Submitted:
21 August 2024
Posted:
21 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Liquid Biopsy
3. Head and Neck Squamous Cell Carcinoma
4. EBV+ Nasopharyngeal Carcinoma
5. Other Types of Head and Neck Cancers
6. Challenges and Limitations
7. Conclusion and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Mody, M.D.; Rocco, J.W.; Yom, S.S.; Haddad, R.I.; Saba, N.F. Head and neck cancer. The Lancet 2021, 398, 2289–2299. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B. AJCC Cancer Staging Manual, 8th Up to date with Vulva Version 9 protocol ed.; Mahul B. Amin, S.B.E., Frederick L. Greene, David R. Byrd, Robert K. Brookland, Mary Kay Washington, Jeffrey E. Gershenwald, Carolyn C. Compton, Kenneth R. Hess, Daniel C. Sullivan, J. Milburn Jessup, James D. Brierley, Lauri E. Gaspar, Richard L. Schilsky, Charles M. Balch, David P. Winchester, Elliot A. Asare, Martin Madera, Donna M. Gress, Laura R. Meyer, Ed.; American College of Surgeons: 2017.
- Gormley, M.; Creaney, G.; Schache, A.; Ingarfield, K.; Conway, D.I. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. British Dental Journal 2022, 233, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Mandel, P.; Metais, P. Nucleic acids of human blood plasma. 1948. [Google Scholar]
- Pös, O.; Biró, O.; Szemes, T.; Nagy, B. Circulating cell-free nucleic acids: characteristics and applications. European Journal of Human Genetics 2018, 26, 937–945. [Google Scholar] [CrossRef]
- Grabuschnig, S.; Bronkhorst, A.J.; Holdenrieder, S.; Rosales Rodriguez, I.; Schliep, K.P.; Schwendenwein, D.; Ungerer, V.; Sensen, C.W. Putative origins of cell-free DNA in humans: a review of active and passive nucleic acid release mechanisms. International journal of molecular sciences 2020, 21, 8062. [Google Scholar] [CrossRef] [PubMed]
- Spector, B.L.; Harrell, L.; Sante, D.; Wyckoff, G.J.; Willig, L. The methylome and cell-free DNA: current applications in medicine and pediatric disease. Pediatric research 2023, 94, 89–95. [Google Scholar] [CrossRef]
- Celec, P.; Vlková, B.; Lauková, L.; Bábíčková, J.; Boor, P. Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases. Expert reviews in molecular medicine 2018, 20, e1. [Google Scholar] [CrossRef]
- Polina, I.A.; Ilatovskaya, D.V.; DeLeon-Pennell, K.Y. Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clinica Chimica Acta 2020, 503, 145–150. [Google Scholar] [CrossRef]
- Xu, Y.; Song, Y.; Chang, J.; Zhou, X.; Qi, Q.; Tian, X.; Li, M.; Zeng, X.; Xu, M.; Zhang, W. High levels of circulating cell-free DNA are a biomarker of active SLE. European journal of clinical investigation 2018, 48, e13015. [Google Scholar] [CrossRef]
- Leon, S.; Shapiro, B.; Sklaroff, D.; Yaros, M. Free DNA in the serum of cancer patients and the effect of therapy. Cancer research 1977, 37, 646–650. [Google Scholar]
- Schmidt, H.; Kulasinghe, A.; Kenny, L.; Punyadeera, C. The development of a liquid biopsy for head and neck cancers. Oral oncology 2016, 61, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-L.; Chang, Y.-S.; Li, H.-P. Molecular Diagnosis of Nasopharyngeal Carcinoma: Past and Future. Biomedical Journal 2024, 100748. [Google Scholar] [CrossRef] [PubMed]
- Britze, T.E.; Jakobsen, K.K.; Grønhøj, C.; von Buchwald, C. A systematic review on the role of biomarkers in liquid biopsies and saliva samples in the monitoring of salivary gland cancer. Acta Oto-Laryngologica 2023, 143, 709–713. [Google Scholar] [CrossRef]
- Jakimovska, F.; Stojkovski, I.; Kjosevska, E. Nasal Cavity and Paranasal Sinus Cancer: Diagnosis and Treatment. Current Oncology Reports 2024, 1–13. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Z.; Lei, J. CTC, ctDNA, and exosome in thyroid cancers: a review. International journal of molecular sciences 2023, 24, 13767. [Google Scholar] [CrossRef]
- Dao, J.; Conway, P.J.; Subramani, B.; Meyyappan, D.; Russell, S.; Mahadevan, D. Using cfDNA and ctDNA as oncologic markers: a path to clinical validation. International journal of molecular sciences 2023, 24, 13219. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, L.S.; Heringer, M.; Ferrer, V.P. ctDNA as a cancer biomarker: A broad overview. Critical reviews in oncology/hematology 2020, 155, 103109. [Google Scholar] [CrossRef] [PubMed]
- Heitzer, E.; Haque, I.S.; Roberts, C.E.; Speicher, M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics 2019, 20, 71–88. [Google Scholar] [CrossRef]
- Mastoraki, S.; Strati, A.; Tzanikou, E.; Chimonidou, M.; Politaki, E.; Voutsina, A.; Psyrri, A.; Georgoulias, V.; Lianidou, E. ESR1 methylation: A liquid biopsy–based epigenetic assay for the follow-up of patients with metastatic breast cancer receiving endocrine treatment. Clinical Cancer Research 2018, 24, 1500–1510. [Google Scholar] [CrossRef]
- Méhes, G. Liquid biopsy for predictive mutational profiling of solid cancer: the pathologist’s perspective. Journal of biotechnology 2019, 297, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Leo, P.; Jones, L.; Duijf, P.H.; Hartel, G.; Kenny, L.; Vasani, S.; Punyadeera, C. A comparison between mutational profiles in tumour tissue DNA and circulating tumour DNA in head and neck squamous cell carcinoma---A systematic review. Mutation Research/Reviews in Mutation Research 2023, 108477. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.L.; D’Agostino, R.B., Jr.; Meegalla, N.; Petro, R.; Commander, S.; Topaloglu, U.; Zhang, W.; Porosnicu, M. The prognostic and therapeutic value of the mutational profile of blood and tumor tissue in head and neck squamous cell carcinoma. The oncologist 2021, 26, e279–e289. [Google Scholar] [CrossRef] [PubMed]
- Kampel, L.; Feldstein, S.; Tsuriel, S.; Hannes, V.; Carmel Neiderman, N.N.; Horowitz, G.; Warshavsky, A.; Leider-Trejo, L.; Hershkovitz, D.; Muhanna, N. Mutated TP53 in Circulating Tumor DNA as a Risk Level Biomarker in Head and Neck Squamous Cell Carcinoma Patients. Biomolecules 2023, 13, 1418. [Google Scholar] [CrossRef]
- Misawa, K.; Imai, A.; Matsui, H.; Kanai, A.; Misawa, Y.; Mochizuki, D.; Mima, M.; Yamada, S.; Kurokawa, T.; Nakagawa, T. Identification of novel methylation markers in HPV-associated oropharyngeal cancer: Genome-wide discovery, tissue verification and validation testing in ctDNA. Oncogene 2020, 39, 4741–4755. [Google Scholar] [CrossRef]
- Mydlarz, W.K.; Hennessey, P.T.; Wang, H.; Carvalho, A.L.; Califano, J.A. Serum biomarkers for detection of head and neck squamous cell carcinoma. Head & neck 2016, 38, 9–14. [Google Scholar]
- Lim, Y.; Wan, Y.; Vagenas, D.; Ovchinnikov, D.A.; Perry, C.F.; Davis, M.J.; Punyadeera, C. Salivary DNA methylation panel to diagnose HPV-positive and HPV-negative head and neck cancers. BMC cancer 2016, 16, 1–12. [Google Scholar] [CrossRef]
- Pall, A.H.; Jakobsen, K.K.; Grønhøj, C.; von Buchwald, C. Circulating tumour DNA alterations as biomarkers for head and neck cancer: a systematic review. Acta Oncologica 2020, 59, 845–850. [Google Scholar] [CrossRef]
- Tian, F.; Yip, S.P.; Kwong, D.L.W.; Lin, Z.; Yang, Z.; Wu, V.W.C. Promoter hypermethylation of tumor suppressor genes in serum as potential biomarker for the diagnosis of nasopharyngeal carcinoma. Cancer Epidemiology 2013, 37, 708–713. [Google Scholar] [CrossRef]
- Yang, X.; Dai, W.; Kwong, D.L.w.; Szeto, C.Y.; Wong, E.H.w.; Ng, W.T.; Lee, A.W.; Ngan, R.K.; Yau, C.C.; Tung, S.Y. Epigenetic markers for noninvasive early detection of nasopharyngeal carcinoma by methylation-sensitive high resolution melting. International journal of cancer 2015, 136, E127–E135. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.-S.; Kwong, D.L.-W.; Sham, J.S.-T.; Wei, W.I.; Kwong, Y.-L.; Yuen, A.P.-W. Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma. Clinical cancer research 2004, 10, 2401–2406. [Google Scholar] [CrossRef]
- Tan, R.; Phua, S.K.A.; Soong, Y.L.; Oon, L.L.E.; Chan, K.S.; Lucky, S.S.; Mong, J.; Tan, M.H.; Lim, C.M. Clinical utility of Epstein-Barr virus DNA and other liquid biopsy markers in nasopharyngeal carcinoma. Cancer Communications 2020, 40, 564–585. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, K.; Mal, S.; Ghosh, M.; Chattopadhyay, N.R.; Roy, S.D.; Chakraborty, K.; Mukherjee, S.; Aier, M.; Choudhuri, T. Blood-based DNA methylation in advanced Nasopharyngeal Carcinoma exhibited distinct CpG methylation signature. Scientific Reports 2023, 13, 22086. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.S.; Kerrigan, K.C.; Yang, D. Circulating tumor DNA profiling and serial analysis in salivary gland carcinomas reveal unique mutational subsets and actionable alterations. 2022. [Google Scholar] [CrossRef]
- Metcalf, R.; Mohan, S.; Hilton, S.; Pierce, J.; Hudson, J.; Betts, G.; Chaturvedi, A.; Homer, J.; Leong, H.; Schofield, P. The application of liquid biopsies in metastatic salivary gland cancer to identify candidate therapeutic targets. Annals of Oncology 2017, 28, vii8. [Google Scholar] [CrossRef]
- Cabezas-Camarero, S.; de la Orden García, V.; García-Barberán, V.; Mediero-Valeros, B.; Subhi-Issa, A.I.; Llovet García, P.; Bando-Polaino, I.; Merino Menéndez, S.; Pérez-Segura, P.; Díaz-Rubio, E. Nasoethmoidal intestinal-type adenocarcinoma treated with cetuximab: role of liquid biopsy and BEAMing in predicting response to anti-epidermal growth factor receptor therapy. The Oncologist 2019, 24, 293–300. [Google Scholar] [CrossRef]
- Freiberger, S.N.; Turko, P.; Hüllner, M.; Dummer, R.; Morand, G.B.; Levesque, M.P.; Holzmann, D.; Rupp, N.J. Who’s driving? Switch of drivers in immunotherapy-treated progressing sinonasal melanoma. Cancers 2021, 13, 2725. [Google Scholar] [CrossRef] [PubMed]
- Tarasova, V.D.; Tsai, J.; Masannat, J.; Hernandez Prera, J.C.; Hallanger Johnson, J.; Veloski, C.; Agosto Salgado, S.; McIver, B.; Drusbosky, L.M.; Chung, C.H. Characterization of the Thyroid Cancer Genomic Landscape by Plasma-Based Circulating Tumor DNA Next-Generation Sequencing. Thyroid 2024, 34, 197–205. [Google Scholar] [CrossRef]
- Sandulache, V.C.; Williams, M.D.; Lai, S.Y.; Lu, C.; William, W.N.; Busaidy, N.L.; Cote, G.J.; Singh, R.R.; Luthra, R.; Cabanillas, M.E. Real-time genomic characterization utilizing circulating cell-free DNA in patients with anaplastic thyroid carcinoma. Thyroid 2017, 27, 81–87. [Google Scholar] [CrossRef]
- Lee, T.H.; Jeon, H.J.; Choi, J.H.; Kim, Y.J.; Hwangbo, P.-N.; Park, H.S.; Son, C.Y.; Choi, H.-G.; Kim, H.N.; Chang, J.W. A high-sensitivity cfDNA capture enables to detect the BRAF V600E mutation in papillary thyroid carcinoma. Korean Journal of Chemical Engineering 2023, 40, 429–435. [Google Scholar] [CrossRef]
- Almubarak, H.; Qassem, E.; Alghofaili, L.; Alzahrani, A.S.; Karakas, B. Non-invasive molecular detection of minimal residual disease in papillary thyroid cancer patients. Frontiers in oncology 2020, 9, 1510. [Google Scholar] [CrossRef] [PubMed]
- Khatami, F.; Larijani, B.; Heshmat, R.; Nasiri, S.; Haddadi-Aghdam, M.; Teimoori-Toolabi, L.; Tavangar, S.M. Hypermethylated RASSF1 and SLC5A8 promoters alongside BRAFV600E mutation as biomarkers for papillary thyroid carcinoma. Journal of cellular physiology 2020, 235, 6954–6968. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Y.; Gao, J.; Li, Z.; Pang, R.; Zhai, T.; Ma, Y.; Wang, Z.; Meng, X. Detection of BRAFV600E mutation of thyroid cancer in circulating tumor DNA by an electrochemical-enrichment assisted ARMS-qPCR assay. Microchemical Journal 2022, 179, 107452. [Google Scholar] [CrossRef]
- Ciampi, R.; Romei, C.; Ramone, T.; Matrone, A.; Prete, A.; Gambale, C.; Materazzi, G.; De Napoli, L.; Torregrossa, L.; Basolo, F. Pre-and post-operative circulating tumoral DNA in patients with medullary thyroid carcinoma. The Journal of Clinical Endocrinology & Metabolism 2022, 107, e3420–e3427. [Google Scholar]
- Santos, V.; Freitas, C.; Fernandes, M.G.; Sousa, C.; Reboredo, C.; Cruz-Martins, N.; Mosquera, J.; Hespanhol, V.; Campelo, R. Liquid biopsy: The value of different bodily fluids. Biomarkers in Medicine 2022, 16, 127–145. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends in molecular medicine 2010, 16, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Liquid biopsy: from discovery to clinical application. Cancer discovery 2021, 11, 858–873. [Google Scholar] [CrossRef]
- Schmidt, H.; Kulasinghe, A.; Perry, C.; Nelson, C.; Punyadeera, C. A liquid biopsy for head and neck cancers. Expert review of molecular diagnostics 2016, 16, 165–172. [Google Scholar] [CrossRef]
- Spector, M.E.; Farlow, J.L.; Haring, C.T.; Brenner, J.C.; Birkeland, A.C. The potential for liquid biopsies in head and neck cancer. Discovery medicine 2018, 25, 251. [Google Scholar]
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov 2021, 11, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol 2022, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Patel, S.; Patel, P.; Tanavde, V. Saliva Based Liquid Biopsies in Head and Neck Cancer: How Far Are We From the Clinic? Front Oncol 2022, 12, 828434. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Birkeland, A.C. Liquid Biopsies in Head and Neck Cancer: Current State and Future Challenges. Cancers (Basel) 2021, 13. [Google Scholar] [CrossRef]
- Mishra, V.; Singh, A.; Chen, X.; Rosenberg, A.J.; Pearson, A.T.; Zhavoronkov, A.; Savage, P.A.; Lingen, M.W.; Agrawal, N.; Izumchenko, E. Application of liquid biopsy as multi-functional biomarkers in head and neck cancer. Br J Cancer 2022, 126, 361–370. [Google Scholar] [CrossRef]
- Cabezas-Camarero, S.; Pérez-Segura, P. Liquid Biopsy in Head and Neck Cancer: Current Evidence and Future Perspective on Squamous Cell, Salivary Gland, Paranasal Sinus and Nasopharyngeal Cancers. Cancers (Basel) 2022, 14. [Google Scholar] [CrossRef]
- Rutkowski, T.W.; Mazurek, A.M.; Śnietura, M.; Hejduk, B.; Jędrzejewska, M.; Bobek-Billewicz, B.; d’Amico, A.; Pigłowski, W.; Wygoda, A.; Składowski, K.; et al. Circulating HPV16 DNA may complement imaging assessment of early treatment efficacy in patients with HPV-positive oropharyngeal cancer. J Transl Med 2020, 18, 167. [Google Scholar] [CrossRef]
- Lele, S.J.; Adilbay, D.; Lewis, E.; Pang, J.; Asarkar, A.A.; Nathan, C.A.O. ctDNA as an Adjunct to Posttreatment PET for Head and Neck Cancer Recurrence Risk Assessment. Otolaryngology–Head and Neck Surgery 2024. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 2019, 13, 34. [Google Scholar] [CrossRef]
- Ferrandino, R.M.; Chen, S.; Kappauf, C.; Barlow, J.; Gold, B.S.; Berger, M.H.; Westra, W.H.; Teng, M.S.; Khan, M.N.; Posner, M.R.; et al. Performance of Liquid Biopsy for Diagnosis and Surveillance of Human Papillomavirus-Associated Oropharyngeal Cancer. JAMA Otolaryngol Head Neck Surg 2023, 149, 971–977. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Rodríguez-Ces, A.M.; López-López, R.; Suárez-Cunqueiro, M.M. Liquid biopsies based on cell-free DNA as a potential biomarker in head and neck cancer. Jpn Dent Sci Rev 2023, 59, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nature reviews Disease primers 2020, 6, 92. [Google Scholar] [CrossRef]
- Marur, S.; Forastiere, A.A. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. In Proceedings of the Mayo Clinic Proceedings; 2016; pp. 386–396. [Google Scholar]
- Pannone, G.; Santoro, A.; Papagerakis, S.; Lo Muzio, L.; De Rosa, G.; Bufo, P. The role of human papillomavirus in the pathogenesis of head & neck squamous cell carcinoma: an overview. Infectious agents and cancer 2011, 6, 1–11. [Google Scholar]
- Economopoulou, P.; Kotsantis, I.; Kyrodimos, E.; Lianidou, E.; Psyrri, A. Liquid biopsy: an emerging prognostic and predictive tool in head and neck squamous cell carcinoma (HNSCC). Focus on circulating tumor cells (CTCs). Oral oncology 2017, 74, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Payne, K.; Spruce, R.; Beggs, A.; Sharma, N.; Kong, A.; Martin, T.; Parmar, S.; Praveen, P.; Nankivell, P.; Mehanna, H. Circulating tumor DNA as a biomarker and liquid biopsy in head and neck squamous cell carcinoma. Head & neck 2018, 40, 1598–1604. [Google Scholar]
- Payne, K.F.; Brotherwood, P.; Suriyanarayanan, H.; Brooks, J.M.; Batis, N.; Beggs, A.D.; Gendoo, D.M.; Mehanna, H.; Nankivell, P. Circulating tumour DNA detects somatic variants contributing to spatial and temporal intra-tumoural heterogeneity in head and neck squamous cell carcinoma. Frontiers in Oncology 2024, 14. [Google Scholar] [CrossRef]
- Hudečková, M.; Koucký, V.; Rottenberg, J.; Gál, B. Gene mutations in circulating tumour DNA as a diagnostic and prognostic marker in head and neck cancer—A systematic review. Biomedicines 2021, 9, 1548. [Google Scholar] [CrossRef]
- Mishra, V.; Singh, A.; Chen, X.; Rosenberg, A.J.; Pearson, A.T.; Zhavoronkov, A.; Savage, P.A.; Lingen, M.W.; Agrawal, N.; Izumchenko, E. Application of liquid biopsy as multi-functional biomarkers in head and neck cancer. British Journal of Cancer 2022, 126, 361–370. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Sougnez, C.; Lichtenstein, L.; Cibulskis, K.; Lander, E.; Gabriel, S.B.; Getz, G.; Ally, A.; Balasundaram, M.; Birol, I.; et al. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef]
- Agrawal, N.; Frederick, M.J.; Pickering, C.R.; Bettegowda, C.; Chang, K.; Li, R.J.; Fakhry, C.; Xie, T.-X.; Zhang, J.; Wang, J. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011, 333, 1154–1157. [Google Scholar] [CrossRef]
- Nwachuku, K.; Johnson, D.E.; Grandis, J.R. The mutational landscape of head and neck squamous cell carcinoma: opportunities for detection and monitoring via analysis of circulating tumor dna. In Early Detection and Treatment of Head & Neck Cancers: Theoretical Background and Newly Emerging Research; Springer, 2021; pp. 107–122. [Google Scholar]
- Brauswetter, D.; Dános, K.; Gurbi, B.; Félegyházi, É.F.; Birtalan, E.; Meggyesházi, N.; Krenács, T.; Tamás, L.; Peták, I. Copy number gain of PIK3CA and MET is associated with poor prognosis in head and neck squamous cell carcinoma. Virchows Archiv 2016, 468, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Kim, B.S.; Kim, J.H. Association between FAT1 mutation and overall survival in patients with human papillomavirus–negative head and neck squamous cell carcinoma. Head & neck 2016, 38, E2021–E2029. [Google Scholar]
- Cochicho, D.; Esteves, S.; Rito, M.; Silva, F.; Martins, L.; Montalvão, P.; Cunha, M.; Magalhães, M.; Gil da Costa, R.M.; Felix, A. PIK3CA gene mutations in HNSCC: Systematic review and correlations with HPV status and patient survival. Cancers 2022, 14, 1286. [Google Scholar] [CrossRef]
- Siravegna, G.; O’Boyle, C.J.; Varmeh, S.; Queenan, N.; Michel, A.; Stein, J.; Thierauf, J.; Sadow, P.M.; Faquin, W.C.; Perry, S.K. Cell-free HPV DNA provides an accurate and rapid diagnosis of HPV-associated head and neck cancer. Clinical Cancer Research 2022, 28, 719–727. [Google Scholar] [CrossRef]
- Hanna, G.; Supplee, J.; Kuang, Y.; Mahmood, U.; Lau, C.; Haddad, R.; Jänne, P.; Paweletz, C. Plasma HPV cell-free DNA monitoring in advanced HPV-associated oropharyngeal cancer. Annals of Oncology 2018, 29, 1980–1986. [Google Scholar] [CrossRef]
- Ferrandino, R.M.; Chen, S.; Kappauf, C.; Barlow, J.; Gold, B.S.; Berger, M.H.; Westra, W.H.; Teng, M.S.; Khan, M.N.; Posner, M.R. Performance of liquid biopsy for diagnosis and surveillance of human papillomavirus–associated oropharyngeal cancer. JAMA Otolaryngology–Head & Neck Surgery 2023, 149, 971–977. [Google Scholar]
- Ferrier, S.T.; Tsering, T.; Sadeghi, N.; Zeitouni, A.; Burnier, J.V. Blood and saliva-derived ctDNA is a marker of residual disease after treatment and correlates with recurrence in human papillomavirus-associated head and neck cancer. Cancer Medicine 2023, 12, 15777–15787. [Google Scholar] [CrossRef]
- Bhambhani, C.; Kang, Q.; Hovelson, D.H.; Sandford, E.; Olesnavich, M.; Dermody, S.M.; Wolfgang, J.; Tuck, K.L.; Brummel, C.; Bhangale, A.D. ctDNA transiting into urine is ultrashort and facilitates noninvasive liquid biopsy of HPV+ oropharyngeal cancer. JCI insight 2024, 9. [Google Scholar] [CrossRef] [PubMed]
- Naegele, S.; Efthymiou, V.; Das, D.; Sadow, P.M.; Richmon, J.D.; Iafrate, A.J.; Faden, D.L. Detection and monitoring of circulating tumor HPV DNA in HPV-associated sinonasal and nasopharyngeal cancers. JAMA Otolaryngology–Head & Neck Surgery 2023, 149, 179–181. [Google Scholar]
- Chantre-Justino, M.; Alves, G.; Delmonico, L. Clinical applications of liquid biopsy in HPV-negative and HPV-positive head and neck squamous cell carcinoma: Advances and challenges. Exploration of Targeted Anti-tumor Therapy 2022, 3, 533. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Chan, A.T.; Le, Q.-T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. The Lancet 2019, 394, 64–80. [Google Scholar] [CrossRef]
- Tsao, S.W.; Yip, Y.L.; Tsang, C.M.; Pang, P.S.; Lau, V.M.Y.; Zhang, G.; Lo, K.W. Etiological factors of nasopharyngeal carcinoma. Oral oncology 2014, 50, 330–338. [Google Scholar] [CrossRef]
- Lee, H.M.; Okuda, K.S.; González, F.E.; Patel, V. Current perspectives on nasopharyngeal carcinoma. Human cell transformation: advances in cell models for the study of cancer and aging 2019, 11–34. [Google Scholar]
- Su, Z.Y.; Siak, P.Y.; Lwin, Y.Y.; Cheah, S.-C. Epidemiology of nasopharyngeal carcinoma: current insights and future outlook. Cancer and Metastasis Reviews 2024, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.D.; Chan, L.Y.; Lo, K.-W.; Leung, S.-F.; Zhang, J.; Chan, A.T.; Lee, J.C.; Hjelm, N.M.; Johnson, P.J.; Huang, D.P. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer research 1999, 59, 1188–1191. [Google Scholar] [PubMed]
- Peng, L.; Yang, Y.; Guo, R.; Mao, Y.P.; Xu, C.; Chen, Y.P.; Sun, Y.; Ma, J.; Tang, L.L. Relationship between pretreatment concentration of plasma Epstein-Barr virus DNA and tumor burden in nasopharyngeal carcinoma: an updated interpretation. Cancer medicine 2018, 7, 5988–5998. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Wu, C.; Li, J.; Chen, F.; He, S.; He, Q.; Zhou, G.; Ma, J.; Sun, Y.; Wei, D. Improving on-treatment risk stratification of cancer patients with refined response classification and integration of circulating tumor DNA kinetics. BMC medicine 2022, 20, 268. [Google Scholar] [CrossRef]
- Chan, K.A.; Woo, J.K.; King, A.; Zee, B.C.; Lam, W.J.; Chan, S.L.; Chu, S.W.; Mak, C.; Tse, I.O.; Leung, S.Y. Analysis of plasma Epstein–Barr virus DNA to screen for nasopharyngeal cancer. New England Journal of Medicine 2017, 377, 513–522. [Google Scholar] [CrossRef]
- Lam, W.J.; Jiang, P.; Chan, K.A.; Cheng, S.H.; Zhang, H.; Peng, W.; Tse, O.O.; Tong, Y.K.; Gai, W.; Zee, B.C. Sequencing-based counting and size profiling of plasma Epstein–Barr virus DNA enhance population screening of nasopharyngeal carcinoma. Proceedings of the National Academy of Sciences 2018, 115, E5115–E5124. [Google Scholar] [CrossRef]
- Nicholls, J.M.; Lee, V.H.-F.; Chan, S.-K.; Tsang, K.-C.; Choi, C.-W.; Kwong, D.L.-W.; Lam, K.-O.; Chan, S.-Y.; Tong, C.-C.; So, T.-H. Negative plasma Epstein-Barr virus DNA nasopharyngeal carcinoma in an endemic region and its influence on liquid biopsy screening programmes. British Journal of Cancer 2019, 121, 690–698. [Google Scholar] [CrossRef]
- Zheng, X.H.; Deng, C.M.; Zhou, T.; Li, X.Z.; Tang, C.L.; Jiang, C.T.; Liao, Y.; Wang, T.M.; He, Y.Q.; Jia, W.H. Saliva biopsy: detecting the difference of EBV DNA methylation in the diagnosis of nasopharyngeal carcinoma. International Journal of Cancer 2023, 153, 882–892. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Wang, G.; Chen, C.; He, L.; Wang, R.; Ouyang, C. Circulating tumor cells: a valuable indicator for locally advanced nasopharyngeal carcinoma. European Archives of Oto-Rhino-Laryngology 2024, 1–10. [Google Scholar] [CrossRef]
- Wu, L.; Wang, J.; Zhu, D.; Zhang, S.; Zhou, X.; Zhu, W.; Zhu, J.; He, X. Circulating Epstein-Barr virus microRNA profile reveals novel biomarker for nasopharyngeal carcinoma diagnosis. Cancer Biomarkers 2020, 27, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Meng, X.; Wei, X.; Zhu, K.; Du, L.; Wang, H. Down-regulated lncRNA ROR in tumor-educated platelets as a liquid-biopsy biomarker for nasopharyngeal carcinoma. Journal of Cancer Research and Clinical Oncology 2023, 149, 4403–4409. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, V.; Miodini, P.; Reduzzi, C.; Alfieri, S.; Daidone, M.; Licitra, L.; Locati, L. Tailoring treatment of salivary duct carcinoma (SDC) by liquid biopsy: ARv7 expression in circulating tumor cells. Annals of Oncology 2018, 29, 1599–1601. [Google Scholar] [CrossRef]
- Fisher, B.M.; Tang, K.; Warkiani, M.; Punyadeera, C.; Batstone, M. A pilot study for presence of circulating tumour cells in adenoid cystic carcinoma. International Journal of Oral and Maxillofacial Surgery 2021, 50, 994–998. [Google Scholar] [CrossRef]
- Cabezas-Camarero, S.; Pérez-Segura, P. Liquid biopsy in head and neck cancer: current evidence and future perspective on squamous cell, salivary gland, paranasal sinus and nasopharyngeal cancers. Cancers 2022, 14, 2858. [Google Scholar] [CrossRef] [PubMed]
- Bigagli, E.; Maggiore, G.; Cinci, L.; D’Ambrosio, M.; Locatello, L.G.; Nardi, C.; Palomba, A.; Leopardi, G.; Orlando, P.; Licci, G. Low levels of miR-34c in nasal washings as a candidate marker of aggressive disease in wood and leather exposed workers with sinonasal intestinal-type adenocarcinomas (ITACs). Translational Oncology 2022, 25, 101507. [Google Scholar] [CrossRef]
- Buglione, M.; Grisanti, S.; Almici, C.; Mangoni, M.; Polli, C.; Consoli, F.; Verardi, R.; Costa, L.; Paiar, F.; Pasinetti, N. Circulating tumour cells in locally advanced head and neck cancer: preliminary report about their possible role in predicting response to non-surgical treatment and survival. European Journal of Cancer 2012, 48, 3019–3026. [Google Scholar] [CrossRef]
- Zeyghami, W.; Hansen, M.-L.U.; Jakobsen, K.K.; Groenhøj, C.; Feldt-Rasmussen, U.; von Buchwald, C.; Hahn, C.H. Liquid biopsies in thyroid cancers: a systematic review and meta-analysis. Endocrine-related cancer 2023, 30. [Google Scholar] [CrossRef]
- Nonaka, T.; Wong, D. Liquid biopsy in head and neck cancer: promises and challenges. Journal of dental research 2018, 97, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.L.D.; Santos-Silva, A.R.; Kowalski, L.P. Diagnostic accuracy of liquid biopsy for Oral potentially malignant disorders and head and neck cancer: an overview of systematic reviews. Current oncology reports 2023, 25, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.A.; Beck, J.; Leu, M.; Oellerich, M.; Rave-Fränk, M.; Walson, P.D.; Schütz, E.; Canis, M. Cell-free plasma DNA for disease stratification and prognosis in head and neck cancer. Clinical Chemistry 2018, 64, 959–970. [Google Scholar] [CrossRef]
- Kong, L.; Birkeland, A.C. Liquid biopsies in head and neck cancer: current state and future challenges. Cancers 2021, 13, 1874. [Google Scholar] [CrossRef] [PubMed]
- Rosing, F.; Meier, M.; Schroeder, L.; Laban, S.; Hoffmann, T.; Kaufmann, A.; Siefer, O.; Wuerdemann, N.; Klußmann, J.P.; Rieckmann, T. Quantification of human papillomavirus cell-free DNA from low-volume blood plasma samples by digital PCR. Microbiology Spectrum 2024, e00024-00024. [Google Scholar] [CrossRef]
- Zwirner, K.; Hilke, F.J.; Demidov, G.; Ossowski, S.; Gani, C.; Rieß, O.; Zips, D.; Welz, S.; Schroeder, C. Circulating cell-free DNA: A potential biomarker to differentiate inflammation and infection during radiochemotherapy. Radiotherapy and Oncology 2018, 129, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Haring, C.T.; Kana, L.A.; Dermody, S.M.; Brummel, C.; McHugh, J.B.; Casper, K.A.; Chinn, S.B.; Malloy, K.M.; Mierzwa, M.; Prince, M.E. Patterns of recurrence in head and neck squamous cell carcinoma to inform personalized surveillance protocols. Cancer 2023, 129, 2817–2827. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.X.; Kut, C.; Quon, H.; Seiwert, T.Y.; D’souza, G.; Fakhry, C. Clinical uncertainties of circulating tumor DNA in human papillomavirus–related oropharyngeal squamous cell carcinoma in the absence of National Comprehensive Cancer Network Guidelines. Journal of Clinical Oncology 2023, 41, 2483. [Google Scholar] [CrossRef]
- Hanna, G.J.; Patel, N.; Tedla, S.G.; Baugnon, K.L.; Aiken, A.; Agrawal, N. Personalizing surveillance in head and neck cancer. American Society of Clinical Oncology Educational Book 2023, 43, e389718. [Google Scholar] [CrossRef]
| Type of Malignancy | Diagnostic Standard |
|---|---|
| Head and neck squamous cell carcinomas | Imaging, endoscopy, primary tumor biopsy and histological analysis, fine needle aspiration with ultrasound guidance in hard-to-access areas [14] |
| Nasopharyngeal carcinoma | Primary tumor biopsy with assistance via nasal endoscopy, imaging [15] |
| Salivary gland carcinomas | Fine needle aspiration and cytological analysis; if unclear, immunohistology of excised tumor tissue can establish diagnosis [16] |
| Sinonasal carcinomas | Imaging with both CT and MRI, endoscopy, primary tumor biopsy, “metabolic biopsy” via 18 F-FDG PET/CT [17] |
| Thyroid carcinomas | Fine needle aspirations with ultrasound guidance [18] |
| Type of Malignancy | Identified Altered ctDNA Genes |
|---|---|
| Head and neck squamous cell carcinomas | TP53, NOTCH1, CDKN2A, CALML5, DNAJC5G, LY6D, EDNRB, TIMP3, PCQAP/MED15, CDKN2B, DAPK1, MGMT, GSTP1, PRDM2, RASSF1, DLEC1, UCHL1, RARβ2, WIF1, DCC, MLH1, CDH1 [24,25,26,27,28,29,30] |
| Nasopharyngeal carcinoma | RASSF1, CDKN2A, CDKN2B, DLEC1, DAPK1, UCHL1, WIF1, RARβ2, CDH1, PLCB3, C18orf1, ZNF516, FGR, PLCB3, FGR, PRKCZ, KDM4B, HLX, ZNF516, MGRN1, UHRF1, SPI1, PLEC1, MPO, ADRBK1, COL11A2, MLLT1, FUT4, MBP, FLNB, SMTN, KCNT1, APEH, HLA-DRB5 [31,32,33,34,35] |
| Salivary gland carcinomas | TP53, PIK3CA, ERBB2, ATM, EGFR, HRAS, BRAF, KRAS, EGFR, CDK6 [36,37] |
| Sinonasal carcinomas | KRAS, NRAS [38,39] |
| Thyroid carcinomas | TP53, BRAF, RAS, RET, ALK, NTRK, PIK3CA, PTEN, RASSF1, SLC5A8 [18,40,41,42,43,44,45,46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
