
2 | 84.6948 | 0.3495 | 86.1826 | 0.3185 | 0.7254 | 0.7123 | 0.9470 | 0.4775 | |
3 | 82.2817 | 0.4486 | 81.7531 | 0.4287 | 0.6310 | 0.5 | 1 | 0 | |
4 | 85.7447 | 0.3298 | 87.9123 | 0.2929 | 0.7581 | 0.7607 | 0.9464 | 0.5750 | |
5 | 84.2084 | 0.3465 | 86.3265 | 0.3085 | 0.7231 | 0.6767 | 0.9582 | 0.3951 | |
VggNet | 1 | 76.6185 | 0.4764 | 75.6162 | 0.5053 | 0.6152 | 0.7657 | 0.7776 | 0.7538 |
2 | 88.3740 | 0.2758 | 89.1768 | 0.2611 | 0.7889 | 0.7476 | 0.9592 | 0.5361 | |
3 | 88.1351 | 0.2822 | 88.3388 | 0.2732 | 0.7756 | 0.7372 | 0.9605 | 0.5139 | |
4 | 86.6576 | 0.3140 | 88.2826 | 0.2813 | 0.7673 | 0.6979 | 0.9591 | 0.4368 | |
5 | 88.3702 | 0.2745 | 88.4198 | 0.2781 | 0.7779 | 0.7460 | 0.9594 | 0.5325 | |
EfficientNet | 1 | 99.1949 | 0.0265 | 96.8167 | 0.1372 | 0.9340 | 0.9878 | 0.9867 | 0.8818 |
2 | 99.8978 | 0.0054 | 96.9416 | 0.1716 | 0.9363 | 0.9886 | 0.9873 | 0.8884 | |
3 | 98.4339 | 0.0464 | 97.1824 | 0.1130 | 0.9403 | 0.9883 | 0.9901 | 0.8897 | |
4 | 96.4544 | 0.1011 | 96.0322 | 0.1098 | 0.9176 | 0.9860 | 0.9757 | 0.8905 | |
5 | 99.8366 | 0.0061 | 96.9614 | 0.1410 | 0.9338 | 0.9902 | 0.98363 | 0.9005 | |
Ensemble | 1 | 97.2581 | 0.0728 | 97.6125 | 0.0646 | 0.9501 | 0.9593 | 0.9853 | 0.9332 |
2 | 97.7973 | 0.0622 | 98.1738 | 0.0533 | 0.9627 | 0.9647 | 0.9913 | 0.9381 | |
3 | 97.7894 | 0.0603 | 97.8756 | 0.0618 | 0.9531 | 0.9636 | 0.9874 | 0.9399 | |
4 | 97.8457 | 0.0625 | 97.5778 | 0.0685 | 0.9486 | 0.9549 | 0.9876 | 0.9223 | |
5 | 98.9735 | 0.0316 | 99.4250 | 0.0226 | 0.9872 | 0.9895 | 0.9965 | 0.9826 |
Model | Fold | Train Accuracy | Train Loss | Val Accuracy | Val Loss | Jaccard Index | AUC | Specificity | Sensitivity |
---|---|---|---|---|---|---|---|---|---|
Resnet34 | 1 | 99.6311 | 0.0132 | 97.9807 | 0.0648 | 0.8949 | 0.9961 | 0.9887 | 0.9398 |
2 | 99.5496 | 0.0148 | 98.1776 | 0.0656 | 0.9022 | 0.9913 | 0.9922 | 0.9341 | |
3 | 99.7337 | 0.0083 | 98.1038 | 0.0535 | 0.8928 | 0.9976 | 0.9912 | 0.9308 | |
4 | 97.1184 | 0.0896 | 97.2005 | 0.0821 | 0.8665 | 0.9931 | 0.9806 | 0.9361 | |
5 | 99.5437 | 0.0213 | 98.4187 | 0.0738 | 0.9105 | 0.9929 | 0.9862 | 0.9739 | |
ResNet50 | 1 | 99.3660 | 0.0288 | 98.4396 | 0.0579 | 0.9678 | 0.9739 | 0.9904 | 0.9573 |
2 | 99.5842 | 0.0170 | 98.3143 | 0.0592 | 0.9628 | 0.9719 | 0.9894 | 0.9544 | |
3 | 99.8263 | 0.0066 | 98.1038 | 0.0776 | 0.9599 | 0.9684 | 0.9874 | 0.9494 | |
4 | 99.9538 | 0.0018 | 97.9348 | 0.0743 | 0.9574 | 0.9620 | 0.9903 | 0.9338 | |
5 | 99.7718 | 0.0112 | 98.3708 | 0.0625 | 0.9648 | 0.9832 | 0.9839 | 0.9826 | |
VitNet | 1 | 82.2614 | 0.4526 | 81.6888 | 0.4532 | 0.6295 | 0.5 | 1 | 0 |
2 | 84.4919 | 0.3426 | 86.2870 | 0.3141 | 0.7307 | 0.6980 | 0.9555 | 0.4405 | |
3 | 81.9212 | 0.4638 | 83.0248 | 0.4527 | 0.6543 | 0.5 | 1 | 0 | |
4 | 84.3706 | 0.3502 | 84.6718 | 0.3393 | 0.6977 | 0.6841 | 0.9498 | 0.4184 | |
5 | 82.0483 | 0.3951 | 86.3919 | 0.3069 | 0.7274 | 0.6337 | 0.9776 | 0.2898 | |
VggNet | 1 | 77.3246 | 0.4784 | 76.5826 | 0.4820 | 0.6291 | 0.7732 | 0.7643 | 0.7822 |
2 | 90.0875 | 0.2296 | 93.0702 | 0.1838 | 0.8607 | 0.7924 | 0.9604 | 0.6244 | |
3 | 91.0623 | 0.2155 | 92.8018 | 0.1911 | 0.8572 | 0.8139 | 0.9641 | 0.6636 | |
4 | 91.0069 | 0.2178 | 93.0925 | 0.1655 | 0.8589 | 0.8168 | 0.9628 | 0.6709 | |
5 | 91.4476 | 0.2077 | 92.0146 | 0.1945 | 0.8444 | 0.8186 | 0.9659 | 0.6712 | |
EfficientNet | 1 | 99.9769 | 0.0014 | 98.2101 | 0.1121 | 0.9623 | 0.9946 | 0.9915 | 0.9398 |
2 | 99.6882 | 0.0098 | 97.9498 | 0.0795 | 0.9584 | 0.9944 | 0.9952 | 0.9088 | |
3 | 98.8773 | 0.0347 | 97.9683 | 0.0896 | 0.9579 | 0.9921 | 0.9934 | 0.9122 | |
4 | 99.2738 | 0.0244 | 97.2005 | 0.0940 | 0.9464 | 0.9912 | 0.9834 | 0.9243 | |
5 | 99.6692 | 0.0091 | 98.1312 | 0.0814 | 0.9586 | 0.9948 | 0.9896 | 0.9391 | |
Ensemble | 1 | 98.4785 | 0.0412 | 98.8067 | 0.0313 | 0.9751 | 0.9829 | 0.9910 | 0.9749 |
2 | 99.0877 | 0.0268 | 98.9066 | 0.0325 | 0.9753 | 0.9775 | 0.9955 | 0.9594 | |
3 | 99.1203 | 0.0298 | 99.1873 | 0.0260 | 0.9830 | 0.9866 | 0.9945 | 0.9787 | |
4 | 99.4813 | 0.0150 | 99.7246 | 0.0079 | 0.9942 | 0.9964 | 0.9977 | 0.9952 | |
5 | 98.9165 | 0.0319 | 99.3291 | 0.0245 | 0.9836 | 0.9901 | 0.9948 | 0.9855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated