Preprint
Article

The Metallogenic Chronology and Prospecting Indication of Tiechanghe Granite and Molybdenum Polymetal in Jiulong Area, West Sichuan, China

Altmetrics

Downloads

86

Views

19

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 August 2024

Posted:

07 August 2024

You are already at the latest version

Alerts
Abstract
The Songpan-Ganze Orogenic Belt (SGOB) is bounded by the South China, North China, and Qiang-tang blocks and forms the eastern margin of the Tibetan Plateau. The Tiechanghe granite is located at the junction of the southeast margin of the SGOB and the western margin of the Yangtze Block. To elucidate the genetic relationship between the Tiechanghe granite and the surrounding molybdenum deposits in Western Sichuan, in this study, we conducted U-Pb zircon and molybdenite Re-Os isotopic dating. The results indicate that the Tiechanghe granite predominantly consists of monzogranite, with minor occur-rences of syenogranite, while the molybdenum deposits are mainly found in skarn and quartz veins. The laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon ages of the Tiechanghe granite range from 162.9±0.7 Ma to 163.4±0.6 Ma, and the zircon LA-ICP-MS U-Pb age of the pegmatite veins is 164.1±0.9 Ma. These ages are consistent with the weighted average Re-Os age of the Ziershi molybdenite (160.3±1.6 Ma) within the error margins. These findings and previously ob-tained magmatic and metallogenic ages for the region suggest that a magmatic and mineralization event involving granite, molybdenum, tungsten, and copper occurred at around 162–164 Ma in the study area. This discovery broadens the exploration perspective for mineral resources in the Jiulong area of Western Sichuan and the entirety of Western Sichuan.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geochemistry and Petrology

1. Introduction

Granite, broadly referred to as granitic rocks, is a crucial component of continental crustal rocks. It plays a significant role in studying the formation and evolution of the continental crust and holds substantial scientific significance in research on the genesis of endogenous metal deposits. Additionally, granite possesses strategic value for national economic development [1,2,3,4,5]. In the western Sichuan region, Indosinian to Yanshanian granites are distributed in areas such as Eastern Tibet Jiangda, Yidun Island Arc Belt, Kangding Songlinkou-Tagong, Maerkang, and Jiulong Fangmaping-Sanyanlong, and they have U-Pb zircon ages ranging from 225 to 205 Ma. These granites are primarily S-type, with minor occurrences of I-type granites [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]. The Early Yanshanian (166–150 Ma) granites are only exposed in the Jiulong area in regions such as Tiechanghe, Xinhuoshan, Qiaopengzi-Landiao, and Huajiaoping granite [28,29,30,31,32,33,34,35,36,37,38,39]. Recent studies in the Danba area have reported magmatic and metallogenic ages of 153–177 Ma, which are considered to be metamorphic ages [40,41]. It is speculated that magmatic activity during the Yanshanian period may have occurred at the junction of the eastern margin of the Songpan-Ganzi Block and the western margin of the Yangtze Block, and such rocks are currently exposed only in the Jiulong area. These findings provide an opportunity to study the tectonic evolution of the Songpan-Ganzi Block during the Yanshanian. The Jiulong area in western Sichuan is rich in mineral resources related to Yanshanian granites, including rare metals (Li and Be), tungsten, and molybdenum. Representative deposits include the Daqiangou Li-Be deposit, the Daniuchang tungsten-molybdenum deposit, and the Ziershi copper-molybdenum deposit. Through laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon dating of the Tiechanghe granite and Re-Os dating of molybdenite, in this study, we precisely determined the magmatic and metallogenic ages of the Ziershi Cu-Mo deposit. We explored the genesis of the deposit and summarized the metallogenic patterns, providing significant insights for guiding mineral exploration in the Jiulong area in western Sichuan.

2. Regional Geological Background

The Jiulong area in western Sichuan is located in the southern part of the Songpan-Ganzi orogenic belt and is bordered by the Ganzi-Litang fault zone to the west and the Longmenshan-Jinpingshan orogenic belt to the east (Figure 1a,b). The Xianshuihe fault is located to the north-northeast, and the Muli-Yanyuan arcuate structural belt is located to the south. The Triassic Xikang Group strata are extensively exposed in the study area [42,43], primarily including schist and slate. The Ordovician-Carboniferous strata are only exposed in the southern part of the study area, including schist, metagraywacke, and quartzite. The western part of the study area includes the Yulongxi fault zone, which is northeast-southwest trending and is connected to the Ganzi-Litang fault zone in the west and aligned with the long axis of the magmatic body. The central part is characterized by north-south trending faults, the eastern part by the Qingna fault zone, and the southern part by detachment faults within the dome structure (Figure 1b). Additionally, the area exhibits a complex fold structure with a continuous distribution of anticlines and synclines.
Controlled by tectonics, the Jiulong area experienced two periods of granite intrusion: the Indosinian period (220–205 Ma) and the Yanshanian period (165–160 Ma) (Figure 2). The Indosinian granites (220–205 Ma) include the Lanniba, Yangfanggou, Sanyanlong-Fangmaping, Galazi, and Dichishan granites [17,25,38,39,44,45]. The Yanshanian granites (165–150 Ma) include the Xinhuaoshan (also known as Wenjiaping), Tiechanghe (also known as Wulaxi), and Qiaopengzi-Landiao granites [24,26,28,29,30,31,32,33,34,35,36]. The early metamorphism in this region was primarily regional metamorphism (low greenschist facies), which was followed by contact metasomatism around the granites. Only the Jianglang and Taka domes exhibit high greenschist to low amphibolite facies metamorphism [34].
Moreover, this region contains copper-zinc, lithium-beryllium, lead-zinc, and tungsten-molybdenum deposits [34,35,46,47,48,49,50]. Except for the Liwu copper-zinc deposit, which has two mineralization ages (343 Ma and 153–151 Ma) [48,49], the ages of the other deposit are constrained within 166–150 Ma and 180–200 Ma [24,25,26,34,35]. In summary, the Jiulong area in western Sichuan is rich in Cu-Pb-Zn-W-Mo and rare metal deposits, and the mineralization ages are concentrated in the Indosinian and Yanshanian periods [24].
The Tiechanghe pluton (also known as the Wulaxi pluton) is located at the confluence of the Tiechanghe and Jiulonghe rivers. This pluton exhibits intrusive contact with the surrounding rocks and steep outward dipping contact interfaces. The surrounding rocks are Middle Triassic Zagashan Formation metamorphosed sandstone, as well as slate interbedded with marble, and the periphery includes a thermal contact metamorphic zone that varies from 50 to 100 m in size. Altered rocks include actinolite-diopside-albite rock, biotite-quartz hornfels, hornfelsed sandstone, mica schist, and skarn. Two sets of joints are developed within the pluton: one set trends 310–330°∠50–60°, and the other set trends 55–70°∠65–75°, with straight joint surfaces and no mineral filling observed. Pegmatite veins of varying scales are distributed within the pluton. The Tiechanghe pluton is composed of syenogranite and monzogranite. The central part consists of medium-grained monzogranite, transitioning outward to medium-grained syenogranite and fine-grained syenogranite.

3. Deposit Geology

Molybdenum occurrences have been discovered around the Tiechanghe pluton, including the Wulaxi Daniuchang Mo-W deposit and the Ziershi Cu-Mo deposit.

3.1. Daniuchang Mo-W Deposit

The stratigraphy of the deposit area belongs to the Zagashan Formation (Triassic Xikang Group), primarily composed of metamorphosed sandstone, slate, and interbedded marble. The structural setting of the deposit is simple, with only a few gentle small-scale folds observed. The area underwent regional metamorphism in its early stages, followed by thermal contact metamorphism due to the intrusion of the granite pluton, including hornfels, skarn, schist, and marble. These rocks are generally gray-green and exhibit granular metamorphic textures and massive or banded structures. The main minerals present are grossular, andradite, diopside, hedenbergite, and vesuvianite, minor minerals such as epidote, clinozoisite, tremolite, mica, calcite, tourmaline, fluorite, and metallic minerals, including hematite, sphalerite, and pyrrhotite.
Four ore bodies have been identified in this deposit, which are primarily hosted in skarn and quartz veins and exhibit stratiform, stratiform-like, and lenticular morphologies. Ore bodies I-III are located in the central part of the deposit and are the largest skarn belt in the area, with an exposed length of approximately 1000 m and a width of more than 10 m. The general orientation of the ore body is 120°∠8°, and it exhibits stratiform and lenticular occurrences within the layered skarn, which is consistent with the skarn’s orientation. The mineralization features scheelite disseminated within the skarn. The lithology is mainly composed of diopside skarn and diopside-clinozoisite skarn, and the surrounding rocks are schist, phyllite, and marble. The grade of the scheelite ore bodies ranges from 0.07% to 0.52% (average of 0.22%), and it has a total thickness of 6.37 m. Ore body IV features an upper quartz vein-type molybdenite ore body and a lower skarn-type molybdenite ore body. The exposed surface has a width of 2–3 m, and it exhibits stratiform, stratiform-like, and lenticular morphologies. The ore body generally trends east-west with an orientation of 131°∠10°, its thickness ranges from 2.45 to 7.28 m, and the molybdenite ore grades range from 0.14% to 0.27% (average of 0.17%). The alteration of the wall rocks includes skarnification and silicification, and the main mineral assemblages include diopside + tremolite + hornblende, clinozoisite + tremolite + secondary amphibole + calcite, and biotite + chlorite + epidote + vesuvianite. The main ore minerals are scheelite and molybdenite, and the gangue minerals include calcite, biotite, chlorite, and epidote. Seven molybdenite samples from the deposit yielded an Re-Os weighted average age of 166.8 ± 1.7 Ma (mean squared weighted deviation (MSWD) = 0.90), which is consistent within error margins with the magmatic age of the Tiechanghe granite (166.0 ± 0.9 Ma). This indicates that the magmatism and mineralization occurred during the early Yanshanian [35].

3.2. Ziershi Molybdenum Deposit

The Ziershi molybdenum deposit is a newly discovered deposit located approximately 2 km north of the Tiechanghe pluton in Wulaxi Township in the Jiulong region. The southern part of the mining area is dominated by the exposure of the Tiechanghe monzogranite. The ore-hosting wall rock belongs to the Lower Triassic Bozigou Formation, primarily including gray to dark-gray biotite-hornblende schist. The mining area covers approximately 6 km2, is distributed in patches, and exhibits sporadic iron staining and hydroxyl-type anomalies. These anomalies are mainly caused by ferruginous and carbonate alterations of the strata, suggesting the influence of granite veins or concealed plutons and indicating that they are mineralization-related anomalies. The Ziershi copper-molybdenum deposit is mainly quartz vein type. Only one ore body has been identified in the mining area, which exhibits stratiform, stratiform-like, and lenticular occurrences. The ore body has an exposed length of about 300 m, a width of 1–3 m, and a trend of 310°. The surface of the quartz vein contains abundant malachite, spotty chalcopyrite, and cluster-like or flaky molybdenite (Figure 3), with strong limonitization. The general orientation of the ore body is 24°∠65°, which is consistent with that of the surrounding rock. The surrounding rock is grayish-white with a slightly greenish tint and exhibits granular metamorphic textures and massive to banded structures. The main mineral is molybdenite, and minor metallic minerals such as pyrrhotite, pyrite, and arsenopyrite are also present and are distributed in a spotted pattern. The gangue minerals include calcite, biotite, chlorite, and epidote. Geochemical analysis of five samples has revealed that it has tungsten (W) contents of 4.85–10.1 ppm, molybdenum (Mo) contents of 0.67%–1.59%, copper (Cu) contents of 0.39%–1.00%, lead (Pb) contents of 19.4–758 ppm, and zinc (Zn) contents of 123–196 ppm.

4. Sample Collection and Analytical Methods

4.1. Sample Collection and Description

The sampling locations and characteristics of the two molybdenite samples are shown in Figure 2. The main ore mineral in the deposit is molybdenite, minor associated minerals such as chalcocite, malachite, and chalcopyrite are also present, and the gangue main mineral is quartz. Molybdenite occurs in disseminated, flaky, and clustered forms on the surface of the quartz veins. It exhibits a flaky, bundled, and platy appearance, and there is local enrichment of molybdenite particles.
Sample T20200521-01 is a monzogranite (Figure 4a,b). It is grayish-white and has a fine-medium grained granitic texture and a massive structure. The rock is composed of plagioclase (25–40%), potassium feldspar (28–40%), quartz (25–32%), and biotite (3–7%), with minor titanite and hornblende. Sample T20200521-02 is a granitic pegmatite (Figure 4a), with grain sizes of 5–15 mm. Its primary mineral composition includes potassium feldspar (20%), plagioclase (40%), quartz (20%), biotite (5%), and muscovite (15%). Samples T20200521-03 and T20200521-04 are syenogranites (Figure 4b,d), which have a light gray color, fine-to-medium grained texture, and a massive structure. These rocks consist of plagioclase (10–12%), potassium feldspar (55%), quartz (25%), biotite (7%), and muscovite (1–3%). The plagioclase is primarily microcline, and under a microscope, albite and pericline twinning can be observed.

4.2. Analytical Methods

4.2.1. Zircon U-Pb Geochronology

Zircon grains were separated using standard heavy liquid and magnetic techniques, mounted in epoxy, and polished to expose the centers of the zircon grains. Cathodoluminescence (CL) images of the zircon grains were obtained, and the electron microprobe (JEOL JXA-8900RL) at Northwest University of China was used to examine the internal structures of the zircons. The U–Pb zircon dating was conducted via LA-MC-ICP-MS at the State Key Laboratory of the Continental Dynamics, Northwest University. The operating conditions for the laser ablation system and the multicoupled (MC)-ICP-MS instrument, as well as the data reduction, have been descried by Yuan et al. (2004) [51].
The laser ablation spot size was approximately 32 μm. The 207Pb/206Pb, 206Pb/238U, 237Pb/235U, and 208Pb/232Th ratios were calculated using GLITTER 4.0 (Macquarie University) and then were corrected using Harvard zircon 91500 as an external standard, which has a recommended 206 Pb/ 238U isotopic age of 1065.4 ± 0.6 Ma [52]. GJ-1 was also used as a standard sample, which has a recommended 206Pb/ 238U isotopic age of 603.2 ± 2.4 Ma. The details of the analytical techniques have been described by Yuan et al. (2004) [51]. The age calculations and plotting of the concordia diagrams were conducted using ISOPLOT (version 4.15) [53]. The uncertainties are quoted at the 2σ level.

4.2.2. Molybdenite Re-Os Isotope Dating

The samples were crushed, separated, and purified to obtain molybdenite with a purity >99%. Molybdenite Re-Os isotope analyses were carried out at the Re-Os Laboratory, National Research Center of Geoanalysis, Chinese Academy of Geological Sciences (CAGS, Beijing). The isotopic ratios of the molybdenite samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS). Specifically, a JA X-series ICP-MS from TJA Inc was used. All of the molybdenite separated was prepared and analyzed using the procedures described by Du et al. (2004) [54].

5. Results

5.1. Zircon U-Pb Ages

In this study, we selected zircons from four samples (T20200521-01, T20200521-02, T20200521-03, and T20200521-04) of granite-pegmatite for U-Pb zircon isotopic measurement. The data are presented in Table 1, Figure 5 and Figure 6.
For sample T20200521-01, the zircons selected from the quartz monzonite are colorless and transparent, stubby to elongate prisms (120–300 μm long) with aspect ratios of 1:1–3:1 (Figure 5). In the CL images, most of the zircons exhibit well-defined oscillatory zoning, indicating a magmatic origin, and several zircons exhibit light cores, indicating that they are wall-rock xenocrysts or are inherited (Figure 5). Thirty spots were analyzed, and spots 3, 11, 13, and 30 have 206 Pb/ 238 U ages of 762 ± 7, 1022 ± 9, 571 ± 5, and 420 ± 4 Ma, respectively, which are the ages of the xenocrysts or zircons inherited from the surrounding strata (Table 1). The other 26 spots have concordant 206 Pb/ 238 U ages of 164–158 Ma, with a weighted mean age of 162.9 ± 0.7 Ma (MSWD = 0.31, n = 26), representing the peak crystallization age of the quartz monzonite. The age of 164 Ma is the starting crystallization time of magma, and the age of 158 Ma is the terminal crystallization time of magma. These zircons have variable Th contents of 69–574 ppm, U contents of 141–2199 ppm, and Th/U ratios of 0.05–1.09. Spot analyses of different zircon domains revealed that there is a significant difference in the rare earth element (REE) patterns (Figure 7). The spots on 26 zircons used in the age calculations exhibited HREE (158–1638 ppm) enrichment patterns and strongly negative Eu (Eu/Eu* = 0.03–0.32) and positive Ce (Ce/Ce* = 1.32–101) anomalies. The zircon Ti thermometer [55] yielded temperatures of 632 °C–784 °C (average 690 °C). The CL images and REE contents of the zircons confirm that the age of 162.9 ± 0.7 Ma represents the crystallization age of the quartz monzonite.
For sample T20200521-02, the zircons selected from the granite pegmatite are colorless and transparent, stubby to elongate prisms (140–340 μm long), with aspect ratios of 1:1–2:1 (Figure 5). In the CL images, most of the zircons exhibit well-defined oscillatory zoning, indicating that they have a magmatic origin, and several zircons exhibit light cores, are black, and have an irregular shape, indicating that they are wall-rock xenocrysts or are inherited and have experienced Pb loss (Figure 5). Thirty spots were analyzed, excluding six zircons with concordances <90% and one captured zircon (Table 1). Spots 8, 12, 21, and 22 have 206 Pb/ 238 U ages of 114 ± 1, 141 ± 1, 130 ± 1, and 132 ± 1 Ma, respectively, which represent the ages of tectonic thermal events (Table 1). The other 19 spots have concordant 206 Pb/238 U ages of 160–166 Ma, with a weighted mean age of 164.1 ± 0.9 Ma (MSWD = 1.3, n = 19), indicating that they represent the peak crystallization age of the granite pegmatite. The age of 166 Ma is the starting crystallization time of the magma, and the age of 160 Ma is the terminal crystallization time of the magma. These zircons have variable Th contents of 22–1154 ppm, U contents of 997–30496 ppm, and Th/U ratios of 0.01–0.06. The spot analyses on different zircon domains yielded significantly different REE patterns (Figure 7). The spots on 19 zircons included in the age calculations have HREE (300–11077 ppm) enrichment patterns and strongly negative Eu (Eu/Eu* = 0.06–0.76) and positive Ce (Ce/Ce* = 0.57–1.50) anomalies. The zircon Ti thermometer [55] yielded temperatures ranging from 578 °C to 838 °C (average of 681 °C). The CL images and REE contents of the zircons confirm that the age of 164.1 ± 0.9 Ma represents the crystallization age of the quartz monzonite. This age is consistent with the crystallization age of the monzogranite within the error range.
For sample T20200521-03, the zircons selected from the syenogranite are colorless, transparent, stubby to elongate prisms (140–300 μm long) with aspect ratios of 1:1–2:1 (Figure 5). In the CL images, most of the zircons exhibit well-defined oscillatory zoning, indicating that they have a magmatic origin, and several zircons have light cores, indicating that they are wall-rock xenocrysts or are inherited (Figure 5). Thirty spots were analyzed, and spots 14, 19, and 25 yielded 206 Pb/238 U ages of 191 ± 2, 177 ± 2, and 739 ± 7 Ma, respectively, and they represent the ages of the xenocrysts or inherited zircons from surrounding strata (Table 1). The other 26 spots have concordant 206 Pb/238 U ages of 166–160 Ma, with a weighted mean age of 163.4 ± 0.6 Ma (MSWD = 0.68, n = 26), and they represent the peak crystallization age of the syenogranite. The age of 166 Ma is the starting crystallization time of the magma, and the age of 160 Ma is the terminal crystallization time of the magma. These zircons have variable Th contents of 68–314 ppm, U contents of 175–1139 ppm, and Th/U ratios of 0.10–0.95. Spot analyses on different zircon domains revealed that they have significantly different REE patterns (Figure 7). The spots from 26 zircons involved in the age calculations have HREE (184–881 ppm) enrichment patterns and strong negative Eu (Eu/Eu* = 0.08–0.27) and positive Ce (Ce/Ce* = 1.49–34.87) anomalies. The zircon Ti thermometer [55] yielded temperatures ranging from 648 °C to 810 °C (average 714 °C). The CL images and REE contents of the zircons confirm that the age of 163.4 ± 0.6 Ma represents the crystallization age of the syenogranite.
For sample T20200521-04, the zircons selected from the syenogranite are colorless, transparent, stubby to elongate prisms (120–300 μm long), with aspect ratios of 1:1–3:1 (Figure 5). In the CL images, most of the zircons exhibit well-defined oscillatory zoning, indicating a magmatic origin, and several zircons have light cores, indicating that they are wall-rock xenocrysts or inherited zircons (Figure 5). Thirty spots were analyzed, and spot 3 had a 206 Pb/238 U age of 148 ± 2 Ma, which is the age of a tectonic-thermal event (Table 1). The other 29 spots yielded concordant 206 Pb/238 U ages of 161–170 Ma, with a weighted mean age of 163.2± 0.6 Ma (MSWD = 0.68, n = 29), representing the peak crystallization age of the syenogranite. The age of 170 Ma is the starting crystallization time of the magma, and the age of 161 Ma is the terminal crystallization time of the magma. These zircons have variable Th contents of 22–610 ppm, U contents of 129–2728 ppm, and Th/U ratios of 0.03–1.08. Spot analyses on different zircon domains yielded significantly different REE patterns (Figure 7). The spots from 29 zircons involved in the age calculations exhibited HREE (132–1408 ppm) enrichment patterns with strong negative Eu (Eu/Eu* = 0.04–0.29) and positive Ce (Ce/Ce* = 3.63–33.07) anomalies. The zircon Ti thermometer [55] yielded temperatures ranging from 614 °C to 768 °C (average 700 °C). The CL images and contents of the zircons confirm that the age of 163.2 ± 0.6 Ma represents the crystallization age of the syenogranite.

5.2. Re-Os Isotope Dating of Molybdenite

Re-Os data for two samples are presented in Table 2. The samples have moderate Re and Os concentrations (187Re concentration of 3.97–7.72 ppm, and 187Os concentration of 10.67–20.52 ppb) and model ages ranging from 161.1 ± 2.2 Ma to 159.4 ± 2.5 Ma, with an average of 160.3 ± 1.6 Ma (MSWD = 1.05).

6. Discussion

6.1. Implications of Zircon U-Pb and Molybdenite Re-Os Ages

Accurate dating of mineral deposits is fundamental for developing deposit models and interpreting the geodynamic background of the mineralization. It is crucial for understanding the formation processes of deposits, determining their genesis, exploring the coupling relationships between mineralization events and other geological events, and establishing mineralization and exploration models [56,57]. The reported crystallization ages of granitoids in the Songpan-Ganzi region predominantly range from 220 to 205 Ma, and most are I-type and S-type granitoids [13,14,15,16,17,20,21,22]. Only the Nianbaoyuze area has been reported to contain A-type granitoids [7]. A smaller group of granitoids have ages ranging from 165 to 150 Ma [31,32,33,34]. In the Jiulong area, the granitoids are primarily clustered into two age groups: 170–150 Ma and 220–200 Ma (Table 4), indicating that this region experienced two distinct magmatic events.
Table 3. Re-Os isotope data for molybdenite from the Ziershi W-Mo deposit in Jiulong region.
Table 3. Re-Os isotope data for molybdenite from the Ziershi W-Mo deposit in Jiulong region.
Sample Weight (g) Re (ppm) Os (ppm) 187Re (ppb) 187Os (ppb) Model age (Ma)
Z01 0.02 6.32 0.04 0.048 0.021 3.97 0.027 10.67 0.07 161.1 2.2
Z02 0.05 12.28 0.12 0.080 0.009 7.716 0.072 20.52 0.16 159.4 2.5
The 220–200 Ma ages of the granitoids indicate that their formation was related to the magmatic activity triggered by the westward subduction and collision of the Ganzi-Litang Ocean during the Indosinian. This is consistent with previous studies that have suggested that the peak age of the closure of the Ganzi-Litang Ocean and the associated magmatic activity is around 216 Ma [55,56]. The 170–150 Ma granitoids reflect the Early Yanshanian magmatic events or tectonic thermal events in the Jiulong area, and their formation was related to post-collision extensional processes. Notably, this period also marks the stabilization of the neighboring Jianglang Dome [30,34].
The LA-ICP-MS U-Pb zircon ages of the Tiechanghe granite studied in this paper range from 162.9 ± 0.7 Ma to 163.4 ± 0.6 Ma. These results are consistent with previously reported zircon U-Pb ages for this region and represent the crystallization age of the Tiechanghe granite. The weighted average Re-Os age of the molybdenite is 160.3 ± 1.6 Ma, which is also consistent with earlier reported Re-Os isotope ages for this region, indicating that this is the molybdenum mineralization age in the Jiulong area. Additionally, the LA-ICP-MS U-Pb zircon ages of the granitic pegmatites (114 ± 1, 141 ± 1, 130 ± 1, and 132 ± 1 Ma) suggest that these zircons may have been influenced by later magmatic or tectonic thermal events or possibly by the loss of Pb.
The Sm-Nd isochron age of the Xuebaoding tungsten deposit in the northern edge of the Songpan-Ganzi Block is 182.0 ± 9.2 Ma [58,59]. The Re-Os isotope age of the molybdenite in the Hede tungsten-tin deposit in the Kangding region is 199.0 ± 2.6 Ma [39], while the Re-Os isotopic age of the molybdenite in the Daniuchang molybdenum-tungsten deposit is 166.8 ± 1.7 Ma [35]. The weighted average Re-Os age of the molybdenite in the Ziershi deposit is 160.3 ± 1.6 Ma, which is consistent with the LA-ICP-MS U-Pb zircon ages of the Tiechanghe granite (162–166 Ma) within the error margins. These ages collectively confirm that the molybdenite in the Ziershi deposit formed during the Early Yanshanian and that their formation was associated with granitic magmatism. These ages are consistent with those of the Daniuchang molybdenum-tungsten deposit within error [31,60], but they differ from those of the Xuebaoding W-Sn-Be deposit and the Hedong tungsten-tin deposit. This discrepancy suggests that significant magmatic activity related to Mo mineralization occurred in the Jiulong area at ca.166 Ma.
The geological and mineralization events in the Jiulong Tiechanghe region occurred approximately 40 Ma after the crustal collision and thickening event in the Songpan-Ganzi Block during 220-205 Ma. This period represents the peak of the lithospheric extension along the southern margin of the Songpan-Ganzi Block and marks the beginning of the thermal uplift and extension of the lithospheric after the contractional thrusting and detachment (collision orogeny) associated with the Songpan-Ganzi orogenic belt [29,60]. Consequently, the Tiechanghe granite is a product of the transition from compressional to extensional tectonic environments in the Songpan-Ganzi Block from the Indosinian to the Early Yanshanian. It is also a crucial time marker of the regional transition from the Tethyan tectonic domain to the Pacific tectonic domain.

6.2. Ore Formation Models and Geological Exploration Directions

The Daniuchang tungsten-molybdenum deposit is spatially closely associated with the Tiechanghe granite, which primarily consists of syenite and monzonitic granite. Zhou et al. (2014) reported that the Tiechanghe granite exhibits the characteristics of an aluminum-rich A-type granite, including high SiO₂, Na₂O, and K₂O contents, high FeOₒ/MgO and Ga/Al ratios, and low TiO2, CaO, and MgO contents [30]. However, Liu Xiaojia and Xu Zhiqin (2021) argued that the Tiechanghe granite should be classified as a high-potassium calc-alkaline I-type granite [61]. This classification reflects the transition from collision orogeny to post-collisional extension, where decreased crustal stress led to partial melting of the ancient crust and contamination by newly formed crustal melts, resulting in Middle Jurassic magmatism. This perspective is consistent with the views of Dai et al. (2017) and Liu et al. (2022) [32,36].
The zircon Ti thermometer [63] can be used to infer the formation temperature of zircons, which represents the maximum temperature of the magma. Experimental petrology has revealed that A-type granites typically form at temperatures >800 °C. In contrast, the Ti thermometer calculations for the zircons analyzed in this study yielded temperatures of 690–714 °C. Therefore, based on the magma temperature, the Tiechanghe granite may not be an A-type granite but rather an I-type granite.
The Yanshanian granites, such as the Tiechanghe granite, which were formed in an extensional tectonic setting, provided the material and dynamic conditions necessary for the formation of tungsten-molybdenum-copper deposits due to multiple phases of granitoid magmatic activity. The Tiechanghe granite, characterized by high concentrations of mineralizing elements such as molybdenum (Mo), served as the primary mineralizing body in the region, and it supplied both the heat and material sources essential for the formation of the molybdenum deposits. During the Yanshanian, the intrusion of the Tiechanghe granite into the surrounding strata induced thermal contact metamorphism and metasomatism, resulting in the formation of skarns at the contact interfaces. The Triassic strata provided calcium, while the granite supplied tungsten and molybdenum, leading to the formation of scheelite and molybdenite in or near the skarn zone and thus creating the Daniuchang skarn-type W-Mo deposit. Additionally, in the schist areas located 2-3 km from the granite, quartz vein-type molybdenum deposits were more likely to form (Figure 8).
Previous studies have suggested that the mineralization depths of skarn-type and quartz vein-type tungsten-molybdenum deposits are typically 2–4 km [62,63,64]. Zircon and apatite fission track data for the Tiechanghe granite indicate that the granite body was exhumed to approximately 2170 m [34], which is within the depth range at which tungsten-molybdenum deposits form. This suggests that the tungsten-molybdenum deposits in this area may have experienced uplift and erosion. Field geological surveys have revealed the presence of large quantities of tungsten minerals in the colluvial deposits below the skarn-type scheelite bodies, providing evidence that erosion has affected these mineralized bodies [35].
Therefore, exploration of tungsten-molybdenum-copper deposits should be intensified around the Tiechanghe granite body. Additionally, the impact of the uplift and erosion in the Jiulong area should be considered as tungsten-molybdenum-copper deposits may have been significantly eroded and lost due to uplift and exposure [35]. This finding offers new insights for mineral exploration in the Jianglang area and its surrounding regions. In summary, the focus of molybdenum-polymetallic exploration in the Tiechanghe region should be within 2–3 km of the Yanshanian (ca. 160 Ma) granite bodies, and careful attention should be paid to the effects of tectonic uplift and erosion on mineral exposure and preservation. This understanding can be applied to the entire western Sichuan region.

7. Conclusion

(1) The formation age of the Zierzi molybdenum-polymetallic deposit was determined to be 160.3 ± 1.6 Ma. This age is consistent with the Tiechanghe granite LA-ICP-MS U-Pb zircon ages (162–164 Ma) within the error range, indicating that a molybdenum mineralization event associated with granitic activity occurred at ca. 160 Ma.
(2) The emplacement and mineralization ages of the Tiechanghe granite and the tungsten-molybdenum deposits correspond to the peak of lithospheric extension in the southern margin of the Songpan-Ganzi Block. They represent the transition from the Indosinian compressional to the Yanshanian extensional tectonic environment in the Songpan-Ganzi Block. This transition also reflects the occurrence of shallow emplacement and mineralization in response to the regional tectonic shift from the Tethyan to the Pacific tectonic domain in the Jiulong area.
(3) The focus of the exploration for molybdenum-polymetallic deposits related to the Yanshanian (circa 160 Ma) granites in the Jiulong area in western Sichuan should be concentrated within 2–3 km of the granite bodies. It is also crucial to consider the impact of structural uplift on the degree of erosion, which affects the exposure and preservation of mineral deposits.

Author Contributions

S.Y.: Writing-original draft, Field collection sample, Data curation. H.T.: Field collection sample, Project administration. Z.L.: Review & editing. J.H.: Investigation, Formal analysis. X.W.: Figures editing, Formal analysis. L.D.: Field mapping, Formal analysis. All authors have read and agreed to the published version of the manuscript.

Funding

This work is funded by the National Natural Science Foundation of China (Grant No. 41603034), the China Geological Survey (Grant No.DD20160074, Grant No.DD20190185), and the Sichuan Science and Technology Plan (Grant No.2022YFS0488).

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article.

Declaration of Competing Interest

The authors declare no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The zircon U-Pb dating was conducted with the assistance of the Continental Dynamics Laboratory at Northwest University. The molybdenite Re-Os dating was completed by Researcher Li Chao at the National Testing Center. Drs. Huadong Gong is appreciated for helping with the LA-ICP-MS zircon U-Pb analyses. We thank the editor and reviewers for their constructive remarks.

References

  1. Wu:, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Discussions on the petrogenesis of granites. Acta Petrologica Sinica. 2007, 23, 1217–1238. [Google Scholar]
  2. Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Science China Earth Sciences. 2017, 60, 1201–1219. [Google Scholar] [CrossRef]
  3. Wang, X.L. Some new research progresses and main scientific problems of granitic rocks. Acta Petrologica Sinica. 2017, 33, 1445–1458. [Google Scholar]
  4. Wang, T.; Wang, X.X.; Guo, L.; Zhang, L.; Tong, Y.; Li, S.; Huang, H.; Zhang, J.J. Granitoid and Petrologica Sinica. Acta Petrologica Sinica. 2017, 33, 1459–1478. [Google Scholar]
  5. Xu, X.S.; Wang, X.L.; Zhao, K.; Du, D.H. Progresses and Tendencies of Granite Researches in Lase Decade: A Review. Bulletin of Mineralogy, Petrology and Geochemistry. 2020,39,899-911,1069.
  6. Hu, J.M.; Meng, Q. R.; Shi, Y.R.; Qu, H.J. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications. Acta petrological Sinica. 2005, 21, 867–880. [Google Scholar]
  7. Zhang, H.F.; Parrish, R.; Zhang, L.; Xu, W. C.; Yuan, H.L.; Gao, S.; Crowley, Q.G. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos. 2007, 97, 323–335. [Google Scholar] [CrossRef]
  8. Zhang, H.F.; Zhang, L.; Harris, N.; Jin, L.L.; Yuan, H. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze Fold Belt, eastern Tibet Plateau: constraints on petrogenesis and tectonic evolution of the basement evolution of the basement. Contributions to Mineralogy and Petrology. 2006, 152, 75–88. [Google Scholar] [CrossRef]
  9. Weislogel, A.L. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleo Tethys from the Songpan-Ganzi complex, central China. Tectonophysics. 2008, 451, 331–345. [Google Scholar] [CrossRef]
  10. Xiao, L.; Zhang, H. F.; Clemens, J.D.; Wang, Q. W.; Kan, Z.Z.; Wang, K.M.; Ni, P.Z.; Liu, X. M. Late Triassic granitoids of, the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos. 2007, 96, 436–452. [Google Scholar] [CrossRef]
  11. Yuan, C.; Zhou, M.F.; Sun, M.; Zhao, Y.J.; Wilde, S.; Long, X.P.; Yan, D.P. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters. 2010, 290, 481–492. [Google Scholar] [CrossRef]
  12. Cai, H.M.; Zhang, H.F.; Xu, W.C.; Shi, Z.L.; Yuan, H.L. Petrogenesis of Indosinian volcanic rocks in Songpan-Garze fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination. Sci China Earth Sci. 2010, 53, 1316–1328. [Google Scholar] [CrossRef]
  13. Roger, F.; Jolivet, M.; Malavieille, J. The tectonic evolution of the Songpan-Ganzê(North Tibet) and adjacent areas rom Proterozoic to Present: A synthesis. Journal of Asian Earth Sciences. 2010, 39, 254–269. [Google Scholar] [CrossRef]
  14. Roger, F.; Malavieille, J.; Leloup, P.H.; Calassou, S.; Xu, Z. Timing of granite emplacement ancooling in the Songpan-Garze fold belt (eastern Tibetan plateau) with tectonic implication. Jour nal of Asian Earth Science. 2004, 22, 465–481. [Google Scholar] [CrossRef]
  15. Sigoyer, J.D.; Vanderhaeghe, O.; Duchêne, S.; Billerot, A. Generation and emplacement of Trias sic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, eastern Tibetan plateau, China. Journal of Asian Earth Sciences. 2014, 88, 192–216. [Google Scholar] [CrossRef]
  16. hen, Q.; Sun; M.; Zhao, G.C.; Yang, F.L.; Long, X.P.; Li, J.H.; Wang, J.; Yu, Y. Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan–Ganze terrane: An igneous response to the closure of the Paleo-Tethys Ocean. Lithos. 2017,290-291,1-17. [CrossRef]
  17. Liu, D.M. Geochemical Composition, Chronology and Tectonic Significances of Sanyanlong-Galazi Granites in the Southern Songpan-Garze orogenic Belt (dissertation for master degree). Supervisor: Yin F G. Chengdu: Chengdu University of Technology. 2018,60p.
  18. Yue, X.Y.; Guo, J.; Mao, S.L.; Zhu, Z.M.; Tan, H.Q. Zircon U-Pb Age and Geochemistry of the Taiyanghe Granitoid in Western Sichuan, China and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry. 2018, 37, 1142–1151. [Google Scholar]
  19. Zhao, H.N.; Zhang, Y.Y.; Li, Q.G.; Du, W.; Zhang, Y.; Guo, Z.J. Early Jurassic I-type garnet leucogranite in the Siguniangshan pluton, eastern margin of the Songpan-Ganze terrane (NE Tibet), and its tectonic implications. Journal of Asian Earth Sciences. 2020, 188, 104079. [Google Scholar] [CrossRef]
  20. Fei, G.C.; Menuge, J.F.; Li, Y.Q.; Yang, J.Y.; Deng, Y.; Chen, C. S.; Yang, Y. F.; Yang, Z.; Qin, L.Y.; Zheng, L.; Tang, W.C. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan–Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos.2020,364-365,1-18. [CrossRef]
  21. Yan, Q.G.; Li, J. K.; Li, X.J.; Liu, Y.C.; Li, P.; Xiong, X. Source of the Zhawulong granitic pegmatite-type lithium deposit in the Songpan-Ganzê orogenic belt, Western Sichuan, China: Constraints from Sr-Nd-Hf isotopes and petrochemistry. Lithos. 2020,378-379,1-11. [CrossRef]
  22. Zhan, Q.Y.; Zhu, D.C.; Wang, Q.; Weinberg, R.F.; Xie, J.C.; Li, S.M.; Zhang, L.L.; Zhao, Z.D. Source and pressure effects in the genesis of the Late Triassic high Sr/Y granites from the Songpan-Ganzi Fold Belt, eastern Tibetan Plateau. Lithos.2020,368-369, 1-15. [CrossRef]
  23. Ye, Y.K.; Zhou, J.Y.; Zhou, X.; Analysis, R. Zircon LA-ICP-MS U-Pb age and geochemical features of the Songlinkou pluton western Sichuan. Rock and Mineral Analysis. 2020, 39, 921–933. [Google Scholar] [CrossRef]
  24. Tan, H.Q.; Zhu, Z.M.; Zhou, X.; Hu, J.L. Two Periods Rare Metal Mineralization of the Pegmatite in Jiulong Area, Western Sichuan. Multipurpose Utilization of Mineral Resources. 2022, 15–24. [Google Scholar]
  25. Tan, H.Q.; Lü, F.Q.; Li, C.; Zhou, X.; Zhou, Y.; Liu, Y.D.; Hu, J.L.; Zhu, Z.M. Genetic linking with pegmatite-type veined molybdenum deposit and Dichishan highly differentiated granite in western Sichuan. Earth Science. 2023, 48, 3978–3994. [Google Scholar] [CrossRef]
  26. Tan, H.Q.; Zhu, Z.M.; Luo, L. H.; Hu, J.L. Distribution of early Yanshanian granite and its constraints on the mineralization of rare metals in Luomo area, western Sichuan. Acta Geologica Sinica. 2023, 97, 307–327. [Google Scholar] [CrossRef]
  27. Hu, J.L.; Tan, H.Q.; Ni, Z.Y.; Zhou, J.Y.; Zhu, Z.M.; Zhou, X.; Luo, Z.H.; Yue, X.Y.; Niu, T.; Xu, L.; et al. Geochemical characteristics, zircon U- Pb ages and Hf isotopic compositons of Baitai granite in Jiulong area, western Sichuan, and their significance for rear metals mineralization. Geological Review. 2024, 70, 449–475. [Google Scholar]
  28. Wallis, S.; Tsujimori, T.; Aoya, M.; Kawakami, T.; Terada, K.; Suzuki, K.; Hyodo, H. Cenozoic and Mesozoic metamorphism in the Longmenshan orogeny: Implication for geodynamic model of eastern Tibet. Geology. 2003, 31, 745–758. [Google Scholar] [CrossRef]
  29. Zhou, J.Y.; Tan, H.Q.; Gong, D.X.; Zhu, Z.M.; Luo, L.P. Zircon LA-ICP-MS U-Pb dating and Hf isotopic composition of Xinhuoshan granite in the core of Jianglang dome, Western Sichuan, China. Mineralogy and Petrology. 2013, 33, 42–52. [Google Scholar]
  30. Zhou, J.Y.; Tan, H.Q.; Gong, D.X.; Zhu, Z.M.; Luo, L.P. Wulaxi Aluminous A-type Granite in Western Sichuan, China: Recording Early Yanshanian Lithospheric Thermo-upwelling Extension of Songpan-Garze Orogenic Belt. Geological review. 2014, 60, 348–362. [Google Scholar]
  31. Li, T.Z.; Dai, Y.P.; Ma, G.T.; Zhou, Q. SHRIMP Zircon U-Pb Dating of the Wulaxi Granite in the Western Margin of the Yangtze Block and Its Geological Significance. Bulletin of Mineralogy. Petrology and Geochemistry. 2016, 35, 743–749. [Google Scholar]
  32. Dai, Y.P.; Zhu, Y.D.; Li, T.Z.; Zhang, H.H.; Tang, G.L.; Shen, Z.W. A crustal source for ca. 165 Ma post-collisional granites related to mineralization in the Jianglang dome of the Songpan-Ganzi Orogen, eastern Tiebtan Plateau. Geochemistry 2017, 77, 573–586. [Google Scholar] [CrossRef]
  33. Zhu, Y.D.; Dai, Y.P.; Wang, L.L.; Li, T.Z.; Zhang, H.H.; Shen, Z.W. Petrogenesis and Geological Significance of the Wenjiaping Granite in Jianglang Dome, Southern Rim of Songpan-Garze Orogenic Belt. Geoscience. 2018, 32, 16–27. [Google Scholar] [CrossRef]
  34. Tan, H.Q. The composition, deformation-metamorphic characteristics and metallogenic response of the dome geological bodies on the south margin of Songpan-Garze Block (dissertation for doctor degree). Supervisor: Ni Z Y. Chengdu: Chengdu University of Technology. 2019,194-195p.
  35. Tan, H.Q.; Zhu, Z.M.; Zhou, J.Y.; Zhou, X.; Hu, J.L.; Liu, Y.D. Early Yanshanian skarn W-Mo deposit in the southern margin of Songpan-Ganze terrane: Evidence from diagenetic and metallogenic chronology, zircon Hf isotopes in Daniuchang area. Mineral Deposits. 2022, 41, 53–58. [Google Scholar]
  36. Liu, J; Li, W.C.; Zhou, Q.; Zhang, H.H. Late Jurassic Wenjiaping high Sr/Y granite: A product of partial melting of the Precambrian basement rocks trigged by lithospheric extension in the Songpan-Garze fold belt, SW China. Geological Journal. 2022; 57, 4370–4387. [CrossRef]
  37. Zhang, H.C.; Zhou, H.B.; Yan, B. Determination of Yanshanian granite and its geological significance in the Taka Dome, Western Sichuan. Multipurpose Utilization of Mineral Resources. 2024, 45, 1–7. [Google Scholar] [CrossRef]
  38. Xu, L. Chronology, Geochemistry and Tectonic Significance of the Lanniba Granites in Jiulong, West Sichuan (dissertation for Master degree). Supervisor: He Z W. Chengdu: Chengdu University of Technology. 2023,78p.
  39. Huang, C.X. Study on the Ore-forming Fluid and Mineralization of the Hede W-Sn Deposit, Western Sichuan (dissertation for Master degree). Supervisor: Yang Y L and Tan H Q. Chengdu: Chengdu University of Technology. 2024,55p.
  40. Zhou, M.F.; Yan, D.P.; Kennedy, A.K.; Li, Y.Q.; Ding, J. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic, arc-magmatism along the western margin of the Yangtze block, south China. Earth and Planetary Science Letters. 2002, 196, 51–67. [Google Scholar] [CrossRef]
  41. Chen, Q.; Sun, M.; Long, X.P.; Yuan, C. Petrogenesis of Neoproterozoic adakitic tonalites and high-K granites in the eastern Songpan-Ganze fold belt and implications for the tectonic evolution of the western Yangtze Block. Precambrian Research. 2015, 170, 181–203. [Google Scholar] [CrossRef]
  42. Gong, D.X.; Wu, C.H.; Zou, H.; Zhou, X.; Zhou, Y.; Tan, H.Q.; Yue, X.Y. Provenance analysis of Late Triassic turbidites in the eastern Songpan–Ganzi flysch complex: sedimentary record of tectonic evolution of the eastern Paleo-Tethys ocean. Marine and Petroleum Geology. 2021, 126, 104927. [Google Scholar] [CrossRef]
  43. Liu, D.M.; Tan, H.Q.; Zhu, Z.M.; Yao, H.Y.; Yu, L. Tectonic setting and provenance of the Xikang Group in the Guining area, West Sichuan Province: Constraints from geochemistry of clastic sedimentary rocks. Geological Bulletin of China. 2021, 40, 2135–2148. [Google Scholar]
  44. Wan, C.H.; Yuan, J.; Li, F.X.; Yan, S.W. Late Triassic Granitoids in the Southern Part of the Songpan-Garze Fold Belt: Petrology, Geochemical Composition and Petrogenesis. Acta Petrologica et Mineralogica. 2011, 30, 185–198. [Google Scholar]
  45. Yuan, J.; Xiao, L.; Wan, C.H.; Gao, R. Petrogenesis of Fangmaping-Sanyanlong Granites in Southern Songpan-Garze Fold Belt and Its Tectonic Implication. Acta Geologica Sinica. 2011, 85, 195–206. [Google Scholar]
  46. Hu, J.L.; Tan, H.Q.; Zhou, X.; Nii, Z.Y.; Zhou, Y. A study of mineralogy and mineral chemistry of ore-bearing pegmatites in the Daqianggou lithium-beryllium deposit, western Sichuan. Geological Bulletin of China. 2020, 39, 2013–2028. [Google Scholar]
  47. Liu, Y.D.; Xie, H.F.; Xu, L.; Ni, Z.Y.; Lü, F.Q.; Tan, H.Q. Sulfur isotopic geochemistry of the Zigangping Pb-Zn deposit, Jiulong County, Sichuan Province. Geological Bulletin of China. 2020, 39, 2029–2036. [Google Scholar]
  48. Zhou, Q.; Li, W.C.; Zhang, H.H.; Li, T.Z.; Yuan, H.Y.; Feng, X.L.; Li, C.; Liao, Z.W.; Wang, S.W. Post-Magmatic Hydrothermal Origin of Late Jurassic Liwu Copper Polymetallic Deposits, Western China: Direct Chalcopyrite Re-Os Dating and Pb-B Isotopic Constraints. Ore Geology Reviews. 2017, 89, 526–543. [Google Scholar] [CrossRef]
  49. Zhou, Q.; Li, W.C.; Zhang, H.H.; Li, T.Z.; Dai, Y.P.; Liu, J.; Yang, B.; Shen, Z.W.; Wang, C.N.; Tang, G.L. Two pulses of metallogenesis of the Liwu Stratiform-like Cu-Rich polymetallic Deposit, western China: Evidence from geology, Re-Os dating and lead isotope. Ore Geology Reviews. 2023, 156, 105373. [Google Scholar] [CrossRef]
  50. Li, T.Z.; Zhou, Q.; Zhang, H.H.; Dai, Y.P.; Ma, G.T.; Ma, D.; Shen, Z.W. Ore Geology and Molybdenite Re-Os dating of the Wulaxi Tungsten Deposit in Western Sichuan. Geological Journal of China Universities. 2016, 22, 423–430. [Google Scholar] [CrossRef]
  51. Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Günther, D.; Wu, F.Y. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Geostand. Newsl 2004, 28, 353–370. [Google Scholar] [CrossRef]
  52. Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 2004. 28, 9–39. [CrossRef]
  53. Ludwig, K.R. User’s Manual for isotopic 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center. 2003, Special Publication.No.4. 25-32p.
  54. Du, A. D.; Wu, S. Q.; Sun, D. Z.; Wang, S. X.; Qu, W. J.; Markey, R.; et al. Preparation and certification of re-os dating reference materials: molybdenites hlp and jdc. Geostandards and geoanalytical research(1), 2004, 28. [CrossRef]
  55. Ferry, J.M.; Watson, E.B. New Thermodynamic Models and Revised Calibrations for the Ti-in-zircon and Zr-in-rutile Thermometers. Contrib. Mineral Petrol 2007, 154, 429–437. [Google Scholar] [CrossRef]
  56. Liu, Y.P.; Li, Z.X.; Li, H.M.; Guo, L.G.; Xu, W.; Ye, L.; Li, C.Y.; Pi, D.H. U-Pb Geochronology of Cassiterite and Zircon from Dulong Sn-Zn Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province, China. Acta Petrologica Sinica. 2007, 23, 967–976. [Google Scholar]
  57. Tan, H.Q.; Liu, Y.P.; Xu, W.; Guo, L.G.; Ye, L.; Li, C.Y. 40Ar-39Ar dating of Phlogopite from W-Sn deposits in the Nanyangtian, southeastern Yunnan, and its implication. Acta Mineralogica Sinica. 2011, 31, 639–640. [Google Scholar]
  58. Liu,Y.; Deng, J.; Shi, G. H.; Sun, X.; Yang, L.Q. Genesis of the Xuebaoding W-Sn-Be crystal deposits in Southwest China: Evidence from fluid inclusions, stable isotopes and ore elements. Resour. Geol. 2012, 62, 159-173. [CrossRef]
  59. Liu, Y.; Deng, J.; Li, C.F.; Shi, G.H.; Zheng, A.L. REE composition in scheelite and scheelite Sm-Nd dating for the Xuebaoding W-Sn-Be deposit in Sichua. Chinese Science Bulletin. 2007, 52, 2543–2550. [Google Scholar] [CrossRef]
  60. Tan, H.Q. Re-Os dating of molybdenites and its geological significance in the Jianglang dome, SW China. Acta Geologica Sinica. 2014, 88, 928. [Google Scholar] [CrossRef]
  61. Xu, Z. Q.; Hou, L. W.; Wang, Z.X.; Fu, X.F.; Huang, M.H. Orogenic process of Songpan-Ganzi orogenic belt in China. Beijing: Geol. Pub. House. 1992,170-182p.
  62. Liu, X.J.; Xu, Z.Q. Tectonic significance of Middle Jurassic granite in the Jianglang dome, southern Songpan-Ganzi orogen belt. Acta Geological Sinica. 2021, 95, 1754–1773. [Google Scholar] [CrossRef]
  63. Boehnke, P.; Trail, D.; Schmitt, A.K.; Watson, E.B.; Harrison, M. Zircon saturation re-revisited. Chemical Geology 2013, 351, 324–334. [Google Scholar] [CrossRef]
  64. Ren, Y.S.; Liu, L. D.; Wan, X.Z.; Liu, L.G. Discussion on the metallogenic depth of skarn type gold deposits in Tongling area, Anhui province. Geotectonica et Metallogenia. 2004, 28, 397–403. [Google Scholar]
  65. Ding, C.G.; Zhang, S.G.; Ma, C.; Xu, Z.F. Genetic mineralogical properties of sphalerite and discussions on its geobarometer application in skarn ore deposits in middle Ningzhen region. Journal of Geology. 2009, 33, 124–129. [Google Scholar]
  66. Tian, K.; Zheng, Y.Y.; Gao, S.B.; Wu, D.H.; Jiang, X. J. Fluid Source and Evolution of the Bangbule Skarn Pb-Zn-Cu-Fe Deposit in Tibet: Constraints from Fluid Inclusions and Stable Isotopes. Geotectonica et Metallogenia. 2018, 42, 1027–1045. [Google Scholar] [CrossRef]
Figure 1. Geological map of the eastern margin of the Tibetan Plateau, showing the Longmenshan–Yanyuan Foreland Thrust Zone (LYFTZ) and the distribution of tectonic domes. Tectonic units: the Songpan–Garze Orogenic Belt (SGOB); the Yidun Paleozoic Arc (YPA); and the Qiangtang–Changdu Block (QCB). Major sutures and faults: the Jingshajiang Suture Zone (JSZ); the Garze–Litang Suture Zone (GLSZ); the Xianshuihe sinistral Strike-slip Fault (XSF). Major metamorphic dome: Taka dome(A), Jianglang dome (B), Changqiang dome (C), Qiasi dome (D), Tangyang dome (E).
Figure 1. Geological map of the eastern margin of the Tibetan Plateau, showing the Longmenshan–Yanyuan Foreland Thrust Zone (LYFTZ) and the distribution of tectonic domes. Tectonic units: the Songpan–Garze Orogenic Belt (SGOB); the Yidun Paleozoic Arc (YPA); and the Qiangtang–Changdu Block (QCB). Major sutures and faults: the Jingshajiang Suture Zone (JSZ); the Garze–Litang Suture Zone (GLSZ); the Xianshuihe sinistral Strike-slip Fault (XSF). Major metamorphic dome: Taka dome(A), Jianglang dome (B), Changqiang dome (C), Qiasi dome (D), Tangyang dome (E).
Preprints 114451 g001
Figure 2. Geologic map of the Jiulong region and its adjacent areas in western Sichuan (after literature [10,11,12,13,14,15,17,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,44,45]).
Figure 2. Geologic map of the Jiulong region and its adjacent areas in western Sichuan (after literature [10,11,12,13,14,15,17,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,44,45]).
Preprints 114451 g002
Figure 3. (a) Contact relationship between the Cu-Mo ore body and surrounding rock, and (b) distribution of molybdenite, malachite, and other minerals in quartz veins.
Figure 3. (a) Contact relationship between the Cu-Mo ore body and surrounding rock, and (b) distribution of molybdenite, malachite, and other minerals in quartz veins.
Preprints 114451 g003
Figure 4. Microscopic characteristics of the (a,c) Tiechanghe monzonitic granite and (b,d) syenite granite in the Wulaxi area. Kfs—potassium feldspar, Mus—muscovite, BT—biotite, PL—plagioclase, QTZ—quartz. The images in c and d are all orthogonally polarized.
Figure 4. Microscopic characteristics of the (a,c) Tiechanghe monzonitic granite and (b,d) syenite granite in the Wulaxi area. Kfs—potassium feldspar, Mus—muscovite, BT—biotite, PL—plagioclase, QTZ—quartz. The images in c and d are all orthogonally polarized.
Preprints 114451 g004
Figure 5. Cathode luminescence (CL) images of zircons from the Tiechanghe granite-pegmatite and corresponding U-Pb zircon ages.
Figure 5. Cathode luminescence (CL) images of zircons from the Tiechanghe granite-pegmatite and corresponding U-Pb zircon ages.
Preprints 114451 g005
Figure 6. (a) U-Pb zircon concordia diagram and (b) weighted average ages of the Tiechanghe granite.
Figure 6. (a) U-Pb zircon concordia diagram and (b) weighted average ages of the Tiechanghe granite.
Preprints 114451 g006
Figure 7. Standardized partition map of the rare-earth Chondrite patterns for the zircons from the Tiechanghe granite.
Figure 7. Standardized partition map of the rare-earth Chondrite patterns for the zircons from the Tiechanghe granite.
Preprints 114451 g007
Figure 8. Map of molybdenum metallogenic model for the west Sichuan area.
Figure 8. Map of molybdenum metallogenic model for the west Sichuan area.
Preprints 114451 g008
Table 1. LA-ICP-MS zircon U-Pb isotopic age data of Tiechanghe granite-pegmatite.
Table 1. LA-ICP-MS zircon U-Pb isotopic age data of Tiechanghe granite-pegmatite.
Spot Th U Th/U Isotopic ratios Age (Ma) Concordant
ppm ppm 207Pb/
206Pb
207Pb/
235U
206Pb/
238U
207Pb/
206Pb
207Pb/
235U
206Pb/
238U
T20200521-01
1 240 339 0.71 0.04977 0.00143 0.17453 0.00392 0.02544 0.00027 184 66 163 3 162 2 99%
2 246 284 0.87 0.04958 0.00145 0.17322 0.00398 0.02534 0.00027 175 67 162 3 161 2 99%
3 111 219 0.51 0.06573 0.00153 1.13769 0.01728 0.12554 0.00128 798 48 771 8 762 7 99%
4 574 527 1.09 0.05034 0.00123 0.17674 0.00295 0.02546 0.00026 211 56 165 3 162 2 98%
5 145 244 0.59 0.05017 0.00137 0.17739 0.00364 0.02564 0.00027 203 62 166 3 163 2 98%
6 97 243 0.40 0.05178 0.00181 0.18337 0.00541 0.02568 0.00029 276 78 171 5 164 2 96%
7 69 279 0.25 0.04870 0.00155 0.17043 0.00442 0.02538 0.00028 133 73 160 4 162 2 101%
8 197 409 0.48 0.05120 0.00158 0.17934 0.00444 0.02540 0.00028 250 69 168 4 162 2 97%
9 88 340 0.26 0.04935 0.00133 0.17516 0.00350 0.02574 0.00026 164 62 164 3 164 2 100%
10 113 184 0.62 0.04949 0.00148 0.17574 0.00418 0.02575 0.00027 171 69 164 4 164 2 100%
11 91 226 0.40 0.07331 0.00154 1.73762 0.01924 0.17187 0.00166 1023 42 1023 7 1022 9 100%
12 100 283 0.35 0.04974 0.00133 0.17688 0.00347 0.02578 0.00026 183 61 165 3 164 2 99%
13 52 141 0.37 0.06084 0.00141 0.77701 0.01141 0.09259 0.00092 634 49 584 7 571 5 98%
14 355 496 0.72 0.04966 0.00119 0.17606 0.00278 0.02570 0.00025 179 55 165 2 164 2 99%
15 194 397 0.49 0.05027 0.00146 0.17944 0.00403 0.02587 0.00027 208 66 168 3 165 2 98%
16 156 232 0.67 0.05145 0.00151 0.18201 0.00418 0.02565 0.00027 261 66 170 4 163 2 96%
17 72 143 0.50 0.05006 0.00164 0.17724 0.00477 0.02567 0.00028 198 74 166 4 163 2 99%
18 108 226 0.48 0.05427 0.00176 0.19058 0.00505 0.02546 0.00028 382 71 177 4 162 2 91%
19 181 389 0.47 0.04877 0.00139 0.17060 0.00372 0.02536 0.00026 137 66 160 3 161 2 101%
20 78 1095 0.07 0.05132 0.00120 0.18216 0.00267 0.02573 0.00025 255 53 170 2 164 2 96%
21 154 327 0.47 0.05203 0.00195 0.17844 0.00576 0.02486 0.00029 287 83 167 5 158 2 95%
22 244 1355 0.18 0.05008 0.00108 0.17624 0.00208 0.02551 0.00024 199 49 165 2 162 2 99%
23 357 825 0.43 0.04888 0.00113 0.17156 0.00248 0.02544 0.00025 142 54 161 2 162 2 101%
24 93 325 0.28 0.05009 0.00131 0.17691 0.00331 0.02560 0.00026 199 60 165 3 163 2 98%
25 155 266 0.58 0.04976 0.00180 0.17587 0.00540 0.02562 0.00029 184 82 165 5 163 2 99%
26 84 1268 0.07 0.05513 0.00164 0.19507 0.00450 0.02564 0.00027 418 64 181 4 163 2 90%
27 99 2199 0.05 0.04856 0.00104 0.17230 0.00192 0.02572 0.00024 127 49 161 2 164 2 101%
28 204 893 0.23 0.04969 0.00115 0.17517 0.00248 0.02555 0.00025 180 53 164 2 163 2 99%
29 95 749 0.13 0.05159 0.00155 0.18178 0.00426 0.02554 0.00027 267 67 170 4 163 2 96%
30 133 999 0.13 0.05718 0.00123 0.53118 0.00601 0.06733 0.00064 498 47 433 4 420 4 97%
T20200521-02
1 22 997 0.02 0.05225 0.00131 0.18429 0.00316 0.02558 0.00026 296 56 172 3 163 2 95%
2 77 3899 0.02 0.05385 0.00115 0.19398 0.00218 0.02612 0.00025 365 47 180 2 166 2 92%
3 84 6626 0.01 0.04968 0.00103 0.17845 0.00185 0.02605 0.00025 180 48 167 2 166 2 99%
4 111 5732 0.02 0.05273 0.00113 0.18748 0.00215 0.02578 0.00025 317 48 175 2 164 2 94%
5 78 3071 0.03 0.05062 0.00107 0.17905 0.00195 0.02565 0.00024 224 48 167 2 163 2 98%
6 195 4467 0.04 0.05160 0.00107 0.18513 0.00191 0.02602 0.00025 268 47 173 2 166 2 96%
7 2412 11496 0.21 0.05768 0.00120 0.20866 0.00220 0.02623 0.00025 518 45 192 2 167 2 87%
8 2174 27455 0.08 0.05087 0.00106 0.12539 0.00129 0.01788 0.00017 235 47 120 1 114 1 95%
9 622 9640 0.06 0.05681 0.00119 0.14045 0.00152 0.01793 0.00017 484 46 133 1 115 1 86%
10 151 4078 0.04 0.05090 0.00108 0.18200 0.00205 0.02593 0.00025 237 48 170 2 165 2 97%
11 1401 9235 0.15 0.05573 0.00123 0.19394 0.00245 0.02524 0.00024 441 48 180 2 161 2 89%
12 173 6260 0.03 0.05248 0.00115 0.16031 0.00198 0.02215 0.00021 306 49 151 2 141 1 94%
13 1770 35823 0.05 0.07937 0.00165 0.08525 0.00089 0.00779 0.00007 1181 41 83 1 50 0 60%
14 559 11465 0.05 0.05306 0.00109 0.19118 0.00192 0.02613 0.00025 331 46 178 2 166 2 94%
15 162 6370 0.03 0.05196 0.00113 0.18195 0.00226 0.02539 0.00025 283 49 170 2 162 2 95%
16 162 2600 0.06 0.05087 0.00112 0.18175 0.00233 0.02591 0.00025 235 50 170 2 165 2 97%
17 672 13506 0.05 0.04925 0.00108 0.17294 0.00219 0.02546 0.00025 160 51 162 2 162 2 100%
18 69 5088 0.01 0.05068 0.00113 0.17517 0.00233 0.02506 0.00024 226 51 164 2 160 2 97%
19 283 5187 0.05 0.05322 0.00110 0.19031 0.00197 0.02593 0.00025 338 46 177 2 165 2 93%
20 328 15458 0.02 0.05311 0.00109 0.19031 0.00194 0.02598 0.00025 334 46 177 2 165 2 93%
21 95 6872 0.01 0.05097 0.00108 0.14334 0.00160 0.02039 0.00020 239 48 136 1 130 1 96%
22 292 4453 0.07 0.05103 0.00107 0.14509 0.00158 0.02062 0.00020 242 48 138 1 132 1 96%
23 1295 13219 0.10 0.05847 0.00120 0.15799 0.00161 0.01959 0.00019 547 44 149 1 125 1 84%
24 215 7904 0.03 0.05014 0.00109 0.17634 0.00216 0.02550 0.00025 202 50 165 2 162 2 98%
25 127 4840 0.03 0.05075 0.00108 0.18221 0.00212 0.02603 0.00025 230 49 170 2 166 2 97%
26 2058 13841 0.15 0.05609 0.00118 0.12785 0.00143 0.01653 0.00016 456 46 122 1 106 1 86%
27 76 4336 0.02 0.05127 0.00113 0.18216 0.00234 0.02577 0.00025 253 50 170 2 164 2 97%
28 84 3293 0.03 0.05232 0.00110 0.18530 0.00205 0.02568 0.00025 300 47 173 2 164 2 95%
29 48 97 0.49 0.14065 0.00291 8.00227 0.08580 0.41257 0.00406 2235 35 2231 10 2227 19 100%
30 1154 30496 0.04 0.05101 0.00104 0.18113 0.00181 0.02575 0.00024 241 46 169 2 164 2 97%
T20200521-03
1 164 276 0.59 0.04998 0.00139 0.17793 0.00372 0.02582 0.00027 194 63 166 3 164 2 99%
2 202 1102 0.18 0.04920 0.00135 0.17274 0.00353 0.02546 0.00026 158 63 162 3 162 2 100%
3 156 338 0.46 0.04970 0.00133 0.17512 0.00341 0.02555 0.00026 181 61 164 3 163 2 99%
4 254 625 0.41 0.04885 0.00117 0.17149 0.00268 0.02546 0.00025 141 55 161 2 162 2 101%
5 197 341 0.58 0.04988 0.00143 0.17734 0.00388 0.02579 0.00027 189 65 166 3 164 2 99%
6 124 175 0.71 0.04982 0.00167 0.17468 0.00485 0.02543 0.00028 187 76 164 4 162 2 99%
7 242 411 0.59 0.04937 0.00132 0.17597 0.00341 0.02585 0.00026 166 61 165 3 165 2 100%
8 231 881 0.26 0.04953 0.00137 0.17102 0.00355 0.02504 0.00026 173 63 160 3 160 2 100%
9 314 470 0.67 0.05040 0.00147 0.17865 0.00401 0.02571 0.00027 213 66 167 3 164 2 98%
10 191 466 0.41 0.07735 0.00161 2.06110 0.02129 0.19325 0.00185 1130 41 1136 7 1139 10 100%
11 201 328 0.61 0.05108 0.00168 0.18353 0.00497 0.02606 0.00029 244 74 171 4 166 2 97%
12 305 320 0.95 0.05213 0.00141 0.18294 0.00363 0.02545 0.00026 291 61 171 3 162 2 95%
13 100 210 0.48 0.04910 0.00147 0.17634 0.00417 0.02605 0.00027 153 69 165 4 166 2 100%
14 63 172 0.37 0.05063 0.00180 0.20958 0.00630 0.03002 0.00034 224 80 193 5 191 2 99%
15 191 419 0.46 0.05006 0.00138 0.17512 0.00357 0.02537 0.00026 198 63 164 3 162 2 99%
16 202 455 0.44 0.04991 0.00140 0.17704 0.00374 0.02572 0.00027 191 64 166 3 164 2 99%
17 78 268 0.29 0.05213 0.00144 0.18470 0.00378 0.02569 0.00027 291 62 172 3 164 2 95%
18 127 627 0.20 0.05004 0.00123 0.17404 0.00286 0.02522 0.00025 197 56 163 2 161 2 99%
19 167 1990 0.08 0.05234 0.00116 0.20104 0.00258 0.02786 0.00027 300 50 186 2 177 2 95%
20 305 348 0.88 0.05197 0.00152 0.18355 0.00416 0.02561 0.00027 284 66 171 4 163 2 95%
21 262 456 0.57 0.05010 0.00133 0.17781 0.00343 0.02573 0.00027 200 61 166 3 164 2 99%
22 211 1139 0.19 0.05053 0.00114 0.17972 0.00241 0.02579 0.00025 219 51 168 2 164 2 98%
23 158 655 0.24 0.05033 0.00119 0.17912 0.00269 0.02581 0.00026 210 54 167 2 164 2 98%
24 258 614 0.42 0.05038 0.00125 0.18030 0.00304 0.02595 0.00026 213 57 168 3 165 2 98%
25 272 245 1.11 0.06608 0.00147 1.10665 0.01439 0.12142 0.00121 809 46 757 7 739 7 98%
26 301 406 0.74 0.05116 0.00134 0.18032 0.00336 0.02555 0.00026 248 59 168 3 163 2 97%
27 68 719 0.10 0.05005 0.00156 0.17822 0.00444 0.02582 0.00028 197 71 167 4 164 2 99%
28 120 214 0.56 0.05009 0.00143 0.17875 0.00391 0.02587 0.00027 199 65 167 3 165 2 99%
29 259 404 0.64 0.04939 0.00129 0.17652 0.00328 0.02591 0.00027 166 60 165 3 165 2 100%
30 170 994 0.17 0.05087 0.00117 0.18085 0.00256 0.02577 0.00026 235 52 169 2 164 2 97%
T20200521-04
1 132 208 0.64 0.05009 0.00223 0.17434 0.00699 0.02524 0.00032 199 100 163 6 161 2 98%
2 172 253 0.68 0.04810 0.00173 0.17302 0.00529 0.02608 0.00029 104 83 162 5 166 2 102%
3 102 186 0.55 0.04949 0.00152 0.15861 0.00388 0.02324 0.00025 171 70 150 3 148 2 99%
4 148 368 0.40 0.05063 0.00129 0.17996 0.00320 0.02577 0.00026 224 58 168 3 164 2 98%
5 195 398 0.49 0.04933 0.00127 0.17383 0.00316 0.02555 0.00026 164 59 163 3 163 2 100%
6 152 229 0.66 0.04986 0.00188 0.17445 0.00570 0.02537 0.00029 188 86 163 5 162 2 99%
7 254 488 0.52 0.05161 0.00131 0.18287 0.00321 0.02569 0.00026 268 57 171 3 164 2 96%
8 296 572 0.52 0.05031 0.00120 0.17845 0.00271 0.02571 0.00025 210 54 167 2 164 2 98%
9 471 990 0.48 0.04868 0.00124 0.17188 0.00303 0.02560 0.00026 133 59 161 3 163 2 101%
10 22 412 0.05 0.05073 0.00141 0.17891 0.00371 0.02557 0.00026 229 63 167 3 163 2 97%
11 84 1125 0.08 0.04942 0.00110 0.17501 0.00223 0.02567 0.00025 168 51 164 2 163 2 100%
12 316 2283 0.14 0.05010 0.00111 0.17832 0.00220 0.02581 0.00025 200 50 167 2 164 2 99%
13 197 311 0.63 0.04970 0.00198 0.17658 0.00614 0.02576 0.00031 181 90 165 5 164 2 99%
14 202 401 0.50 0.05023 0.00129 0.17808 0.00316 0.02571 0.00026 205 58 166 3 164 2 98%
15 238 395 0.60 0.05145 0.00137 0.18109 0.00344 0.02552 0.00026 261 60 169 3 162 2 96%
16 195 386 0.50 0.05217 0.00143 0.18472 0.00369 0.02567 0.00026 293 61 172 3 163 2 95%
17 184 310 0.59 0.04852 0.00133 0.17079 0.00341 0.02552 0.00026 125 63 160 3 162 2 101%
18 96 1029 0.09 0.05069 0.00114 0.17828 0.00230 0.02550 0.00024 227 51 167 2 162 2 97%
19 120 280 0.43 0.05125 0.00312 0.18847 0.01072 0.02666 0.00042 252 134 175 9 170 3 97%
20 88 592 0.15 0.05067 0.00128 0.18120 0.00309 0.02593 0.00026 226 57 169 3 165 2 98%
21 60 129 0.46 0.04975 0.00210 0.17657 0.00660 0.02573 0.00031 184 95 165 6 164 2 99%
22 179 252 0.71 0.05093 0.00163 0.17956 0.00463 0.02556 0.00027 238 72 168 4 163 2 97%
23 90 2728 0.03 0.05055 0.00118 0.17837 0.00251 0.02558 0.00025 221 53 167 2 163 2 98%
24 145 259 0.56 0.05107 0.00167 0.18135 0.00479 0.02575 0.00028 244 73 169 4 164 2 97%
25 118 190 0.62 0.05043 0.00183 0.17988 0.00551 0.02586 0.00029 215 82 168 5 165 2 98%
26 197 572 0.34 0.05143 0.00127 0.18148 0.00291 0.02559 0.00025 260 56 169 3 163 2 96%
27 131 268 0.49 0.04935 0.00177 0.17534 0.00531 0.02577 0.00029 164 82 164 5 164 2 100%
28 131 212 0.62 0.05122 0.00167 0.18115 0.00477 0.02565 0.00028 251 73 169 4 163 2 97%
29 112 434 0.26 0.05269 0.00161 0.18424 0.00439 0.02536 0.00027 315 68 172 4 161 2 94%
30 610 565 1.08 0.05008 0.00125 0.17464 0.00285 0.02529 0.00025 199 57 163 2 161 2 99%
Table 2. Zircon trace element data of Tiechanghe granite in Jiulong region.
Table 2. Zircon trace element data of Tiechanghe granite in Jiulong region.
Spot Ti La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE L H L/H δEu δCe T (°C)
T20200521-01
1 5.99 <0.03 7.63 0.26 4.93 8.92 0.85 34.93 9.39 84.7 25.0 91.6 16.1 141.3 25.0 732 451 23 428 0.05 0.13 8.97 700
2 6.99 0.04 7.00 0.51 7.75 10.75 1.16 31.88 8.15 70.4 19.9 71.0 12.3 107.3 18.2 585 366 27 339 0.08 0.18 4.16 713
4 9.02 0.05 19.24 0.72 12.44 17.70 2.23 62.58 15.74 135.0 38.7 134.5 23.3 193.3 31.9 1122 687 52 635 0.08 0.18 8.11 736
5 7.14 <0.02 7.13 0.16 3.50 5.73 0.97 20.75 5.58 51.1 16.1 62.8 11.8 110.6 19.9 478 316 17 299 0.06 0.24 13.50 715
6 3.38 3.60 13.77 1.79 8.53 6.20 0.39 16.28 4.45 41.1 11.9 44.0 8.1 70.3 12.4 345 243 34 208 0.16 0.11 1.32 653
7 5.55 <0.03 2.51 0.03 0.48 1.64 0.20 7.39 2.50 25.7 8.6 36.1 7.5 71.1 13.1 279 177 5 172 0.03 0.15 27.83 693
8 6.28 <0.02 8.03 0.13 2.37 6.97 0.45 26.59 7.12 67.3 20.9 80.9 15.0 132.0 22.3 626 390 18 372 0.05 0.09 19.79 704
9 3.03 <0.02 8.10 0.02 0.84 2.68 0.32 13.90 5.08 53.4 17.1 67.4 12.8 119.7 20.8 513 322 12 310 0.04 0.13 100.99 645
10 5.90 <0.02 4.75 0.07 1.19 2.99 0.27 11.86 3.19 29.3 8.9 34.5 6.3 57.3 9.9 268 171 9 161 0.06 0.12 21.37 699
12 2.88 <0.03 2.90 0.05 0.89 2.10 0.19 11.14 3.64 36.7 12.0 46.3 8.9 81.6 14.2 351 221 6 214 0.03 0.10 19.83 641
14 6.16 0.05 12.37 0.22 3.97 8.54 1.11 37.14 10.66 102.1 31.0 120.1 22.1 197.1 33.1 948 579 26 553 0.05 0.16 16.20 702
15 7.66 0.59 8.60 0.31 3.53 5.16 0.47 25.36 7.16 70.1 21.9 81.8 15.4 136.3 22.0 648 399 19 380 0.05 0.10 4.91 721
16 7.11 0.05 4.79 0.19 2.99 5.22 0.66 19.02 5.25 47.2 14.6 56.5 10.4 96.4 15.9 438 279 14 265 0.05 0.18 7.18 715
17 4.20 <0.03 3.60 0.04 0.86 2.22 0.21 9.53 2.74 26.5 8.5 33.6 6.4 60.3 10.4 248 165 7 158 0.04 0.12 28.58 670
18 4.84 <0.03 4.18 0.11 1.62 4.26 0.50 17.53 4.79 45.2 13.7 52.2 10.0 90.1 15.0 409 259 11 248 0.04 0.15 12.02 682
19 6.90 <0.03 10.00 0.14 3.87 5.41 1.36 22.76 6.26 59.2 19.7 80.6 16.8 161.3 29.2 623 417 21 396 0.05 0.32 21.71 712
20 5.08 <0.02 1.11 0.03 0.87 4.51 0.26 30.66 12.11 130.1 41.7 162.7 32.0 304.3 48.9 1286 769 7 762 0.01 0.05 10.42 686
21 5.13 0.03 5.64 0.07 1.52 3.84 0.29 17.94 4.63 49.2 14.7 55.4 10.4 92.8 14.9 431 271 11 260 0.04 0.09 21.93 687
22 4.11 <0.034 3.66 0.06 1.15 4.34 0.20 33.09 13.34 155.5 54.7 225.0 46.0 424.1 67.1 1605 1028 9 1019 0.01 0.04 20.66 669
23 14.77 <0.025 10.23 0.22 4.56 8.53 1.61 41.23 12.11 121.8 40.1 157.7 31.0 285.5 48.0 1221 762 25 737 0.03 0.22 14.77 784
24 4.54 <0.0204 3.01 0.06 1.32 3.74 0.32 17.87 5.48 53.3 16.9 62.5 11.8 108.6 18.1 487 303 8 294 0.03 0.10 16.11 677
25 6.88 <0.019 7.63 0.15 2.64 4.83 0.76 21.31 5.64 55.2 17.8 68.0 13.4 122.9 21.1 531 341 16 325 0.05 0.19 15.90 712
26 3.11 <0.024 1.71 0.03 0.44 3.87 0.21 29.38 11.88 141.7 45.6 177.8 35.6 302.2 46.4 1426 797 6 791 0.01 0.04 20.42 647
27 2.56 <0.0262 0.84 0.03 0.51 2.41 0.12 24.42 13.42 194.5 77.4 355.4 79.1 768.9 125.0 2495 1642 4 1638 0.00 0.03 10.13 632
28 4.32 <0.028 5.39 0.08 2.08 5.05 0.67 26.60 9.17 103.3 35.0 142.9 29.5 280.0 45.4 1075 685 13 672 0.02 0.14 21.73 673
29 4.64 0.02 2.75 0.03 0.39 2.18 0.07 12.43 5.82 79.0 28.5 117.5 23.8 218.1 30.9 915 521 5 516 0.01 0.03 21.13 679
T20200521-02
1 358.52 <0.026 0.10 <0.0125 0.16 0.14 0.04 0.97 0.89 19.1 9.4 58.6 20.2 281.6 54.4 367 446 0 445 0.00 0.25 1.39 1248
2 1.23 0.79 1.42 0.32 1.41 1.23 0.45 5.43 4.77 67.0 18.8 68.4 13.0 109.1 13.6 999 306 6 300 0.02 0.45 0.69 581
3 1.18 1.05 2.05 0.70 5.01 6.81 0.39 27.73 15.67 205.9 66.8 336.1 98.1 1203.4 200.0 2579 2170 16 2154 0.01 0.08 0.57 578
4 5.92 5.42 14.91 4.06 22.82 20.73 4.64 49.46 23.38 254.0 75.4 356.9 100.9 1277.3 219.3 2811 2429 73 2357 0.03 0.43 0.74 699
5 10.60 0.43 3.22 0.87 8.59 13.95 0.89 44.06 19.00 220.6 70.7 334.1 91.2 1114.9 199.5 2431 2122 28 2094 0.01 0.10 0.96 751
6 4.17 1.13 3.18 0.94 6.49 9.41 1.19 31.57 15.85 197.6 64.9 316.0 87.8 1041.7 178.1 2349 1956 22 1934 0.01 0.19 0.71 670
10 3.65 1.73 6.05 1.43 11.28 16.17 1.90 52.65 23.15 248.0 73.5 336.1 89.1 1046.9 180.1 2598 2088 39 2049 0.02 0.18 0.89 659
14 14.95 4.13 16.32 3.09 19.54 25.35 3.37 101.40 69.34 1036.2 358.4 1848.6 523.7 6224.1 915.5 13979 11149 72 11077 0.01 0.18 1.07 785
15 6.98 1.65 7.09 1.24 7.90 10.43 0.85 31.50 16.60 211.7 68.4 349.4 105.1 1338.6 223.0 2736 2373 29 2344 0.01 0.13 1.16 713
16 7.52 0.47 3.33 1.04 15.92 65.27 21.77 300.00 115.98 1036.0 234.0 737.2 127.3 1064.5 139.4 8195 3862 108 3754 0.03 0.40 0.84 720
17 24.65 10.28 17.88 4.81 28.36 30.37 4.76 79.12 38.49 421.2 119.0 529.3 145.0 1775.6 279.7 4450 3484 96 3387 0.03 0.28 0.62 838
18 1.42 0.31 1.59 0.27 2.04 3.46 0.35 13.94 8.79 123.8 46.4 259.5 83.8 1123.5 200.6 1705 1868 8 1860 0.00 0.13 1.25 591
19 5.69 1.84 8.12 1.68 11.64 17.62 1.63 66.71 38.64 507.8 163.5 816.4 231.1 2905.9 463.0 6364 5236 43 5193 0.01 0.13 1.04 696
20 17.84 1.94 6.15 1.23 8.03 13.63 2.38 87.26 65.46 1002.9 354.3 1829.0 501.3 5997.9 920.2 14014 10792 33 10758 0.00 0.16 0.95 803
24 1.88 0.74 2.68 0.72 4.92 7.82 0.81 31.00 17.74 248.8 91.3 462.5 124.6 1440.4 233.6 3366 2668 18 2650 0.01 0.14 0.82 610
25 1.28 1.37 6.45 1.25 11.00 17.76 0.67 53.84 27.35 304.6 87.5 408.5 115.3 1464.8 240.1 3289 2740 39 2702 0.01 0.06 1.11 584
27 2.50 0.82 2.24 0.63 4.40 7.48 1.17 22.70 12.27 151.3 46.6 232.2 70.0 911.2 155.3 1816 1618 17 1602 0.01 0.25 0.73 630
28 2.96 2.90 16.18 2.18 10.46 8.76 3.51 20.76 10.05 117.1 37.1 199.4 67.2 976.3 175.3 1392 1647 44 1603 0.03 0.76 1.50 643
30 6.51 4.01 9.00 1.35 7.57 10.01 1.05 62.07 50.69 786.2 271.4 1358.1 354.2 3966.6 559.6 10628 7442 33 7409 0.00 0.10 0.95 707
12 4.40 1.86 7.31 2.23 18.57 25.41 1.99 80.69 41.95 549.4 188.5 903.8 218.9 2322.5 355.3 6905 4718 57 4661 0.01 0.12 0.76 674
21 5.74 1.27 10.34 2.96 21.20 19.56 0.86 50.23 23.34 269.5 84.8 406.0 112.9 1343.0 213.5 3189 2559 56 2503 0.02 0.08 0.93 696
22 5.44 1.78 18.11 5.85 77.25 168.04 13.85 511.38 199.81 1866.2 447.8 1527.9 277.0 2832.8 308.6 17517 8257 285 7972 0.04 0.13 0.86 692
8 7.57 7.23 29.87 6.83 46.15 58.80 3.04 217.88 124.02 1606.0 507.0 2240.5 514.3 5199.1 739.3 18385 11300 152 11148 0.01 0.07 0.95 720
T20200521-03
1 8.21 <0.027 12.64 0.25 4.39 8.03 1.04 25.24 6.41 56.8 16.9 67.4 12.9 116.5 21.8 531 350 26 324 0.08 0.20 15.63 728
2 5.16 0.03 3.40 0.05 1.32 5.72 0.62 40.47 15.27 161.2 50.1 195.3 36.4 325.9 56.2 1556 892 11 881 0.01 0.09 16.3337 687
3 5.16 <0.025 6.03 0.10 2.63 4.84 0.51 20.54 5.66 54.7 17.3 67.7 12.7 117.3 20.9 524 331 14 317 0.04 0.13 18.18 687
4 6.88 0.02 6.00 0.15 3.14 8.03 0.71 38.65 12.13 114.3 35.3 128.7 23.2 200.4 34.0 1046 605 18 587 0.03 0.10 11.38 712
5 19.04 0.11 5.14 0.23 3.96 5.56 0.88 23.77 7.09 71.2 24.0 96.9 18.6 170.5 29.6 743 457 16 442 0.04 0.20 5.96 810
6 6.26 <0.031 8.20 0.07 1.61 3.72 0.56 13.41 3.87 35.2 10.9 40.8 7.7 67.4 11.9 320 205 14 191 0.07 0.22 34.87 704
7 6.69 <0.029 12.92 0.13 3.01 7.03 0.87 26.53 7.75 78.6 25.6 99.9 19.3 174.6 30.7 774 487 24 463 0.05 0.17 29.93 709
8 6.62 <0.0215 7.07 0.09 1.74 5.93 0.53 30.00 10.01 105.9 34.8 134.9 25.1 224.4 36.1 1030 617 15 601 0.03 0.10 23.35 709
9 10.60 0.04 11.43 0.33 3.89 8.15 1.07 31.40 9.31 93.9 30.9 120.7 22.7 198.9 34.3 936 567 25 542 0.05 0.18 10.25 751
11 9.09 0.54 9.54 0.31 3.89 6.12 0.94 24.95 7.51 72.7 23.7 92.2 17.1 156.9 25.7 719 442 21 421 0.05 0.20 5.65 737
12 12.70 0.34 10.70 0.43 6.99 11.10 2.18 42.13 10.94 99.4 29.0 104.6 18.7 160.6 26.2 857 523 32 492 0.06 0.27 5.89 769
13 3.15 <0.039 4.26 0.06 1.25 3.05 0.31 14.13 4.06 38.3 11.5 43.6 8.1 73.7 12.5 342 215 9 206 0.04 0.12 22.04 648
15 12.00 0.02 6.23 0.25 4.26 8.72 0.90 33.68 9.58 94.5 30.9 128.1 24.5 219.0 37.5 951 598 20 578 0.04 0.14 7.58 763
16 6.95 <0.0250 6.30 0.12 2.66 5.44 0.88 22.28 6.68 70.1 23.8 95.7 19.0 177.8 31.2 706 462 15 447 0.03 0.21 15.77 713
17 4.46 <0.0237 2.62 0.06 0.70 2.23 0.23 12.18 3.89 35.8 10.4 38.3 7.3 65.1 10.7 308 189 6 184 0.03 0.11 14.79 675
18 6.15 0.03 2.37 0.11 1.78 5.48 0.51 29.24 9.55 93.8 29.7 113.1 22.3 201.0 34.8 883 544 10 533 0.02 0.10 6.08 702
20 9.40 7.29 25.93 2.49 18.25 12.98 1.91 42.81 11.81 105.1 31.1 115.4 20.4 183.2 29.3 921 608 69 539 0.13 0.22 1.49 740
21 7.51 <0.024 10.26 0.22 3.92 7.68 0.75 27.81 7.51 71.2 22.3 86.8 16.3 145.4 24.3 680 425 23 402 0.06 0.14 14.82 720
22 5.36 3.06 12.43 0.57 3.55 5.61 0.55 29.27 10.46 114.6 36.9 144.7 27.8 246.8 38.9 1115 675 26 649 0.04 0.11 2.14 691
23 5.52 0.03 3.51 0.17 3.01 7.44 0.69 36.89 11.68 107.6 31.5 111.4 20.2 179.3 29.1 929 543 15 528 0.03 0.10 5.98 693
24 6.18 <0.038 8.39 0.09 2.50 6.00 0.52 26.71 8.69 87.8 28.8 112.6 22.0 196.5 32.0 859 533 17 515 0.03 0.11 28.62 703
26 2.52 17.03 0.83 6.48 8.67 1.17 32.87 9.50 91.4 28.7 107.6 19.8 173.5 28.3 847 528 37 492 0.07 0.19 2.87
27 3.21 <0.026 1.09 <0.0212 0.64 3.30 0.30 23.32 9.44 95.4 30.6 117.9 23.8 217.2 33.5 921 557 5 551 0.01 0.08 2.28 649
28 5.06 0.03 5.97 0.11 1.58 3.67 0.44 14.89 4.40 42.9 13.4 51.2 9.8 89.9 14.6 398 253 12 241 0.05 0.16 16.05 686
29 7.75 1.31 13.29 0.36 3.40 5.73 0.71 27.38 8.37 79.8 24.8 92.0 17.2 153.0 24.2 731 452 25 427 0.06 0.14 4.65 722
30 8.72 <0.028 3.98 0.17 2.99 7.48 0.82 40.42 13.30 130.4 41.4 163.3 32.1 305.2 51.1 1283 793 15 777 0.02 0.12 7.35 733
T20200521-04
1 6.20 <0.045 5.74 0.08 2.42 5.18 0.46 18.33 4.59 43.1 13.1 48.8 9.1 77.7 14.9 385 243 14 230 0.06 0.13 23.76 703
2 6.12 0.03 8.72 0.11 2.80 5.90 0.88 24.51 6.44 62.6 19.3 74.4 13.5 124.1 22.2 579 365 18 347 0.05 0.19 22.71 702
3 12.55 <0.0224 4.64 0.13 2.73 4.62 0.85 17.81 4.97 48.9 16.5 66.0 12.8 118.4 21.9 497 320 13 307 0.04 0.25 11.43 768
4 2.93 <0.0225 2.99 0.11 1.92 4.34 0.24 18.77 5.53 53.9 16.6 64.0 12.0 109.4 19.7 487 309 10 300 0.03 0.07 8.76 642
5 5.73 <0.035 8.63 0.16 2.49 5.43 0.49 24.29 7.19 68.9 21.8 86.4 16.2 147.6 26.2 675 416 17 399 0.04 0.11 17.29 696
6 6.12 <0.028 7.95 0.16 2.14 5.49 0.74 20.86 5.46 46.7 14.6 55.5 10.4 93.5 16.9 433 280 16 264 0.06 0.18 15.92 702
7 8.51 0.06 6.19 0.27 4.56 7.97 1.09 32.23 9.09 85.3 27.2 105.9 20.7 189.4 35.1 819 525 20 505 0.04 0.18 6.57 731
8 4.17 <0.036 7.68 0.33 6.51 12.09 0.81 42.89 11.26 102.6 30.3 110.4 19.7 169.8 28.1 872 542 27 515 0.05 0.10 7.14 670
9 7.59 0.08 8.81 0.33 5.41 11.13 0.93 53.25 16.45 158.3 47.8 178.8 31.9 274.9 47.5 1413 836 27 809 0.03 0.10 7.58 721
10 4.45 <0.034 0.50 0.04 0.53 1.84 0.18 13.97 4.93 41.6 8.9 24.7 3.7 29.3 4.6 277 135 3 132 0.02 0.08 4.39 675
11 2.76 0.15 2.01 0.08 0.73 1.77 0.11 12.29 5.58 74.2 28.4 129.5 27.7 268.9 47.4 896 599 5 594 0.01 0.05 4.54 638
12 6.76 <0.034 3.24 0.15 2.29 7.07 0.85 46.42 18.97 213.9 72.9 303.7 61.5 588.1 102.3 2291 1421 14 1408 0.01 0.11 6.75 710
13 9.14 <0.0278 10.31 0.13 2.40 6.00 1.03 26.10 7.07 70.5 23.1 87.8 16.6 147.8 26.5 693 425 20 405 0.05 0.21 25.61 738
14 7.69 <0.026 7.95 0.12 2.88 5.36 0.64 22.21 6.29 67.2 23.6 101.8 21.0 201.6 36.8 714 497 17 480 0.04 0.15 20.07 722
15 11.11 <0.023 10.54 0.24 4.04 7.22 0.94 28.05 7.93 80.3 26.7 106.2 20.1 177.0 31.1 810 500 23 477 0.05 0.18 13.75 756
16 6.25 <0.038 8.36 0.15 3.25 5.86 0.65 23.59 6.35 59.9 19.0 75.6 14.4 132.2 22.9 570 372 18 354 0.05 0.15 17.42 704
17 6.40 <0.0237 7.98 0.13 2.57 5.62 0.50 22.55 6.19 57.4 17.5 64.9 11.6 103.9 17.1 518 318 17 301 0.06 0.12 18.63 706
18 5.44 <0.0186 1.35 0.06 1.13 4.86 0.23 32.08 12.37 129.3 39.7 152.3 28.6 253.9 42.5 1225 698 8 691 0.01 0.04 6.77 692
19 3.17 0.06 3.52 0.25 1.49 3.88 0.42 15.87 4.57 45.7 13.8 52.0 9.7 90.4 15.2 412 257 10 247 0.04 0.14 4.05 648
20 3.52 <0.038 1.91 0.03 0.49 1.76 0.24 11.65 4.13 46.2 14.9 60.5 12.5 120.7 22.2 470 297 4 293 0.02 0.12 19.73 656
21 5.58 <0.034 2.74 0.05 1.10 2.03 0.19 8.93 2.60 25.9 8.7 33.7 6.6 62.1 10.2 254 165 6 159 0.04 0.12 18.49 694
22 6.86 <0.049 10.54 0.24 4.15 6.48 1.36 25.02 6.82 63.5 19.6 73.6 13.8 124.4 20.7 585 370 23 347 0.07 0.29 13.69 712
23 3.54 <0.0176 1.16 0.03 0.85 3.25 0.20 24.24 12.03 167.2 64.7 292.9 64.3 631.3 104.1 2049 1366 5 1361 0.00 0.05 11.66 657
24 8.24 <0.031 5.81 0.13 2.49 5.37 0.58 21.90 5.56 54.1 16.9 66.0 12.2 112.4 19.0 505 322 14 308 0.05 0.14 13.66 728
25 6.01 <0.029 9.23 0.12 2.14 4.11 0.90 16.20 4.67 44.6 13.8 54.3 10.4 94.2 16.4 419 271 16 254 0.06 0.29 23.88 700
26 7.47 <0.030 5.65 0.21 3.42 6.71 1.20 29.77 7.95 76.5 24.1 99.1 19.7 188.3 33.8 756 496 17 479 0.04 0.22 8.31 719
27 7.48 <0.027 3.44 0.06 2.16 3.14 0.50 15.71 5.12 48.5 15.8 61.8 11.9 105.9 18.0 467 292 9 283 0.03 0.18 19.42 719
28 7.83 <0.034 4.39 0.08 1.80 3.81 0.46 15.48 4.14 38.3 11.6 44.3 8.3 73.8 12.4 342 219 11 208 0.05 0.16 17.04 723
29 1.98 <0.030 2.45 0.02 0.60 1.88 0.16 10.05 3.12 31.8 10.0 37.5 7.3 65.7 11.5 291 182 5 177 0.03 0.09 33.07 614
30 10.27 0.17 12.27 0.98 15.10 24.44 3.86 82.89 20.18 173.6 47.5 162.3 28.1 235.2 36.7 1355 843 57 786 0.07 0.24 3.63 748
Table 4. The isotope chronology data of Tiechanghe area, west Sichuan.
Table 4. The isotope chronology data of Tiechanghe area, west Sichuan.
No. Unit Location Rock Mineral Method genetic type Age (Ma) Reference
1 Sanyanlong-Fangmaping
-Galazi
Sanyanlong-Fangmaping Biotite monzonitic granite Zircon LA-ICP-MS Adakite 208 ± 2 45
Granodiorite Zircon I-type granite 212 ± 2 45
Galazi Monzonitic granite Zircon LA-ICP-MS I-type granite 211.5 ± 1.2 17
Granodiorite Zircon LA-ICP-MS I-type granite 215.6 ± 1.1 17
2 Dingtianzhu Dingtianzhu Quartz monzonite Zircon LA-ICP-MS I-type granite 228 ± 4 10
3 Riluku porphyritic granite Zircon LA-ICP-MS high K adakite 219 ± 6 10
Biotite monzogranite Zircon LA-ICP-MS 207 ± 1 22
Biotite monzogranite Zircon LA-ICP-MS 207 ± 1 22
Biotite monzogranite Zircon LA-ICP-MS 206 ± 1 22
Biotite monzogranite Zircon LA-ICP-MS 208 ± 1 22
Biotite monzogranite Zircon LA-ICP-MS 207 ± 1 22
4 Lanniba Lanniba Biotite Granite Zircon LA-ICP-MS I-type granite 211.4 ±1.5 44
Muscovite syenite granite Zircon LA-ICP-MS I-type granite 208.2 ± 1.6 38
Biotite syenite granite Zircon LA-ICP-MS I-type granite 173.5 ± 1.3 38
Monzonitic granite Zircon LA-ICP-MS I-type granite 208.3 ± 2.2 38
Granodiorite Zircon LA-ICP-MS I-type granite 214.6 ± 2.0 38
Granodiorite Zircon LA-ICP-MS I-type granite 216.5 ± 1.9 38
Quartz diorite Zircon LA-ICP-MS I-type granite 213.3 ± 1.8 38
6 Dichishan Dichishan Granite Zircon LA-ICP-MS S-type granite 201.9 ± 0.8 25
Pegmatite molybdenite Re-Os 188.6 ± 4.8 25
7 Yangfanggou Yangfanggou Syenite Zircon LA-ICP-MS I-type granite 211.4 ± 1.5 10
8 Xinhuoshan Xinhuoshan Biotite Granite Zircon LA-ICP-MS A-type granite 161.5 ± 0.6 29
Daheibian south Granite Zircon SHRIMP —— 176 ± 7 28
Wenjiaping Biotite Granite Zircon LA-ICP-MS 164.6 ± 0.9 33
Xinhuoshan Biotite Granite Zircon LA-ICP-MS 161.5 ± 0.6 29
Wenjiaping Biotite Granite Zircon LA-ICP-MS 160.9 ± 1.0 48
Wenjiaping porphyraceous granite Zircon LA-ICP-MS 159.0 ± 0.7 34
Xinhuoshan Granite Zircon LA-ICP-MS I-type granite 161.8 ± 1.2 62
Xinhuoshan Granite Zircon LA-ICP-MS I-type granite 161.8 ± 1.7 62
Xinhuoshan Granite Zircon LA-ICP-MS I-type granite 165.2 ± 1.1 62
Xinhuoshan Granite Zircon LA-ICP-MS I-type granite 165.2 ± 1.4 62
Shimenkan Granite Zircon LA-ICP-MS 163.3 ± 0.7 34
154.5 ± 2.4 34
147.3 ± 2.3 34
Shimenkan Granite Sphene LA-ICP-MS 164.0 ± 3.0 34
Shimenkan Granite Sphene LA-ICP-MS 172.5 ± 1.9 34
Shimenkan Granite Sphene LA-ICP-MS 182.7 ± 2.5 34
Shimenkan Granite Sphene LA-ICP-MS 193.3 ± 3.6 34
Shimenkan Granite Sphene LA-ICP-MS 203.6 ± 2.9 34
Xinhuoshan Granite Apatite LA-ICP-MS 155.0 ± 4.8 34
9 Western and eastern Jiulong County Granodiorite Zircon LA-ICP-MS 213 ± 1 22
Monzonitic granite Zircon LA-ICP-MS 191 ± 1 22
10 Northern Jiulong County Monzogabbro Zircon LA-ICP-MS 211 ± 1, 217 ± 1 22
Quartz monzonite Zircon LA-ICP-MS 208 ± 1 22
11 Wulaxi Wulaxi Two-mica granite Zircon LA-ICP-MS A-type granite 159.3 ± 0.9 30
Wulaxi Two-mica granite Zircon SHRIMP 166.6 ± 1.1 50
Wulaxi Tungsten-molybdenum ore Molybdenite Re-Os 168.1 ± 6.4 60
Wulaxi Two-mica granite Zircon LA-ICP-MS 159.3 ± 0.9 30
Wulaxi Tungsten-molybdenum ore Molybdenite Re-Os 171.4 ± 1.7 34
Wulaxi Tungsten-molybdenum ore Molybdenite Re-Os 166.8 ± 1.7 35
Zier Tungsten-molybdenum ore Molybdenite Re-Os 160.3 ± 1.6 This paper
Wulaxi Granite Zircon LA-ICP-MS 166.0 ± 0.9 35
Wulaxi Granite Zircon LA-ICP-MS 158.9 ± 0.7 34
Wulaxi Granite Zircon LA-ICP-MS 163.1 ± 1.3 34
151.1 ± 1.8 34
Wulaxi Granite Apatite LA-ICP-MS 152.1 ± 4.6 34
Wulaxi Granite Apatite LA-ICP-MS 168.0 ± 4.6 34
Wulaxi Granite Apatite LA-ICP-MS 163.3 ± 1.7 34
Wulaxi Molybdenite Re-Os 163.7 ± 1.9 50
Wulaxi Granite Zircon LA-ICP-MS I-type granite 168.5 ± 1.1 62
Wulaxi Granite Zircon LA-ICP-MS I-type granite 168.4 ± 1.2 62
Wulaxi Granite Zircon LA-ICP-MS I-type granite 170.1 ± 0.5 62
Wulaxi Granite Zircon LA-ICP-MS I-type granite 170.1 ± 0.6 62
Wulaxi Granite Monazite LA-ICP-MS 154.1 ± 0.7 34
12 Qiapengzi Landiao Monzonitic granite Zircon LA-ICP-MS 143.5 ± 1.0 26
Monzonitic granite Zircon LA-ICP-MS 157.1 ± 1.6 26
Qiaopengzi Monzonitic granite Zircon LA-ICP-MS 147 ± 2 26
Monzonitic granite Zircon LA-ICP-MS 168.2 ± 0.9 26
Landiao Monzonitic granite Monazite LA-ICP-MS 154.6 ± 0.6 26
Landiao Monzonitic granite Monazite LA-ICP-MS 152.8 ± 0.5 26
14 Baitai Baitai pegmatite Columbite-tantalite LA-ICP-MS 188.9 ± 1.6 24
Biotite monzogranite Zircon LA-ICP-MS 212.6 ± 3.3 27
Biotite monzogranite Zircon LA-ICP-MS 213.5 ± 1.7 27
Biotite monzogranite Zircon LA-ICP-MS 212.6 ± 1.8 27
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated