Preprint
Review

Plant-based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of its Complications: A Review

Altmetrics

Downloads

275

Views

163

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 August 2024

Posted:

26 August 2024

You are already at the latest version

Alerts
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs present limitations in terms of side effects, accessibility and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, retinopathy that can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM, but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Keywords: 
Subject: Medicine and Pharmacology  -   Complementary and Alternative Medicine

Introduction

Diabetes mellitus (DM) is a multifactorial metabolic disorder that has emerged as one of the ten leading causes of death worldwide [1]. Obesity and insulin resistance or insulin deficiency are the major players in the development of DM. If not properly managed, DM may lead to severe late-stage complications that include cerebrovascular, peripheral vascular and ischemic heart disease, kidney failure and retinal damage [2,3]. Four different main types of diabetes are generally recognized; Type 1 diabetes (T1DM), Type 2 diabetes (T2DM), gestational diabetes (GDM) and monogenic diabetes, the most common of which is maturity-onset diabetes of the young (MODY). T1DM and T2DM are the most familiar as they affect a very considerably larger number of patients than other types [4]. T1DM, also previously called insulin-dependent DM, is associated with defective insulin secretion as a result of destruction of the pancreatic β-cells and is predominant in children and teenagers [5]. T2DM which affects about 90% of all cases, was previously known as non-insulin-dependent DM. This primarily affects individuals over 40 years of age, although this is being countered increasingly in the young due to increased childhood obesity. This type is characterized by pancreatic β-cell failure, causing insulin depletion, as well as insulin resistance in organs. Individuals with T2DM tend to be obese and often have a history of gestational diabetes, polycystic ovarian syndrome, cardiovascular disease (CVD) and dyslipidemia [5–8]. GDM is associated with pancreatic β-cell dysfunction and chronic insulin resistance which can occur during pregnancy. MODY is a rare genetic type of DM that commonly emerges during adolescence or early adulthood [4].
It has been estimated that around 537 million individuals have DM worldwide and that this may rise to 783 million by 2040 [9]. Up to 95% of all diabetic individuals are reported to have obesity-related type 2 diabetes (T2DM). A logistic regression model estimated that in 110 developing countries, based on United Nations (UN) population data, there were 366 million people with diabetes, and this number is expected to rise to 552 million by 2030 [10–12]. In developing nations like India, Nepal, Bhutan, China, Pakistan, Indonesia, the occurrence of T2DM has dramatically increased in recent years. In fact, studies have reported that the number of diabetes patients in the low- and middle-income countries will drastically increase in next 19 years [12]. A recent study has also reported that in Bangladesh alone, 10-15% of the adult population has some form of prediabetes or diabetes [13–15]. In these countries, T2DM mostly occurs in individuals between 40 and 59 years of age [16], often who have a history of childhood obesity [17]. The common symptoms of T2DM often precipitating diagnosis include lethargy, irritation, blurry vision, confusion, polydipsia, polyuria, polyphagia, anorexia, vomiting, dehydration, sore muscles, numb feet or hands, foot infection, delayed wound healing, kidney failure, cardiovascular diseases, coma and in extreme cases death [18–20].
While insulin is the only therapy for T1DM, patients with T2DM rely primarily on one or more of a range of oral hypoglycaemic drugs that include α−glucosidase inhibitors, metformin, sulfonylureas, meglitinides, thiazolidinediones, amylin analogues, SGLT-2 inhibitors dipeptidyl peptidase-4 (DPP-4) inhibitors, GLP-1 mimetics and incretin receptor dual agonists. In cases where these medicines are not effective, insulin is then administered [22]. Hypoglycaemia has been documented as one of the most severe adverse side effects of antidiabetic treatments. Nausea, bloating, gas formation, gastrointestinal disorders, urinary and respiratory tract infection are other commonly reported side effects [23]. The use of alternative approaches to better manage DM and its late-stage complications is becoming increasingly popular in many devoloping countries such as India, Bangladesh, Nepal, Pakistan, Indonesis and China. Integrating edible plants with reputed antihyperglycemic activity such as bitter melon, moringa, clove, turmeric, neem, black seeds, or cinnamon, to name a few, in the daily diet is an attractive option that may present fewer side effects than conventional drugs [12,24–27]. In this review, we discuss the potential of plant-based dietary habits in the management of T2DM and its complications, highlighting the pharmacological effects and phytoconstituents relevant to DM of one hundred plant species. The main objective of this review is to provide the basis for future research on the antidiabetic potential of the selected plants.

Methodology

A systematic review of accessible articles, mostly from the last ten years, was conducted using the PubMed, Google Scholar, and Springer databases. Keywords used included “Obesity”, “Diabetes”, “Insulin resistance”, “Insulin”, “Blood glucose”, “β-cell”, “Diabetic pathogenesis”, “Diabetic complications”, “Antidiabetic drugs”, “Ethnomedicine”, “Antidiabetic activities”, “Medicinal plant”, “Herbal Medicine”, “Antidiabetic mechanism” and “Phytoconstituents”. The initial search identified 1,500 research articles for review. A total of 671 articles were included in the final analysis. All articles were rigorously examined to assess their quality and gather information on the pharmacological activity and bioactive phytoconstituents relevant to DM of 100 plants.

Pathophysiology of Diabetes Mellitus

Under physiological conditions, macromolecules, such as carbohydrates and lipids, are stored in the body so that they can be transformed into energy as and when required. The role of insulin, produced by pancreatic β-cells, is to store glucose in the form of glycogen and then signal the liver to release glucose from glycogen into the blood when necessary. In DM, this normal physiology is altered. DM affects individuals differently depending on their age, sex, weight, race, environment, ethnicity, geographical location, and socioeconomic condition [28,29]. The severity of T1DM, for example, varies depending on age and genetic predisposition. Among the three subtypes of T1DM, the first one (mild severity) occurs mostly in early adolescence while the second type (more severe) affects mainly preschool children. The third subtype affects individuals with a predisposition for autoimmune diseases (Figure 1) [30–32].
The pathogenesis of T2DM has been linked to underlying genetic factors as well as obesity caused by a sedentary lifestyle and poor dietary choices. T2DM is characterized by hyperglycaemia linked to hyperlipidemia, persistent inflammation, oxidative stress, mitochondrial dysfunction and gut dysbiosis, ultimately leading to β-cell apoptosis and insulin resistance (IR) (Figure 2) [33–37]. As T2DM progresses, the production of advanced glycation end products (AGEs) build up in the kidney, retina, and blood vessels, which triggers micro- and macrovascular complications [38,39].
Obese individuals tend to consume more nutrients than needed, leading to an excess of body fat and glycogen. Obesity plays a large contribution to the development of T2DM [3]. One study reported that around 85% of T2DM patients are obese [40]. Moreover, the lack of regular physical activity in T2DM patients has been linked to low circulating levels of irisin, an exercise-modulated myokine that improves glucose tolerance through physical activity [41–45]. In some cases, the term "diabesity" is used to describe the close link between T2DM and obesity [46]. Overnutrition also causes oxidative stress and inactivates glucose transporter-4 (GLUT4) translocation, reducing glucose uptake in cells [47]. Obese individuals are more likely to develop IR as a result of a compensatory rise in insulin production (hyperinsulinemia). IR involves impaired insulin receptor signaling in tissues such as in adipose tissues, which leads to a dysregulation of insulin secretion and storage. This occurs until the pancreatic β-cells fail to fulfill the adequate demand of insulin. Hence, glucose cannot enter cells of insulin-sensitive peripheral tissues and accumulates in the blood [48–53]. In the context of diabetes mellitus (DM), chronic AMPK inhibition becomes a vicious cycle. Nutrient excess, particularly from high-fat or high-glucose diets, can impede the AMPK signaling pathway. This leads to chronic inflammation, oxidative stress, and hormonal imbalances. This impaired AMPK function further worsens insulin resistance (IR) and β-cell dysfunction, key contributors to DM. Symptoms like polyphagia (increased hunger) then arise, promoting weight gain and fueling the progression of DM [54,55]. Hyperinsulinemia and insulin resistance can also be observed in individuals where the normal function of insulin receptors or the insulin degrading enzyme are impaired due to genetic mutations [56–58].
The accumulation of lipids such as triacylglycerides (TAG), diacylglycerides (DAG), ceramides, acylcarnitine and acyl-CoAs in obese individulas also increases the risk of IR [59–63]. This develops via increasing intracellular DAG levels and PKC signaling, which in turn leads to the phosphorylation of IRS-1 on serine residues, disrupting normal insulin signaling pathways. This disruption impairs the ability of insulin to stimulate glucose uptake and metabolism in tissues like muscle, liver, and adipose tissue. Over time, IR leads to β-cell dysfunction and eventually T2DM (Figure 3) [63,64]. IR in T2DM patients has also been linked to a rise in pro-inflammatory markers such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and C-reactive protein in the bloodstream [65–67]. Obesity also affects mitochondria through the generation of NADH and FADH2 which disrupts the electron transport chain (ETC) and increases ROS production and AGEs. ROS induce oxidative stress and hamper the function of intracellular proteins and enzymes, promoting fatty acids to form toxic intracellular lipids, reducing mitochondrial energy production, increasing IR and β-cell damage. The increased gluconeogenesis in the liver also increases the risk of hyperglycaemia and subsequent organ damage [68–72]. This metabolic imbalance alters the structure and composition of the extracellular matrix, leading to endothelial dysfunction and increasing the risk of atherosclerosis [73]. Finally, gut dysbiosis may also influence IR by modulating glucose metabolism. Recent studies have reported that specific changes in the gut microbiota composition can either exacerbate or ameliorate insulin sensitivity and glucose tolerance, highlighting its crucial role in DM [74,75].
Unsurprisingly, a healthy diet, regular physical activity, appropriate weight loss and even occasional fasting can ameliorate IR, β-cell function, insulin secretory capacity and prevent the risk of T2DM and its associated complications [76–78].

Complications of Diabetes Mellitus

Persistent hyperglycemia, hyperlipidemia, high levels of ROS and pro-inflammatory mediators in the bloodstream increase the risk of macrovascular complications such as coronary heart disease (CHD), stroke, peripheral artery disease, cardiomyopathy, arrythmia, cerebrovascular disease and atherosclerosis [79,80]. Individuals with DM and hypertension are at a higher risk of developing cerebrovascular disease, peripheral vascular disease, or early coronary artery disease (CAD) [81–85]. Similarly, obesity is considered to be a key risk factor for heart failure (HF), CHD and premature mortality [86–88]. Hormones and other circulatory factors including adipokines, growth factors and chemokines have been reported to aggravate CVD in T2DM patients [89,90].
Diabetic patients may also suffer from various microvascular complications including neuropathy, nephropathy, retinopathy, foot damage, Alzheimer’s disease and hearing impairment [91]. Diabetic peripheral neuropathy, characterized by pain, ulcer, sleep deprivation and depression, affects about half of diabetic patients worldwide [91–95]. Factors such as genetic predisposition, age, food intake, smoking, alcohol, and other unhealthy lifestyle habits have also been implicated in the progression of diabetic peripheral neuropathy [96]. Uncontrolled blood sugar levels damage the nerves, diminishing their ability to send signals and weakening the lining of capillaries that supply nutrients and oxygen to neurons [97,98].
T2DM has been linked to an increased risk of developing Alzheimer's disease due to the presence of overlapping neurodegenerative markers in both diseases such as oxidative stress, inflammation, and mitochondrial dysfunction [99]. On the other hand, diabetic nephropathy, characterized by microalbuminuria, elevated blood glucose, high hemoglobin A1C (HbA1c) and hypertension, is prevalent in nearly half of T2DM individuals [100–103]. Diabetic retinopathy is another severe complication of T2DM which occurs when excess blood glucose blocks the capillaries linked with the retina. This increases the risk of eye disorders such as diabetic cataract, macular oedema, dry eye, and may even result in blindness (Figure 4) [104–107].

Current Approaches for the Management of T2DM

A balanced diet, regular physical exercise and the avoidance of high calorific foods is the first approach recommended for the management of T2DM and its complications. This is usually supplemented by the use of antidiabetic medicines to achieve optimal glycemic control and provide long-term relief from DM [105,106]. Current oral antidiabetic drugs include sulfonylureas, biguanides, thiazolidinediones, α-glucosidase inhibitors, SGLT2 inhibitors, meglitinides, DPP-IV inhibitors and amylin analogues. Sulfonylureas bind to sulfonylurea receptors (SUR) and act by blocking ATP-sensitive K+-channels in the pancreatic β-cell plasma membrane, leading to inhibition of K+ efflux, membrane depolarization, opening of voltage-gated Ca2+ channels, influx of Ca2+ and triggering of insulin secretion by exocytosis [107–109]. However, sulphonylureas present adverse side effects such as hypoglycaemia, increased risk of CVD and nausea [110–112]. Meglitinides work in similar fashion but affect a slightly different bonding site on SUR [113]. At high doses these agents may cause severe hypoglycaemia, upper respiratory tract infection, diarrhea, and headache [113,114]. Biguanides inhibit the mitochondrial respiratory chain in the liver, activating the AMPK pathway, enhancing insulin sensitivity, suppressing gluconeogenesis and reducing both hepatic glucose output as well as glucose entry into the circulation from the intestine [115–118]. Although biguanides are very popular antidiabetic drugs, they still cause undesirable effects such as diarrhea, lactic acidosis, and hemolytic anemia [119,120]. Thiazolidinediones (TZDs) act by activating the gamma isoform of the peroxisome proliferator-activated receptor (PPAR-γ), increasing glucose and lipid metabolism, providing energy homeostasis and promoting GLUT4 translocation [121]. Adverse effects associated with TZDs include weight gain, hepatotoxicity and even bladder cancer [122]. Inhibitors of the α-glucosidase decrease the intestinal activity of this enzyme, delaying carbohydrate digestion and absorption, and improving hepatic lipogenesis, triglyceride levels and postprandial glucose [123]. However, some of the TZDs have been discontribued due to its increased risk on cardiovascular diseases. Alongside that, their use may cause hepatitis, increased flatulence, and other gastrointestinal complications [124]. Sodium-glucose cotransporter 2 (SGLT2) inhibitors act to promote urinary glucose excretion and not only treat DM, but also reduce inflammation, Na+/H+-exchange, and hyperuricemia. They elevate lysosomal degradation, autophagy, erythropoietin levels, and prevent ischemia [125]. Although SGLT-2 drugs have popularity in alleviating diabetes, they still carry the risk of side effects including volume depletion, increased urination, acute kidney injury, and genitourinary infections [126]. Dipeptidyl-peptidase IV (DPP-4) inhibitors increase the levels of incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). Their side effects include urinary and upper respiratory tract infections as well as headache [127].
In many cases, oral drugs alone are not enough to control the hyperglycemia and injectable therapy is required to successfully manage DM. The most common injectable therapy is synthetic insulin. Insulin works by binding to the insulin receptor, activating a cascade of intracellular signaling events [128,129]. Although, insulin is very effective in DM, it may lead to severe hypoglycemia, dizziness, sweating, palpitations, headache, blurred vision, and abdominal pain [129]. Amylin analogues, often use in combination with other antidiabetic drugs, inhibit glucagon secretion, delay gastric emptying time, and improve postprandial glycemia [130,131]. Their adverse effects include severe hypoglycaemia, nausea, and weight loss [130-132. GLP-1 and GIP analogues are also used as injectable therapies for DM. GLP-1 drugs stimulate insulin secretion, and inhibit glucagon release from pancreatic α-cells, suppress appetite and promote extra pancreatic activity by delaying gastric emptying. Scientist are also assuming that there might be connection between progression of pancreatitis and C-cell tumor, however, there are still lack of studies related to these conditions [133–136]. GIP and GLP-1 Dual agonists, such as Mounjaro, enable insulin secretion through activation of β-cell GIP receptors and appear to greatly enhance the satiety and weight loss encountered with GLP-1R activation alone, aiding obesity [135,136]. The most common side effects of these injectables are severe nausea, vomiting and body disfiguration due to excess weight loss [136]. An overview of the current oral and injectable antidiabetic drugs, their pharmacological actions and adverse side effects are presented in Figure 5.

Plant-Based Diets and Their Role in the Prevention and Management of DM

A lifelong treatment with conventional antidiabetic drugs presents limitations in terms of side effects and costs. In this context, plants with antidiabetic activity have become an alternative treatment option for many patients as they are generally more accessible, less costly and present fewer adverse side effects than manufactured drugs. They are also gaining popularity in scientific research as an attractive source for the discovery of new drug templates [137,138]. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, condiments) in the prevention and management of diseases, including DM. Plant-based foods and their beneficial constituents are often absent in the typical Western diet that predominantly features processed foods, red meat, and fast-acting carbohydrates, which contributes to the development and progression of T2DM. Dietary fiber-rich herbs and fruits, in particular, have been reported to regulate hyperglycemia and mitigate diabetic complications (Table 1) [139]. Understanding how these plant-derived constituents affect the pathophysiology of T2DM can provide a useful strategy to better prevent this disease and its complications (Figure 6). It can also reduce reliance on synthetic antidiabetic drugs [140–142].
For example, Aloe vera, neem, holy basil, and betel leaf possess anti-inflammatory and hypoglycemic properties that help regulate blood glucose and body weight. Citrus fruits (e.g. lemon, orange, pomelo) along with mango, apple, pineapple, and berries (e.g., strawberry, blueberry, blackberry, mulberry), are high in fiber and antioxidants. They promote satiety and reduce oxidative stress. Stone fruits such as peach, guava, avocado, kiwi, lychee, grapes, jackfruit, dragon fruit, passion fruit, star fruit, pomegranate, papaya, fig, watermelon, plum, and java plum, as well as dates and apricots, contribute to improve metabolic health. Amla and olives contain unique phytochemicals that enhance insulin sensitivity. Tamarind, Bengal currant, cocoa, coconut, cashew nut, almond, walnut, and seeds like chia, white sesame, black seeds, cumin, fenugreek, mustard, coriander, and nutmeg provide essential fatty acids and micronutrients that are crucial for metabolic function [143–506]. Fiber-rich grains such as corn, oat, and quinoa, as well as legumes including chickpea, pea, kidney bean, mung bean, and soya bean, help maintain steady blood glucose levels and manage obesity. Vegetables like bitter gourd, snake gourd, ridge gourd, bottle gourd, sweet potato, moringa, okra, taro, asparagus, eggplant, beetroot, pumpkin, cabbage, broccoli, radish, carrot, tomato, cucumber, lettuce, spinach, centella leaves, and mushrooms are excellent for their low-calorie, high-nutrient profiles. Herbs and spices like mint, parsley, celery, rosemary, oregano, curry leaves, bay leaves, clove, saffron, cinnamon, red pepper, turmeric, ginger, and garlic enhance the metabolic rate and have antidiabetic effects. Onions, tea, coffee, china rose, and vinca rosea also contribute to improve glucose metabolism and control body weight. The incorporation of these foods into a balanced diet can support the management of T2DM and obesity by promoting better glycemic control, enhancing insulin sensitivity, and helping with weight loss (Table 2) [419–625].

Plant-Based Diets, Edible Plants, Dietary Adjuncts and their Phytochemicals for the Management of DM and Prevention of DM Complications

1. Abelmoschus esculentus L. (Okra)
Abelmoschus esculentus L. (Malvaceae), known as okra, is a nutritious vegetable that is also used as a remedy for chronic kidney disease, T2DM, cardiovascular and hypertensive diseases [143]. The highly nutritious okra fruit contains oxalic acid, pectin, flavonoids, D-galactose, L-rhamnose and D-galacturonic acid which are reported to inhibit α-amylase and α-glucosidase enzymes and increase GLUT-4 translocation [144,145].
2. Actinidia chinensis (Kiwi)
Actinidia chinensis or kiwi (Actinidiaceae) is a beneficial fruit for dyspepsia, vomiting, loss of appetite and diabetes [146]. Kiwi lowers cholesterol, LDL, fasting plasma glucose and postprandial glucose levels. It has also been reported to reduce body weight and inhibit the release of pro-inflammatory cytokines such as interleukin-1(IL-1) and IL-6 in T2DM patients [147]. Kiwi also regulates superoxide dismutase (SOD) and glutathione levels. It inhibits the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), two enzymes associated with insulin resistance and metabolic syndrome. Kiwi also improves serum microRNA-424, nuclear factor erythroid 2–related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) as dysregulation of these markers may exacerbate oxidative stress, inflammation and disease progression [148]. Kiwi is rich in triterpenoids, polyphenols, amino acids and minerals that may exert antidiabetic activity owing to hypolipidemic, anti-inflammatory, antioxidant, and antihyperglycemic properties [149].
3.  Aegle marmelos (Stone apple)
Aegle marmelos, also called stone apple/golden apple/bael, is a plant from the Rutaceae family traditionally used for inflammation, asthma, hyperglycaemia, colitis, flatulence, dysentery, fever, pain, and for hepatitis and fungal infections [150]. Recent studies have indicated that it improves insulin production, inhibits glucose absorption, α-amylase activity, and lowers blood glucose levels [151]. Some of its phytochemicals, namely p-cymene, oleic acid, linolenic acid, myristic acid and retinoic acid have antidiabetic, cardioprotective, antioxidant, and anti-inflammatory properties [152].
4.  Agaricus bisporus (Mushroom)
Agaricus bisporus (Agaricaceae) is familiarly known as button mushrooms. It is a valuable ethnomedicine for diabetes, cough, influenza, asthma, cancer and hepatic disorders [153,154]. Mushrooms have numerous health benefits, with antioxidant, immunoboosting, anticholesterolemic, antitumor, and antibacterial properties. They boost natural killer cells to fight infections and tumors. The presence of lectins, β-glucans, polyphenols, p-hydroxybenzoic acid, protocatechuic acid, agllic acid, cinnamic acid, p-coumaric acid, ferulic acid, chlorogenic acid and catechin in mushroom improve hyperglycemia by regulating insulin and glucagon secretion [155–157].
5.  Allium cepa (Onion)
Allium cepa (Amaryllidaceae) or onion has been used as treatment for wounds, scars, keloids, bee stings, dysmenorrhea, vertigo, fainting, migraine, bruises, earache, jaundice, pimples and diabetes [158]. Onion significantly decreases α-glucosidase activity, oxidative stress, boosts insulin secretion, and protects pancreatic β-cells [159]. Onion has numerous health benefits, beyond its antidiabetic properties, it also boasts antioxidant, analgesic, antimicrobial, anti-inflammatory, and immune-boosting activity. The presence of quercetin, apigenin, rutin, myricetin, kaempferol, catechin, resveratrol, and anthocyanins may contribute to its glucose and cholesterol lowering effects [160–162].
6. Allium sativum L. (Garlic)
Allium sativum L. (Amaryllidaceae) or garlic is a popular folk medicine for flu, hypertension, high cholesterol, cancer, cardiovascular disease, diarrhea, preeclampsia, arthritis, diabetes and kidney stones [163]. Garlic lowers plasma glucose levels, enhances insulin production and insulin secretion, improves glucose tolerance and insulin sensitivity, and increases GLUT4 expression [164,165]. Garlic is rich in organosulfur phytoconstituents such as ajoene, cysteine, allicin, as well as β-resorcylic acid, gallic acid, rutin, quercetin, and protocatechuic acid that exhibit antioxidant, renoprotective, and antihyperglycaemic effects. Allicin and quercetin play crucial roles in enhancing insulin sensitivity and improving glucose uptake [166–168].
7. Aloe barbadensis Mill. (Aloe vera)
Aloe barbadensis Mill. (Asphodelaceae) has a long history as an ethnomedicine for wounds, constipation, skin diseases, colic, worm infestation, hypertension, and diabetes [169,170]. Aloe vera improves insulin resistance, body weight, and prediabetic condition via inhibition of fructosamine, carbonyl protein and AGEs - such as Nɛ-(carboxymethyl) lysine (CML) - formation, as well as α-amylase and α-glucosidase inhibitory activity [171,172]. It also reduces fasting and postprandial blood glucose, triglycerides, and total cholesterol levels. The antidiabetic properties of Aloe vera have been attributed to the presence of flavonoids, arginine and phenolic acids [170,173–175].
8. Anacardium occidentale L. (Cashew nuts)
Anacardium occidentale L. (Anacardiaceae), also called cashew nut, has medicinal value in alleviating fevers, aches, pains, diarrhea, diabetes, skin irritation and arthritis [176]. Cashew nut is reported to decrease hepatic gluconeogenesis, a process in the liver that produces glucose. This helps lower blood sugar levels [177]. Studies suggest that specific amino acids (e.g. arginine, isoleucine) and fatty acids (e.g. arachidic acid) found in cashew nut, along with other compounds like cyanidin and peonidin, may play a role in the activity of cashew nut by enhancing insulin sensitivity, and reducing oxidative stress and blood glucose [177,178]. Anacardic acids, also present in cashew nut may have a potential role in mitigating diabetic complications as they possess anti-cytotoxic (protecting cells), antimicrobial and antibacterial effects. [179].
9. Ananas comosus (Pineapple)
Ananas comosus (Bromeliaceae), also known as pineapple, is traditionally used as a remedy for pain, skin diseases, edema, wound, indigestion, diabetes, and blood clotting [180–182]. Pineapple leaves, peels and pulp can lower blood sugar and glycated albumin levels, reduce body weight, increase insulin secretion, and increase high-density lipoprotein (HDL) cholesterol levels by inhibiting HMG-CoA reductase and activating lipoprotein lipase (LPL) [183–185]. Bromelain, one of the phytoconstituents of pineapple, has anti-inflammatory, hypoglycaemic, anticoagulant, and antioxidant activities [186].
10. Apium graveolens L. (Celery)
Apium graveolens L. (Umbelliferrae) or celery is useful for arthritis, spleen dysfunction, diabetes, sleep disturbances and CNS disorders [187]. This food source helps maintain healthy blood sugar levels by enhancing insulin sensitivity and promoting the translocation of GLUT4 receptors to the cell surface followed by enhancing glucose uptake into muscle. This, in turn, can improve mitochondrial function and reduce inflammation [188–190]. Celery is rich in quercetin, thymoquinone, coumaric acid and gallic acid with anti-inflammatory, anticoagulant, hypolipidemic, hepatoprotective and neuroprotective properties [191,192].
11. Artocarpus heterophyllus (Jackfruit)
Artocarpus heterophyllus (Moraceae) or jackfruit is a traditional remedy for wounds, cancer, and diabetes [193,194]. Its fruit, bark, seeds, leaves, and root all have antidiabetic properties [195–197]. Studies have reported that jackfruit significantly ameliorates body weight, lipid profile, abnormal hematological parameters, creatine, bilirubin and urea levels, and reduce albumin levels in diabetic rats. It also has inhibitory activity on α-amylase and α-glucosidase enzymes and can improve lipid profile (i.e. LDL and HDL cholesterol), fasting and blood glucose levels [198,199]. Phytochemicals such as carotenoids, tannins, volatile acids, sterols, chrysin, isoquercetin, and silymarin contribute to the pharmacological properties of jackfruit [199].
12. Asparagus officinalis (Asparagus)
Asparagus officinalis (Asparagaceae), known as asparagus, is a remedy for diabetes, asthma, rheumatism, liver and kidney diseases [200]. Recent studies suggest that it enhances insulin secretion and β-cell function in rat model of T2DM [201]. Asparagus elicits its hypoglycemic properties by significantly lowering fasting blood glucose, hepatic glycogen, and triglycerides levels as well as reducing body weight [202]. Asparagine, tyrosine, arginine, saponins, resin and tannins are the main active phytoconstituents of asparagus. Among them saponins are the main constituent that contributes to its hypoglycemic effects as well as antibacterial, anti-inflammatory, antioxidant, antidiarrheal and anticarcinogenic properties [203,204].
13. Avena sativa (Oats)
Avena sativa (Poaceae) or oat is a popular breakfast meal. Oat is also a remedy for dermatitis, cancer, diabetes and cardiovascular disease [205]. One study found that the continuous consumption of oatmeal cookies led to significant improvements in blood glucose levels and plasma insulin in diabetic rats [369]. β-glucan, oleic acid, linoleic acid, caffeic acid, coumaric acid, gallic acid and avenanthramides are the active phytoconstituents of oats. They lower glycosylated HbA1c, fasting and postprandial blood glucose, total cholesterol and LDL-cholesterol levels, as well as improve insulin resistance in diabetic patients [206,207]. β-glucan is the major component of oats which reduces blood glucose and helps with losing weight [208,209].
14.  Averrhoa carambola L. (Star fruit)
Averrhoa carambola L. (Oxalidaceae) is commercially known as star fruit. It is abundantly consumed in tropical and subtropical countries where it is also traditionally used for chronic headache, fever, cough, gastroenteritis, diarrhea, diabetes, skin inflammation, hypertension and hyperglycaemia [210–212]. Catechin, epicatechin, procyanidins, gallic acid, protocatechuic acid, ferulic acid, rutin, isoquercitrin, quercitrin, C-glycosides, leucoanthocyanidins, and triterpenoids in star fruit modulate insulin secretion, glucose uptake and glycogen synthesis [213,214].
15.  Azadirachta indica (Neem)
Azadirachta indica, known as neem, is a plant from the Meliacae family that is used to cure fever, skin ailments, infection, inflammation, diabetes, and dental ailments [215,216]. Its leaves, stem, bark and seed oil have been reported to control glycaemia, improve endothelial dysfunction, reduce systemic inflammation, enhance glucose transporter 4 (GLUT-4) translocation and inhibit α-glucosidase. The antidiabetic effects of this plant are likely to be due to the presence of phytoconstituents such as nimbidin, nimbin, nimbidol, quercetin and nimbosterone [217–219].
16.  Beta vulgaris (Beetroot)
Beta vulgaris (Chenopodiaceae) or beetroot is a traditional cure for diabetes, loss of libido, stomachaches, arthritis, and constipation [220]. Beetroot shows antidiabetic activity by inhibiting gluconeogenesis, glycogenolysis, and α-amylase and α-glucosidase. It is rich in lycopene, betalains such as betanin, the flavonoids betagarin, betavulgarin, quercetin and kaempferol, carotenoids and coumarins. Among them, betanin is the main constituent that can mitigate diabetic complications [221,222].
17.  Brassica juncea (Mustard)
Brassica juncea (Brassicaceae), known as mustard, is an effective remedy for arthritis, footache, lumbago, diabetes and rheumatism [223,224]. Mustard has been reported to control blood sugar levels in people with diabetes by enhancing insulin secretion, improving the utilization of glucose, and reducing glucose absorption from the gut. These effects can be attributed to several beneficial phytochemicals including chlorogenic acid, kaempferol and other flavonoids, sinigrin, р-coumaric acid, vanillic acid, polyphenols, allyl isothiocyanate, cinnamic acid, and aniline [225,226].
18. Brassica oleracea var. capitata (Cabbage)
Brassica oleracea var. capitata or cabbage is a member of the Brassicaceae family. Cabbage is traditionally used to prevent injuries, gastritis, peptic ulcers, irritable bowel syndrome, diabetes and idiopathic cephalalgia [227]. It shows antihyperglycemic activity via enhancing peripheral insulin sensitivity and insulin production by pancreatic β-cells. This has been attributed to the presence of myricetin, quercetin, kaempferol, apigenin, luteolin, glycitein, biochanin A and formononetin [227–229].
19.  Brassica oleracea var. italica (Broccoli)
Brassica oleracea var. italica (broccoli) is a vegetable from the Brassicaceae family that is well known for its antioxidant, antimicrobial, anti-inflammatory, antihyperglycemic and antitumor properties [230]. Broccoli increases insulin sensitivity, reduces glucose production, inhibits ROS formation and the activity of α-amylase and α-glucosidase, overall contributing to lowering hyperglycemia [230,231]. Glucosinolates, isothiocyanates, sulforaphane, sinapic acid, gallic acid, chlorogenic acid, apigenin, kaempferol, luteolin, quercetin and myricetin are the major phytochemicals found in broccoli that help to manage diabetes by improving insulin sensitivity, reducing inflammation, and combating oxidative stress. They also regulate glucose metabolism and protect pancreatic β-cells [231].
20.  Camellia sinensis L. (Tea)
Camellia sinensis L. or tea from the Theaceae family, is a plant widely consumed as a beverage. It is also a reputed remedy for flatulence, indigestion, vomiting, diarrhea, hyperglycemia and stomach discomfort [232,233]. Tea alleviates diabetic complications via suppression of insulin resistance, reduction of oxidative stress, inhibition of α-amylase and α-glucosidase activity, and regulation of cytokines production. It also enhances insulin secretion, glucose tolerance, inhibits glycation and the activity of dipeptidyl peptidase-4 (DPP-IV) [232–234]. Tea is a rich source of bioactive compounds including theophylline, theanine, proanthocyanidins, caffeine, myricetin, kaempferol, quercetin, chlorogenic acid, coumarylquinic acid, theogallin, catechin and epicatechin which exhibit antidiabetic activity by enhancing insulin sensitivity, regulating glucose metabolism, reducing oxidative stress, and improving pancreatic β-cell function [235].
21. Capsicum annuum L. (Red pepper)
Capsicum annuum L. ( Solanaceae), identified as red pepper, is an ethnomedicine for dyspepsia, ulcer, anorexia, gastrointestinal disorders and diabetes [236]. Recent studies reported that it exhibits glucose-lowering action via inhibition of gluconeogenesis, activation of AMPK and stimulation of both GLUT-4 translocation and glucose uptake in skeletal muscles of obese diabetic rats [237,238]. These effects may be attributable to a rich content in carotenoids and flavonoids such as apigenin, quercetin, and isoquercetin. Red pepper has a range of other health benefits, including scavenging free radicals (antioxidant effect), promoting healthy weight management, reducing inflammation, and even potentially offering anticancer properties [239,240].
22.  Carica papaya (Papaya)
Carica papaya (Caricaseae), commonly called papaya, has been used for centuries to treat high blood pressure, dengue, obesity, jaundice, respiratory diseases, malaria, diabetes, and wounds [241,242]. Papaya contains phytomolecules, such as papain, quercetin, kaempferol, p-coumaric acid, β-carotene, linalool, oleic acid, tannins, saponins, α-tocopherol, that can inhibit α-amylase and α-glucosidase activity as well as lower oxidative stress and plasma blood glucose levels [243,244].
23. Carissa carandas (Bengal currant)
Carissa carandas (Apocynaceae), known as koromcha or Bengal currant, is a remedy for asthma, constipation, diarrhea, diabetes, malaria, myopathic spams, fever, epilepsy and seizures [245]. Recent studies suggest that Bengal currant significantly reduces diabetes-induced inflammation, and lowers blood glucose levels via inhibition of α-amylase and α-glucosidase [246–249]. Lignans, flavonoids, steroids, phenolic acids and alkaloids present in Bengal currant have anti-inflammatory, antibacterial, antifungal, antioxidant and hepatoprotective effects. Lignans regulate blood glucose levels and oxidative stress [248].
24.  Catharanthus roseus L. (Vinca rosea)
Catharanthus roseus L. (Apocyanaceae), also known as Vinca rosea, is a plant popularly used for cancer, diabetes, stomach disorders, kidney, liver, and cardiovascular disorders [250,251]. It is reported to exert its antidiabetic effect through increasing β-cell mediated insulin secretion via effect on Ca2+ channels. It was also shown to enhance glucose metabolism, protect pancreatic β-cells from oxidative stress, and improve insulin sensitivity. Gallic acid, rutin, -coumaric p acid, caffeic acid, quercetin, kaempferol, chlorogenic acid, ellagic acid and coumarins are thought to be responsible for the anti-hyperglycaemic properties of this plant. The presence of alkaloids in C. roseus has also been reported to improve insulin secretion from β-cells [252–254].
25.  Centella asiatica L. (Centella leaves)
Centella asiatica L. (Apiaceae), referred to as centella leaves, is an excellent ethnomedicine for leprosy, lupus, ulcers, eczema, psoriasis, diarrhea, fever, diabetes and anxiety [255]. Centella blocks ATP-sensitive K+ channels to enhance insulin secretion and control hyperglycemia [256]. According to recent studies, it reduces oxidative stress and inflammation in diabetic patients. Some active phytoconstituents in centella leaves include triterpenes (asiaticoside, madecassic acid, madecassoside), centellase, flavonoids (quercetin, kaempferol), phytosterols (campesterol, sitosterol, and stigmasterol), ferulic acid and chlorogenic acid [257,258].
26. Chenopodium quinoa (Quinoa)
Chenopodium quinoa (Amaranthaceae), or quinoa, is a gluten free high protein cereal reported to ameliorates dyslipidemia, diabetes and heart disease [259]. It is regarded as a ‘functional food’ as it contains a high amount of essential amino acids, fatty acids, vitamins, minerals and dietary fibers [260,261]. Phytosterols, phytoecdysteroids, phenolics, tocophenols, betalains, tannins and glycine betaine are the beneficial phytochemicals in quinoa that elicit both antidiabetic and anti-obesity effects by inhibiting α-glucosidase, regulating body weight, improving insulin sensitivity, and reducing postprandial glycemia and lipid accumulation in skeletal muscle [262–265].
27. Cicer arietinum L. (Chickpea)
Cicer arietinum L. (Fabaceae) commonly known as chickpea, is a reputed cure for digestive disorders, cancer, cardiovascular disease and diabetes because of its high dietary fiber content. Recent findings recognized it as a healthy food staple that exerts hypoglycemic activity via inhibiting α-amylase, α-glucosidase and dipeptidyl-4 (DPP4) enzymes. Chickpea has high antioxidant properties and inhibits the enzymes associated with carbohydrates metabolism [266–268]. It is rich in unsaturated fatty acids that help lower blood cholesterol levels, and reduce inflammation and weight gain [269]. Its phytoconstituents including uridine, adenosine, tryptophan, 3-hydroxy-olean-ene and biochanin contribute to its antihypertensive, antioxidant, hypocholesterolemic and anticancer effects [270,271].
28.  Cinnamomum verum (Cinnamon)
Cinnamomum verum (Lauraceae), also known as cinnamon, is an ethnomedicine used for diabetes, nausea, vomiting, flatulence, fever, halitosis, arthritis, coughing, hoarseness, impotence, frigidity, cephalalgia, odontalgia, cardiac and urinary disorders [272]. Cinnamon exerts its antihyperglycemic effects by increasing GLUT-4 translocation in insulin-sensitive tissues, upregulating mitochondrial UCP-1, inhibiting α-glucosidase and stimulating insulin secretion [273,274]. Its phytoconstituents including cinnamaldehyde, cinnamates, cinnamic acid, eugenol, cinnamyl acetate, β-sitosterol, flavonoids, glucosides, coumarins, vanillic acid and syringic acid have antihyperglycaemic and anti-inflammatory properties [272,275].
29. Citrullus lanatus (Watermelon)
Citrullus lanatus (Cucurbitaceae) or watermelon, is a fruit used tradionally to treat gastrointestinal disorders, urinary infections, fever, constipation and emetic problems [276,277]. It improves glucose transporters (GLUT 2 and GLUT 4) levels, and suppresses oxidative stress as well as α-glucosidase and α-amylase activity. Some of the phytoconstituents of watermelon which may contribute to its pharmacological action include stigmasterol, rutin, p-coumaric acid, quercetin, kaempferol, β-carotene, and α-tocopherol [278,279].
30. Citrus limon (Lemon)
Citrus limon (Rutaceae), also known as lemon, is a common ethnomedicine used for cough, scurvy, cold, hypertension, fever, rheumatism, sore throat, diabetes, irregular menstruation, and liver diseases [280–282]. Lemon exerts antihyperglycaemic activity by increasing insulin sensitivity, GLUT4 translocation and glucose uptake, by inhibiting α-glucosidase, protein tyrosine phosphatase, aldose reductase and reducing the formation of AGE products [283–285]. Previous studies have shown that reduces plasma glucose, LDL, VLDL and total cholesterol, triglycerides, free fatty acids and phospholipids levels. Its bioactive constituents include limocitrin, D-limonene, hesperidin and naringenin [286,287].
31. Citrus maxima (Pomelo)
Citrus maxima (Rutaceae), also called pomelo, is a fruit with a great ethnomedicinal value in treating asthma, fever, ulcer, diarrhea, cough, Alzheimer’s disease, diabetes, and insomnia [288]. Polemo has α-amylase and α-glucosidase inhibitory activity. It also inhibits the angiotensin I converting enzyme, which notably lowers blood glucose levels and improves diabetic complications [289]. Pomelo possesses antioxidant, anti-inflammatory, anti-obesity, and hypolipidemic properties in addition to its hypoglycemic effects due to the presence of amino acids, terpenoids, sterols, carotenoids, and polyphenols [288–290].
32. Citrus reticulata (Orange)
Citrus reticulata, also known as orange, is a plant from the Rutaceae family, that has been shown to be beneficial in the treatment of Alzheimer's disease, cough, phlegm, diabetes, hepatic steatosis, and cancer [291–293]. Orange increases the expression of GLUT-4 and β-subunit insulin receptor which further helps with insulin sensitivity [294–296]. Orange peel contains flavonoids such as hesperidin and naringenin that have antihyperglycaemic, antihyperlipidaemic, anti-obesity and antioxidant properties [294,295].
33. Cocos nucifera (Coconut)
Cocos nucifera, or coconut, is an important species from the Arecaceae family, commonly used as a folk remedy for diarrhea, diabetes, renal diseases, stomachaches, fever, asthma, and sexually transmitted diseases [297–300]. Coconut has been reported to regenerate pancreatic β-cells, enhance metabolism in adipose tissue, and mitigate insulin resistance, hyperglycemia, dyslipidemia, inflammation and oxidative stress [300–303]. It has also been shown to scavenge free radicals, inhibit α -amylase and α-glucosidase activity, and ameliorate diabetic complications including diabetic neuropathy in streptozotocin-induced diabetic rats [304]. Coconut is rich in amino acids, fibers, tannins, resins, flavonoids and alkaloids which may contribute to its insulin-releasing and antihyperglycemic effects [300–303].
34. Coffea Arabica L. (Coffee)
Coffea Arabica L. (Rubiaceae) or coffee is another popular health drink. It is also a traditional remedy for flu, anemia, diarrhea, intestinal pain, migraine, headache, fever, purulent wounds, pharyngitis, diabetes and stomatitis [305]. Coffee exerts antidiabetic effects by improving insulin sensitivity, enhancing glucose metabolism, protecting pancreatic β-cells, and reducing the risk of T2DM development. It contains caffeine, chlorogenic acids (CGAs), caffeic, p-coumaric, vanillic, ferulic, protocatechuic acids, coffeasterin, kaempferol, quercetin, sinapic, quinolic, tannic, pyrogallic acids, trigonelline, caffeoylquinic and dicaffeoylquinic which substantially mitigate hyperglycemia, α-glucosidase activity and enhance insulin secretion [305–307].
35. Colocasia esculenta (Taro)
Colocasia esculenta (Araceae), or taro, is a remedy for rheumatic pain, diabetes, hypertension and pulmonary congestion [308]. It can improve diabetic complications by decreasing blood glucose levels and reducing body weight in T2DM patients [309]. Taro contains vitexin, isovitexin, orientin, isoorientin, rosmarinic acid, and luteolin which help to reduce blood glucose, inflammation and oxidative stress in diabetic patients [310–312].
36. Coriandrum sativum (Coriander)
Coriandrum sativum (Apiaceae), known as coriander, is a common garnishing herb and a useful tradiotnal remedy for diarrhea, flatulence, colic, indigestion, gastrointestinal diseases and diabetes [313]. Coriander is helpful in the management of diabetes as it regenerates pancreatic β cells and improves their function. It also inhibits α-glucosidase, thereby slowing digestion of complex carbohydrates [313–317]. Moreover, coriander plays a useful role in the management of diabetic complications, particularly alleviating diabetic nephropathy and neuropathy through inhibition of AGEs formation, inhibition of TNF-α release and reduction of the oxidative stress [314,315]. Coriander is rich in flavonoids, tocotrienols, tocopherols, sterols and carotenoids with antidiabetic, antioxidant, anti-obesity and anticancer effects [316,317].
37. Crocus sativus L. (Saffron)
Crocus sativus L. (Iridaceae) or saffron, is a popular food additive as well as an effective remedy for central nervous system disorders and for diabetes [318,319]. Saffron is documented to improve insulin sensitivity, enhance glucose uptake, inhibit gluconeogenesis, and mitigate against oxidative stress, thereby offering a range of antidiabetic benefits. Bioactive constituents of saffron are β carotenes, crocetin, crocin, picrocrocin, zeaxanthene and safranal. These exert their glycemic effects via α-glucosidase and α-amylase inhibitory activity [318–320]. Crocin, the main bioactive constituent of saffron, reduces blood glucose, LDL, cholesterol and triglycerides levels. It also inhibits the release of pro-inflammatory cytokines and elevates glutathione levels [321–323].
38. Cuminum cyminum L. (Cumin seeds)
Cuminum cyminum L. (Apiaceae), referred to as cumin, is used as a remedy for diarrhea, dyspepsia, epilepsy, toothache, whooping cough, flatulence, indigestion, diabetes and jaundice [324]. Cumin has been reported to enhance insulin secretion from pancreatic β-cells, improve insulin sensitivity in peripheral tissues by activating insulin signaling, regulate glucose uptake by enhancing GLUT4 translocation, and modulate key enzymes involved in glucose metabolism [324–326]. Cumin seeds are rich in compounds like cuminaldehyde, safranal, and terpenes (including carvone, carvacrol, limonene, and linalool). These are believed to improve blood sugar levels by increasing pancreatic insulin and protecting insulin-producing β-cells from damage [325,326].
39. Cucumis sativus L. (Cucumber)
Cucumis sativus L. (Cucurbitaceae), known as cucumber, is a vegetable low in calories and with a high-water content that is typically served as a salad. It is useful in treating sunburn, skin irritation, constipation, thermoplegia, gall bladder stone, hyperdipsia and diabetes [327,328]. It also exhibits antihyperlipidemic, antioxidant, analgesic and free radical scavenging effects [583,587]. It is a good source of cucurbitacins, cucumerin A and B, cucumegastigmanes I and II, flavonoids such as vitexin, orientin, apigenin and isoscoparin which can synergistically improve plasma glucose, glycolysis, insulin sensitivity and body weight in diabetes patients [327,329,330]. Other studies reveal that cucumber mat suppress glucagon secretion and gluconeogenesis [330].
40. Cucurbita pepo L. (Pumpkin)
Cucurbita pepo L. (Cucurbitaceae), known as pumpkin, is a popular vegetable and folk medicine for dermatitis, depression, irritable bladder, intestinal inflammation, prostate enlargement and hyperglycaemia [331,332]. Pumpkin seeds have been reported to lower plasma and urine glucose as well as triglycerides levels, and increase glutathione levels through upregulation of the Nrf2 and P13K levels in T2DM mice [333–335]. Among the constituents of pumpkin seeds, flavonoids, alkaloids, polysaccharides, and polyphenols have been reported to enhance insulin secretion. The high content of carotenoids, zeaxanthin, and lutein has been implicated with improving insulin sensitivity, reducing inflammation, and protecting against oxidative stress [331–335].
41. Curcuma longa L. (Turmeric)
Curcuma longa L. (Zingiberaceae), commonly referred to as turmeric, is known as an extremely powerful healing agent and aid for cough, diabetes, arthritis, gall bladder stones, dermatitis, cancer, intestinal and gastric diseases [336]. Turmeric has multiple reputed health benefits as an antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, and immunomodulatory agent. A recent study reported that the ingestion of turmeric improved insulin secretion and insulin sensitivity, and decreased insulin resistance [337–340]. The presence of caffeic acid, curdione, p-coumaric acid, demethoxycurcumin, isorhamnetin, valoneic acid, eugenol, isoshyobunone and corymbolone in turmeric may contribute to these antidiabetic properties. Furthermore, turmeric is rich in curcumin that induces glucose uptake and GLUT2 activity as well as notably promotes insulin production [338–340].
42. Daucus carota (Carrot)
Daucus carota (Apiaceae), widely known as carrot, is traditionally used for diarrhea, constipation, intestinal inflammation, weakness, illness, diabetes and rickets [341]. Carrot has been reported to inhibit glucose absorption by significantly inhibiting α-glucosidase and α-amylase activity, and improve insulin resistance in diabetic patients [342]. Carotenoids such as α and β-carotene, are the main phytochemicals in carrot. It also contains polyacetylenes, ascorbic acid, lutein, lycopene, and anthocyanins which can enhance insulin sensitivity and pancreatic β-cell function [343,344].
43. Ficus carica (Fig)
The fig plant, Ficus carica, belongs to the Moraceae family. It is a useful remedy for dermatitis, anemia, diabetes, paralysis, urinary tract infection, ulcers, and liver diseases [345]. Its leaves, pulp, stem, and root decrease body weight, LDL and VLDL cholesterol, triglycerides, and postprandial glucose levels, as well as inhibit pancreatic β-cell apoptosis via the pancreatic AMPK, C-Jun N-terminal kinase, p-JNK and caspase-3 pathways [346,347]. The fruit is rich in eugenol, anthocyanins, phenolic acids, flavones and flavanols which may be responsible for the antimicrobial, neuroprotective, antioxidant, and anti-inflammatory properties of this plant [348–350].
44. Fragaria ananassa (Strawberry)
Fragaria ananassa (Rosaceae) known as strawberry is an effective remedy for wound healing, clots, obesity, and diabetes [351]. Strawberry ameliorates peripheral insulin resistance, reduces α-amylase and α-glucosidase activity, and increases glucose-stimulated insulin release [351–353]. Quercetin, kaempferol, rutin, gallic acid, chlorogenic acid, caffeic acid, ellagitannins and gallotannins found in strawberry may be responsible for the antioxidant, cardioprotective, antimetabolic syndrome, and neuroprotective properties of this plant [351–355].
45. Glycine max (Soya bean)
Glycine max (Fabaceae), also called soya bean, is employed to produce vegetable oils, tofu, soy milk and soy sauce. It is also a remedy for osteoporosis, cardiovascular disease and diabetes [356]. It contains a high content of proteins which improves diabetes and its complications by modulating various cell signaling pathways and regulating glucose homeostasis [357,358]. Soya beans are also able to mitigate obesity-induced metabolic disorders [359], as they lower triglycerides levels and have fatty acid synthase inhibitory activity which contribute in ameliorating diabetes-related complications [360]. Among the soya bean proteins, β-conglycinin is the major constituent that has been reported to reduce insulin resistance and improve glucose uptake in skeletal muscles through AMPK activation [358].
46. Helianthus annuus (Sunflower)
Helianthus annuus (Asteraceae), is commonly known as sunflower. Sunflower seeds are often ingested to ameliorate diabetes, nephrotoxicity, cardiovascular disease and hematologic disorders [361]. Sunflower is popular for its antitumor, antimicrobial, antioxidant and anti-inflammatory effects. Sunflower seeds have been reported to lower body weight, body mass index (BMI), and have free radical scavenging activity. They can also reduce AGEs formation and lower fasting blood glucose levels [362–364]. Sunflower is rich in flavonoids, alkaloids, saponins, tocopherols, carotenoids, tannins, chlorogenic acid and caffeic acid. Tocopherols have been reported to improve insulin sensitivity and protect β-cells from oxidative stress [364].
47. Hibiscus rosa-sinensis Linn (China rose)
Hibiscus rosa-sinensis Linn., also called China rose, China hibiscus, rose mallow or shoe flower, belongs to the Malvaceae family. It is a popular traditional remedy for tumor, hairloss, infertility, diabetes and wound healing [365–367]. It is reported to stimulate pancreatic-β cells, enhancing insulin secretion and glycogen accumulation in the liver. The antidiabetic properties of China rose may be attributed to its rich content of quercetin, cyanidin, ascorbic acid, gentisic acid, lauric acid, thiamine, niacin, margaric acid, calcium oxalate, and hentriacontane. Cyanidin, also present in china rose, has been demonstrated to improve endothelial function and oxidative damage [367–369].
48. Hylocereus undatus (Dragon fruit)
Hylocereus undatus (Cactaceae), also called dragon fruit or strawberry pear, is ethnomedicinally useful as a hypoglycaemic, diuretic, antigastritis, wound healing and laxative agent [370,371]. It shows antidiabetic activity by regulating oxidative stress, reducing intestinal glucose absorption and plasma glucose levels, and improving insulin secretion. These effects can be attributed to a several phytoconstituents including phthalic acid, α-amyrin, oleic acid, linoleic acid, palmitic acid, gallic acid, syringic acid, p-coumaric acid, lycopene, β-carotene and betacyanin [372].
49. Ipomoea batatas (Sweet potato)
Ipomoea batatas is a plant of the Convolvulaceae family, also known as sweet potato. This plant is a popular ethnomedicine for diabetes, diarrhea, splenosis, stomach distress, anemia, hypertension, and throat tumors [373,374]. Anthraquinones, coumarins, flavonoids (quercetin, lutein), saponins, tannins, phenolic acids, chlorogenic acid, terpenoids, β-carotene, zeaxanthin, and anthocyanins present in sweet potato may also substantially mitigate insulin resistance and regulate blood glucose levels by stimulating the production of insulin by pancreatic-β cells [375–377].
50. Juglans regia L. (Walnut)
The walnut plant or Juglans regia L. (Juglandaceae) is a reputed remedy for bacterial infection, stomachache, thyroid disorders, diabetes, cancer, heart conditions and sinusitis [378]. Its nut is high in fiber which makes it one of the best super food to control of diabetes. One study reported that it improves glucose uptake, inhibits α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B) activity, and reduces plasma glucose levels in streptozotocin-induced rats [379]. Gallic acid, caffeoylquinic acid, coumaroylquinic, juglone, and quercetin were identified as the potential bioactive compounds responsible for the antidiabetic, anti-inflammatory, and antioxidant effects of walnut [380,381].
51. Lactuca sativa (Lettuce)
Lactuca sativa or lettuce is a leafy vegetable from the Asteraceae family, often served as a salad. The leaves and seeds of lettuce are used for treating hyperglycaemia, osteodynia and inflammatory conditions [382]. Lettuce inhibits the activity of α-amylase, α-glucosidase and dipeptidyl peptidase-4 (DPP-4) enzymes. It can regulate postprandial glucose, fasting blood glucose, triglycerides, serum insulin, and cholesterol levels. These effects may be due to the presence of flavonoids such as quercetin, anthocyanins and hydroxycinnamoyl derivatives [383–386].
52. Lagenaria siceraria (Bottle gourd)
Lagenaria siceraria (Cucurbitaceae) is popularly known as bottle gourd and regarded as a remedy for diabetes, jaundice, constipation, flatulence, insomnia, ulcer, piles, colitis, insanity, hypertension, congestive cardiac failure, skin diseases and headaches [387,388]. Bottle gourd improves insulin production and glucose tolerance, and suppresses intestinal glucose absorption. These effects may be attributed to isovitexin, isoorientin, saponarin, fucosterol, campesterol, cucurbitacin B, cucurbitacin D, cucurbitacin E, isoquercitrin, kaempferol, gallic acid and protocatechuic acid [389,390].
53. Laurus nobili (Bay leaves)
Laurus nobilis or bay leaf is an important spice from the Lauraceae family. It is a popular aid for stomachaches, phlegm, cold, sore throat, headache, indigestion, flatulence, eructation, epigastric bloating and diabetes [391]. It is reported to decrease serum glucose levels, inhibit α-glucosidase and stimulate the production of insulin by pancreatic β-cells. It is rich in phytoconstituents that include linalool, sabinene, kaempferol, quercetin, apigenin, luteolin, lauric acid, palmitic acid, linoleic acid and the carotenoid lutein [392–394].
54. Litchi chinensis (Lychee)
Litchi chinensis (Sapindaceae), or lychee, is a seasonal fruit and useful ethnomedicine for cough, ulcer, flatulence, testicular swelling, diabetes, hernia, and obesity [395]. Lychee seeds improve insulin resistance, glucose tolerance, and fasting blood glucose and serum triglycerides levels. Lychee has antihyperglycemic, antineurotoxic, anti-inflammatory, lipid -owering, insulin secreting and α-glucosidase inhibitory properties. These effects may be attributed to the presence of flavonoids, triterpenes, sterols, and phenolic compounds [396,397].
55. Luffa acutangula (Ridge gourd)
Luffa acutangula (Cucurbitaceae), known as ridge gourd, is a valuable traditional medicine for diabetes, jaundice, hemorrhoids, urinary bladder stones, granular conjunctivitis, constipation and leprosy. Ridge gourd has been reported to substantially lower serum glucose levels by enhancing insulin secretion and peripheral glucose uptake, as well as suppressing glycogenolysis and gluconeogenesis in alloxan-induced diabetic rats [398]. These effects may be attributed to its content in apigenin, luteolin, myristic acid, α-pinene, carotene, oleanolic acid, β-myrcene and linalool in its leaves, seeds and fruit which reduce blood glucose and oxidative stress [399].
56. Malus domestica (Apple)
The apple, Malus domestica (Rosaceae), is one of the most widely cultivated and commerciallysignificant fruits. It is also a valuable folk medicine for wounds, diabetes, asthma, obesity, and cardiovascular disease [400–402]. Apple has been reported to significantly lower plasma glucose levels by increasing glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(GLP-1). Its antidiabetic effect has been linked with the flavonoid quercetin [403–405]. Apple also has antihypertensive, antioxidant, and anti-inflammatory properties which may be attributed to several compounds including quercetin, catechin, epicatechin, procyanidin, coumaric acid, chlorogenic acid and gallic acid [403–409].
57. Mangifera indica (Mango)
Mangifera indica (Anacardiaceae), known as mango, is a delicious fruit and a plant used in folk medicine for asthma, dysentery, anthrax, indigestion, diarrhea, diabetes and colic [410–412]. Mango pulps, stems and peels improve postprandial glucose and insulin sensitivity in T2DM patients by inhibiting α-amylase and α-glucosidase [413–415]. Mango has been reported to exert antidiabetic activity by improving insulin secretion from clonal β-cells and isolated mouse islets, and regulating fasting blood glucose, plasma insulin and liver glycogen levels, starch digestion, glucose absorption, body weight, and free radical scavenging activity in diabetic rats [414]. Another study in streptozotocin-induced diabetic rats, reported its promising ability to decrease postprandial hyperglycemia [415]. The mentioned therapeutic effects of mango may be mediated by mangiferin, flavonoids, tannins and alkaloids [414].
58. Mentha spicata (Mint leaves)
Mentha spicata, or mint, is a plant from the Lamiaceae family. It is known as a remdy for common colds, asthma, fever, obesity, digestive problems, dementia, hypertension, diabetes and insomnia [416]. Mint boasts a range of health benefits. Mint leaves increase HDL cholesterol levels, and reduce triglycerides, LDL and VLDL cholesterol levels. It has antibacterial, antifungal, antioxidant, hepatoprotective, cytotoxic, anti-inflammatory, larvicidal, antigenotoxic, and antiandrogenic effects. Its ability to suppress α-amylase and α-glucosidase may be due to the presence of carvone, limonene, 1,8-cineole, pulegone, β-bourbonene, β-pinene, dihydrocarveol, and piperitone [417,418].
59. Moringa oleifera Lam. (Moringa)
Moringa oleifera Lam. (Moringaceae), also known as moringa or the drumstick tree, grows in many tropical and subtropical regions. It is regarded as a folk remedy for diabetes, liver disease, cancer, inflammation, hypercholesteremia and hypertension [419,420]. Tannins, β-carotene, vitamin C, quercetin, and chlorogenic acid in moringa leaves aid diabetes through inhibiton of α-amylase and α-glucosidase enzymes. They also reduce serum glucose and fasting blood glucose levels [421–423].
60. Momordica charantia (Bitter gourd)
Momordica charantia or bitter gourd (Cucurbitaceae) has medicinal value for managing T2DM, dyslipidemia, cancer, obesity, malaria, dysentery, hypertension, womb and worm infections [424-42].7 Bitter gourd suppresses the intestinal absorption of glucose, inhibits gluconeogenesis and reduces accumulation of fats in adipocytes. It also activates the HMP and the PPARα pathways, regenerates pancreatic β-cells and enhances glucose uptake in skeletal muscles. These effects may be attributed to the presence of phytoconstituents such as saponins, triterpenes, flavonoids, ascorbic acid and steroids [428–432].
61. Morus alba (Mulberry)
Morus alba (Moraceae), also known as mulberry, is widely used as a remedy for diabetes, insomnia, tinnitus, dizziness, and for premature aging. It improves fasting blood glucose, total triglycerides, cholesterol and HDL-cholesterol levels via the IRS-2, GLUT4 and Akt pathways [433]. Quercetin and isoquercetrin present in mulberry leaves are reported to have insulin-releasing, antihyperlipidaemic, antithrombotic, antiobesity, antioxidant, and anti-inflammatory effects, which may be beneficial in diabetic complications [434,435]. The bark of mulberry also lowers cholesterol and blood glucose levels probably due to the presence of alkaloids, flavonoids, coumarins, anthocyanins, benzofurans and phenolic acids [436,437].
62. Murraya koenigii (Curry leaves)
Murraya koenigii L. or the curry leaf plant belongs to the Rutaceae family. This plant is popular as herbal remedy for piles, inflammation, itching, diabetes and snake bites [438,439]. It has antimicrobial, antioxidant, antihyperglycemic, apoptotic, anticarcinogenic, anti-inflammatory and antitumor effects. It has been also reported to protect against β-cell damage, enhance antioxidant defense systems and reduce oxidative stress, as well as improve blood sugar levels in diabetic rats [440]. The bioactive substances such as mahanine, mahanimbine, murrayanol, koenigicine, quercetin, apigenin, kaempferol, catechin, and oliolide in curry leaves have been reported to synergistically regenerate β-cells, aid diabetic complications, and possess antihyperlipidemic effects [440,441].
63.  Myristica fragrans Houtt. (Nutmeg)
Myristica fragrans Houtt. (Myristicaceae), known as nutmeg, is a flavoring spice and reputed folk remedy for skin infection, diarrhea, diabetes, Alzheimer’s disease, rheumatism, asthma, cold, cough and malaria [442]. Nutmeg demonstrates antidiabetic effects by enhancing insulin sensitivity, regulating blood glucose levels, and exhibiting antioxidant properties that protect against oxidative stress in diabetes. It strongly inhibits the release of pro-inflammatory cytokines such as IL-6 and TNF-α, and helps ameliorate β-cell function, inflammation and obesity [443–445]. Nutmeg is a source of flavonoids, terpenes, phenylpropanoids, coumarins, lignans, alkanes, and indole alkaloids that can elicit antiprotozoal, antimicrobial, immunomodulatory, anxiolytic and neuroprotective effects [442].
64. Nigella sativa L. (Black seeds)
Nigella sativa L. (Ranunculaceae) or black seeds are a reputed herbal remedy for asthma, dyslipidemia, diabetes and diarrhea [446]. Black seeds exert antidiabetic effects by reducing carbohydrate digestion and absorption in the gut, improving insulin secretion, and enhancing glucose tolerance in T2DM animal models. Other antidiabetic effects of black seeds include lowering lipid and blood glucose levels, suppressing hepatic gluconeogenesis, inhibiting α-amylase and α-glucosidase, as well as boosting insulin production and sensitivity. These effects can be attributable to phytochemicals that include thymoquinone, thymol, limonene, carvacrol, p-cymene, longifolene, α-pinene, linoleic acid, oleic acid, palmitic acid, saponins, and alkaloids. Thymoquinone in black seeds is known to enhance insulin secretion and insulin sensitivity through activating the PI3K/Akt signaling pathway [447–450].
65. Ocimum sanctum L (Holy basil)
Ocimum sanctum L., known as Holy basil or Tulsi, belongs to Lamiaceae family. Tulsi is traditionally used for anxiety, cough, asthma, diarrhea, fever, dysentery, arthritis, eye diseases, indigestion, back pain, skin disorders, ringworm, insect, snake, scorpion, malaria, vomiting, gastritis, diabetes, cardiac and genitourinary infection [451,452]. Tulsi leaves help improve insulin synthesis and pancreatic β-cell activity as well as inhibit intestinal glucose absorption. Its phytoconstituents such as eugenol, ursolic acid, carvacrol, linalool, caryophyllene, triterpenoids, and tannins may contribute to these effects [453,454].
66. Olea europaea L. (Olive)
Olea europaea L. (Oleaceae), or olive, is traditionally used to treat diabetes, diarrhea, inflammation, urinary tract infection, hypertension intestinal diseases, hemorrhoids and rheumatisms [455–457]. It offers a promising range of health benefits such as anti-inflammatory, antidiabetic and immunomodulatory properties [458–460]. Olive oil notably prevents hepatic gluconeogenesis and inhibits glucose-6-phosphatase activity. It enhances catalase activity, regulates body weight and plasma glucose levels possibly due to the presence of oleanolic acid, cinnamic acid and secoiridoid glycosides such as oleuropein [458–460].
67. Origanum vulgare (Oregano)
Origanum vulgare (Lamiaceae), known as oregano, is a folk medicine for acne, cystic fibrosis, diabetes, and bacterial infections [461,462]. It alleviates diabetic complications, including nephropathy, atherosclerosis, and retinopathy, by inhibiting α-glucosidase, thereby reducing the breakdown of complex carbohydrates into glucose, and lowering both glycosylation and oxidative stress. Moreover, it improves glucose uptake in skeletal muscles by increasing GLUT2 levels, leading to better control of blood sugar levels [463]. Oregano is a source of amburoside A, apigenin, luteolin 7-O-glucuronide, rosmarinic acid and lithospheric acid which have antimicrobial, antifungal, antioxidant, anti-inflammatory and antiviral properties [464,465].
68. Passiflora edulis (Passion fruit)
Passiflora edulis (Passifloraceae), commonly known as passion fruit, is used as an ethnomedicine for cough, diabetes, dysmenorrhea, dysentery, arthralgia, and constipation [466,467]. Previous studies have shown that it reduces weight gain, lipid accumulation, and improves insulin sensitivity and glucose tolerance via the Sirt1 and p-AMPK pathways. [468,469]. It contains more than 110 bioactive constituents including piceatannol, tocopherols, β-carotene and other carotenoids, gallic acid, flavonoids such as rutin and quercetin, coumaric acid, which have antidiabetic, antioxidant, antihypertensive, antimicrobial, hepatoprotective and lung-protective qualities [467,470–474]. A reduction in blood glucose levels has been linked to the presence of piceatannol, present in high amounts in passion fruit [467].
69. Persea americana (Avocado)
Persea americana (Lauraceae) or avocado is a popular fruit and a remedy traditionally used to manage cardiovascular diseases and diabetes [475]. Avocado has been reported to lower blood glucose levels, regulate glucose uptake in the liver and skeletal muscles as well as restore intracellular energy homeostasis through activation of the PKB/Akt pathway [476]. Histopathological analysis of diabetic rats also revealed regeneration of clonal pancreatic β-cells following avocado treatment. Avocado seed, bark, and leaf extracts contain flavonoids, alkaloids, saponins, tannins, and glycosides, which are known for their antihyperglycemic properties [477–479].
70. Petroselinum crispum (Parsley)
Petroselinum crispum (parsley) is a plant form the Apiaceae family. As well as being a culinary herb, it is an ethnomedicine traditionally used for diabetes, urinary tract infection, dysmenorrhea, hypertension, dermatitis and gastrointestinal disorders [480]. Parsley exerts long-lasting control of sugar levels by regulating plasma glucose, body weight, and electrolyte (sodium and potassium) balance. It also promotes glucose uptake in muscles by inhibiting gluconeogenesis (sugar production) and stimulating glycolysis (sugar breakdown) [481,482]. The main bioactive constituents of parsley are coumarins, phthalides, phenylpropanoids, and tocopherols with antimicrobial, antihepatotoxic, antihypertensive, antihyperlipidemic, hypouricemic, and antioxidative properties [483].
71. Phaseolus vulgaris L. (Kidney bean)
Phaseolus vulgaris L. (Fabaceae), or kidney beans, is another nutritious legume crop, ethnomedicinally used for wounds, pharyngitis, fever, obesity, diabetes, cancer and vaginal infections [484,485]. Beyond their potential to lower blood sugar levels, kidney beans exhibit a range of other health benefits, including anti-obesity and anti-inflammatory properties [484–486]. They are a potential source of protocatechuic acid, p-coumaric acid, procyanidin, myricetin, naringenin, gallic acid, quercetin, catechin, kaempferol, and ferulic acid which may contribute to alleviating diabetic complications via inhibiting α-glucosidase, enhancing insulin sensitivity in peripheral tissues, delaying the absorption of glucose, and reducing gluconeogenesis [486,487].
72. Phoenix dactylifera (Date)
Phoenix dactylifera or date palm is a flowering plant belonging to the Arecaceae family. Date palm, is a traditional medicine for fever, inflammation, nervous disorders and dementia [488]. In-vitro studies demonstrated that date fruit has α-glucosidase and α-amylase inhibitory activity, reduces the intestinal absorption of glucose, improves pancreatic β-cell function, insulin secretion and β-cells number [489,490]. The antihyperglycaemic, antioxidant, anti-inflammatory, hepatoprotective, and nephroprotective properties of date palm may be attributable to its vast array of phytochemicals that include oleic acid, linoleic acid, catechin, epicatechin, anthocyanin, ellagic acid, gallic acid, p-coumaric acid, coumarins, quercetin, rutin, myricetin, apigenin, naringenin, and chlorogenic acid [488,491].
73. Phyllanthus emblica L. (Amla)
Phyllanthus emblica L. (Phyllanthaceae), commonly called indian gooseberry or amla, is a remedy for cough, peptic ulcer, skin diseases, jaundice, diarrhea, dysentery, diabetes, cardiac disorders, and premature aging [492,493]. Recent studies suggest that the fruit, bark, leaves and roots of amla significantly reduce plasma glucose levels through inhibition of α-amylase and α-glucosidase activity and activation of the AMPK signaling pathway. The main phytoconstituents in amla such as gallic acid, ellagic acid, pectin, quercetin, linoleic, oleic acid, and myristic acid, which are effective in reducing inflammation, blood glucose levels, and increasing insulin sensitivity [494,495].
74. Piper betle L. (Betel leaf)
Piper betle L. (Piperaceae), also known as betel leaf, is widely used as a folk medicine for wounds, bronchitis, diabetes, cough, indigestion in children, headaches, arthritis, and joint pain [496]. It increases insulin production, improves glucose tolerance and decreases blood glucose levels substantially [497]. Betel leaf contains many phytoconstituents such as eugenol, selinene, hydroxychavicol, cadinene, caryophyllene, estragole, linalool, and other terpenes, phenols, steroids, saponins and tannins which may play an important role in the management of diabetic complications [498,499].
75. Pisum sativum L. (Pea)
Pisum sativum L., known as pea, is a plant that belongs to the Fabaceae family. Pea is a reputed remedy for diabetes, gastrointestinal disorders, hyperlipidaemia and blood diseases [500]. Phytoconstituents such as quercetin, ellagic acid, coumaric acid, β-sitosterol, β-amyrin, catechin, myricetin, vanillic acid, and kaempferol may be responsible for the antidiabetic properties of pea. It remarkably improves plasma glucose levels, glucose tolerance, glucose uptake, and glucose homeostasis and diabetic complications [501,502]. It is also known to alleviate weight loss, polyphagia, and triglycerides and LDL cholesterol levels via interacting with AMPK, α-glucosidase, IRS-1 and IRS-2 [503].
76. Prunus armeniaca L. (Apricot)
Prunus armeniaca L. (Rosaceae), known as apricot, is a promising antidiabetic, cardioprotective, hepatoprotective, nephroprotective, antioxidant, antimicrobial, anti-inflammatory, anticancer and antiviral remedy [504,505]. Apricot has been reported to stimulate insulin secretion, reduce oxidative stress and show α-glucosidase inhibitory activity in alloxan-induced diabetic mice. It is rich in coumaric acid, benzyl glycosides, cyanogenic glycosides, vanillin, catechin, epicatechin, neochlorogenic acid, chlorogenic acid, rutin, quercetin and lutein [505,506].
77. Prunus domestica (Plum)
Prunus domestica (Rosaceae), or plum, is a fruit and a beneficial ethnomedicine for anemia, Alzheimer’s disease, irregular menstruation, diabetes and constipation [507–509]. Recent studies reported that plum reduces oxidative stress and inhibits α-glucosidase, α-amylase, pancreatic lipase and HMG-CoA reductase, lowering LDL, cholesterol and triglycerides levels [510,511]. Catechin, epicatechin, chlorogenic acid, kaempferol, quercetin, and β-carotene present in plum may contribute to its antihyperglycaemic, anti-inflammatory, antioxidant and lipid-lowering properties [512–514].
78. Prunus dulcis (Almond)
Prunus dulcis, or almond, is a plant from the Rosaceae family that is used as a remedy for neurogical and respiratory disorders, diabetes and urinary tract infection [515]. Almond has a high fiber content which help in ameliorating diabetes by suppressing appetite, and lowering blood sugar levels via increasing insulin production and decreasing stomach emptying time. Its pharmacological effects include antioxidant, anti-inflammatory, hepatoprotective, anxiolytic and nerve-improving. Almond is rich in oleic acid, linoleic acid, p-coumaric acid, anthocyanins, kaempferol, quercetin, and chlorogenic acid [515,516].
79. Prunus persica (Peach)
Prunus persica or peach is a species from the Rosaceae family, that is very useful in improving blood circulation, blood clotting, constipation, and diabetes [517]. Peach inhibits α-glucosidase and α-amylase activity and enhances insulin production by increasing the regeneration of pancreatic islet β-cells [518,519]. Various bioactive compounds in peaches such as procyanidins, epicatechin, catechin, chlorogenic acid, quercetin and kaempferol play a vital role in the secretion of insulin from clonal pancreatic β-cells and have demonstrated of DPP-IV inhibitory activity [518,520].
80. Punica granatum (Pomegranate)
Punica granatum or pomegranate (Lythraceae) is traditionally used for dysentery, diarrhea, piles, bronchitis, biliousness, and diabetes [521,522]. Recent studies have shown that it can stimulate insulin secretion, enhance glucose transporter type 4 (GLUT-4) translocation, and regulate blood glucose levels. The phytoconstituents isolated from pomegranate such as ellagic acid, gallotannins, anthocyanins, quercetin, kaempferol, luteolin glycosides, linolenic, arachidic, and palmitoleic acids may contribute to the insulin-releasing and glucose-lowering properties of this plant [523,524].
81. Psidium guajava (Guava)
Psidium guajava (Myrtaceae), commonly known as guava, is widely used for dysentery, diabetes, and diarrhea [525–527]. Studies conducted on its leaves have revealed that it activates the AMPK and PI3K/AKT signaling pathways, improves hepatic glycogen accumulation, regulates the activity of superoxide dismutase (SOD), glucose transporter 2 (GLUT-2) and fasting blood sugar levels [528–531]. The antidiabetic activity of guava may be attributed to compounds such as quercetin, avicularin, guaijaverin, tannins, and triterpenes [532,533].
82. Raphanus sativus L. (Radish)
Raphanus sativus L. (Brassicaceae), also called radish, has been employed as an effective remedy for diabetes, jaundice, gastric disorders, dyspepsia and liver enlargement since ancient times [534]. Radish seeds significantly decrease hyperglycemia via reducing insulin resistance, limiting intestinal glucose absorption and increasing glucose uptake in skeletal muscles [535]. Myricetin, catechin, epicatechin, quercetin, p-coumaric acid, β-carotene, camphene, anthocyanin, glucosinolates and isothiocyanate are some of the phytoconstituents in radish which that have been demonstrated to possess antioxidant, anti-inflammatory and radical-scavenging activity [536,537].
83. Rosmarinus officinalis L (Rosemary)
Rosmarinus officinalis L., familiar as rosemary, is an important herb from the Lamiaceae family, and is commonly recognized as a flavor enhancer, food preservative, wound healer, antihyperglycemic and analgesic agent. It is also efficacious against mycosis, alopecia, ultraviolet damage, skin cancer, inflammatory diseases and diabetes [538,539]. Rosemary has been suggested to act via several pathways to improve blood sugar control. It reduces Irs1 protein, which can contribute to insulin resistance. It also recruits GLUT-4 receptors to the surface of muscle cells, facilitating glucose uptake from the bloodstream. Additionally, it activates pathways (pAKT and pAMPK) that promote glucose uptake and inhibit gluconeogenesis. These overall effects improve glucose utilization, leading to lower blood sugar levels [540–542]. Moreover, rosemary contains several types of flavonoids, carnosol, carnosoic, rosmarinic, ursolic, oleanolic, micromeric acids. The presence of bio active compounds may be responsible for its antimicriobial antitumor, antithrombotic, antidepressant and antioxidant effects [543,544].
84. Rubus fruticosus (Blackberry)
Rubus fruticosus or blackberry is a member of the Rosaceae family and well-known for its use in mouthwash to relieve gum inflammation and mouth ulcers. It is also used for sore throat, respiratory disorders, anemia, diarrhea, dysentery, cystitis, diabetes and hemorrhoids [545]. Blackberry has α-amylase, α-glucosidase and β-glucosidase inhibitory activity, and reduces oxidative stress. This has been associated with its high content in anthocyanins, cyanidins, kaempferol, quercetin, myricetin, p-coumaric acid, rutin and gallic acid [546–548].
85. Salvia hispanica L. (Chia seeds)
Salvia hispanica L. (Lamiaceae), also known as Chia seeds, have a high nutritional and medicinal value. They are used to treat indigestion, hyperlipidemia and diabetes [549,550]. Chia seeds decrease fasting plasma glucose and LDL-cholesterol levels, inhibit the production of pro-inflammatory cytokines (e.g. IL-6, Interleukin-2, TNF-α), reduce body weight, and have α-amylase and α-glucosidase inhibitory activity [551,552]. They are a source of myricetin, quercetin, kaempferol, chlorogenic acid, and caffeic acid that have hepatoprotective, antidiabetic antihypertensive, and antioxidant effects. They also contain omega-3 fatty acids which can enhance insulin sensitivity and reduce inflammation [553].
86. Sesamum indicum (White sesame seeds)
Sesame seeds, also called Sesamum indicum (Pedaliaceae), are traditionally used for wounds, amenorrhea, ulcer, asthma, hemorrhoids, inflammation, and diabetes [554,555]. Sesamin, the main bioactive compound in sesame seeds, can significantly ameliorate diabetes by enhancing insulin sensitivity, reducing inflammation, boosting antioxidant defenses, and regulating lipid metabolism [556]. Other phytochemicals in sesame seeds include other lignans such as sesamolin, and phytosterols. These are reported to decrease fasting and postprandial blood glucose, reduce cholesterol and oxidative stress, and improve renal disorders, fat metabolism, cell viability and insulin secretion [557–559].
87. Solanum lycopersicum L. (Tomato)
Solanum lycopersicum L. (Solanaceae) or tomato is vastly produced for consumption worldwide and is also a beneficial remedy for dermatitis, cancer, hypertension and hyperglycemia [560–562]. The underlying mechanisms of its hypoglycemic effects are through regulation of the PI3K/Akt, FOXO1, and PPAR-γ signaling pathways. Tomato enhance insulin signaling, improves glucose uptake, and modulates lipid metabolism [562]. Due to its high lycopene content, tomato may help mitigate diabetes-induced inflammation. Additionally, the presence of carotenoids may also contribute to improving insulin sensitivity [563,564]. Tomato also contains ferulic acid, β-carotene, tomatine, kaempferol, quercetin, naringenin, p-coumaric acid, and caffeic acid which exert antioxidant, anti-inflammatory, antihyperglycemic and neuroprotective effects [565,566].
88. Solanum melongena (Eggplant)
Solanum melongena (Solanaceae) or eggplant is a nutritious vegetable and an efficient remedy for arthritis, diabetes, dyslipidemia, bronchitis and asthma [567]. It has been reported to inhibit α-amylase and α-glucosidase enzymes, inhibit gluconeogenesis, increase the translocation of GLUT4, increase glucose uptake in skeletal muscle and reduce fatty acids, triglycerides and cholesterol levels [568]. The bioactive constituents present in eggplant include thiamin, niacin, chlorogenic acid, saponins, solasodine, delphinidin. These constituents have been associated with anti-inflammatory, antioxidant, antihypertensive, antihyperlipidemic, anti-obesity and hepatoprotective effects [569–571].
89. Spinacia oleracea (Spinach)
Spinacia oleracea (spinach) belongs to the Chenopodiaceae family. It is a folk remedy for bloody stools, diarrhea, stomachaches, obesity and diabetes [572]. It notably improves diabetic retinopathy and hyperglycemia by modulating multiple pathways such as inhibition of excess AGE and carbonyl group production, glycation, and thiol group depletion in bovine serum albumin [573]. Spinach aids insulin resistance by inhibition of increased serum C-reactive protein, tumor necrosis factor (TNF)-α and Interleukin-6 [574]. Moreover, it is rich in β-carotenoids, lutein, zeaxanthin, vitamins and minerals that also exert hypoglycemic, hypolipidemic, anti-obesity and antioxidant effects [575–577].
90. Syzygium aromaticum (Clove)
Syzygium aromaticum flower buds (Myrtaceae), typically known as clove, is a seasoning spice and an efficacious aid for increased gastritis, diabetes and indigestion [578]. Clove is reported to improve insulin sensitivity, inhibit aldose reductase to prevent diabetic complications such as neuropathy, nephropathy, regulate SIRT1 to enhance glucose metabolism, and promote muscle glucose uptake, all of which assist management of diabetes. Phytoconstituents in clove include alkaloids, terpenes, tannins, phenolics, steroids, flavonoids, glycosides and saponins which may mitigate diabetic complications by decreasing insulin resistance [578–581]. Among them, eugenol acetate, eugenol and gallic acid act via PPAR-γ activation, aldose reductase inhibition, sirtuin 1 (SIRT1) regulation and muscle glycolysis [579–581].
91. Syzygium cumini (Java plum)
Syzygium cumini (Java plum) belongs to the Myrtaceae family and is used to treat asthma, bronchitis, sore throat, biliousness, dysentery, diabetes, and ulcers [582]. Its pharmacological actions, such as stimulating clonal pancreatic β-cells to release insulin, have been compared to those of sulfonylureas and biguanides [583]. A recent study reported that Java plum seeds are effective in reducing plasma and urine glucose levels in diabetic rabbits [584]. The Java plum is a good source of phytoconstituents such as anthocyanins, malvidin-3-glucoside, petunidin-3-glucoside, ellagic acid, and the flavonoids isoquercetin, kaempferol and myricetin which may be responsible for its antioxidant, antibacterial, gastroprotective and antidiarrheal properties [582].
92. Tamarindus indica L. (Tamarind)
Tamarindus indica L., also known as tamarind belongs to Fabaceae family. This plant is mostly cultivated in the Indian sub-continent and other tropical regions. It is known to effectively treat inflammation, stomach pain, sore throats, rheumatism, wound, diarrhea, dysentery, fever, malaria, respiratory conditions, constipation, and eye diseases [585]. Beyond its culinary uses, tamarind offers a range of health benefits due to its antioxidant and anti-inflammatory properties that aid digestion and the expulsion of mucus [585–588]. The presence of apigenin, anthocyanin, procyanidin, catechin, epicatechin, taxifolin, eriodyctiol, and naringenin help to control DM by inhibiting the activity of α-amylase and α-glucosidase [586–588]. Among them, catechin, anthocyanin and epicatechin notably lower blood glucose levels via glucose-6-phosphatase inhibitory activity, improving blood glucose tolerance and promoting the regeneration of β-cells [589].
93. Theobroma cacao (Cocoa)
Theobroma cacao (Malvaceae) is typically known as cocoa beans and commercially processed to make chocolate particularly dark chocolate. It is a reputed remedy for measles, malaria, toothache and diabetes. Its antidiabetic effect is via improving insulin secretion, GLUT4 translocation and glucose uptake [590,591]. Moreover, it exerts inhibitory activity on α-amylase and α-glucosidase, reduces ROS generation, increases GSH and Nrf2, thereby enhancing insulin secretion and β-cell survival [592,593]. Flavonoids, procyanidins, catechin and epicatechin have been implicated in mitigating diabetic complications and have demonstrated antioxidant, anti-inflammatory and hepatoprotective effects [594,595].
94. Trichosanthes cucumerina L. (Snake gourd)
Trichosanthes cucumerina L. (Cucurbitaceae) or snake gourd is an ethnomedicine for diabetes, bronchitis, headache, cathartic, anthelmintic, indigestion, ulcers, stomach and skin disorders [596,597]. The roots, fruit, seeds and leaf juice of snake gourd simulate β-cell insulin secretion, enhance glucose uptake in peripheral tissues and reduce intestinal glucose absorption. This antihyperglycaemic effect may be attribute to its rich content in carotenoids, gallic acid, neochlorogenic acid, caffeic acid, p-coumaric acid, rutin, kaempferol, quercetin, ursolic acid and oleanolic acid [596–598].
95. Trigonella foenum-graecum (Fenugreek seeds)
Trigonella foenum-graecum (Fabaceae), or fenugreek seeds are reputed as an effective tonic for ulcer, sinusitis, hay fever, diarrhea, diabetes and kidney diseases [599]. Studies have documented their antidiabetic activity with promising reduction in fasting and postprandial blood glucose, enhancement in glucose uptake, glucose tolerance and peripheral insulin action [600,601]. Phytoconstituents in fenugreek seeds such as steroids, alkaloids, flavonoids, polyphenols, saponins have anti-obesity, antihyperlipidemic, antioxidant, anticancer, anti-inflammatory and antifungal properties. Specific phytochemicals, including trigonelline, diosgenin, and galactomannan, have been shown to enhance insulin sensitivity, improve glucose metabolism, and reduce blood sugar levels [599–602].
96. Vaccinium corymbosum (Blueberry)
Vaccinium corymbosum (Ericaceae), also called blueberry, is a widely used fruit with medicinal properties that are useful for cold, inflammation, cardiovascular diseases, diabetes, and ocular disorders [603,604]. It exerts its antidiabetic activity by inhibiting α-amylase and α-glucosidase activity and ameliorating diabetic retinopathy [604,605]. It is rich in pectin, anthocyanins, anthocyanidins, protocatechuic acid and petunidin which may contribute to its antidiabetic, antiobesity, antioxidant, cardioprotective, neuroprotective and immunomodulatory effects [605].
97. Vigna radiata (Mung bean)
Vigna radiata (Leguminosae), or mung bean, is an important legume crop with high nutrient value and a helpful remedy for heat stroke, gastrointestinal disorders, dermatitis, hyperglycemia, hypertension, hyperlipidemia and melanogenesis [606,607]. Mung bean significantly reduces serum glucose, total cholesterol and triglycerides levels. It also inhibits gluconeogenesis, glycolysis, as well as α-glucosidase and α-amylase activity [608–610]. Mung bean is a rich source of proteins, vitamins, minerals and bioactive compounds that include quercetin, myricetin, kaempferol, catechin, vitexin, isovitexin, coumaric acid, luteolin, caffeic and gallic acid which all together help enhance insulin sensitivity, reduce oxidative stress and blood glucose levels [611,612].
98. Vitis vinifera (Grapes)
Vitis vinifera (Vitaceae), commonly called grapes, can aid in diarrhea, wounds, hepatitis, stomachaches, cardiovascular diseases, varicose veins, hemorrhoids, atherosclerosis, and diabetes [613]. It is known for regenerating clonal pancreatic β-cells and regulating plasma glucose levels by inhibiting the intestinal absorption of glucose [614]. The phytomolecules found in grapes such as triterpenoid acids, gallic acid, catechin, epicatechin, gallocatechin, p-coumaric and ferulic acids may contribute to its anti-inflammatory, antioxidant, anticholesterolemic and glucose-lowering properties [615].
99.  Zea mays (Corn)
Zea mays (Poaceae) or corn, is a popular ethnomedicine for malaria, bladder stone, heart diseases and diabetes [616,617]. Corn is a superfood which is rich in fiber and nutrients. Recent findings reveal that corn silk (extended stigma of Z. mays flower) improve insulin resistance via lowering LDL-cholesterol, total cholesterol, triglycerides, and malondialdehyde levels. It also reduces body weight and the accumulation of lipids in the liver [618]. Moreover, corn possesses antioxidant, anti-inflammatory, antimutagenic, anti-angiogenesis and anticarcinogenetic properties. One in vivo study revealed that the flavonoid glycoside hirsutrin was the main constituent beneficial in diabetic complications through suppressing aldose reductase and the formation of galactitol [619]. The antidiabetic properties of corn have been attributed to flavonoids, alkaloids, saponins, phenols, tannins, and phytosterols that could inhibit α-amylase and α-glucosidase and aid diabetic nephropathy [620,621].
100. Zingiber officinale (Ginger)
Zingiber officinale (Zingiberaceae), commonly called ginger, is a traditional treatment for muscular aches, arthritis, rheumatism, diabetes, hypertension, infections and helminthiasis [622]. Ginger plays a significant role in regulating blood sugar levels by promoting the actions of GLUT-4 and PPAR-γ, which help muscles absorb glucose more efficiently. It also protects insulin-producing β-cells in the pancreas [623]. Ginger is rich in various compounds (e.g. gingerols) that have a range of pharmacological effects, including anti-inflammatory, neuro-and cardio-protective properties [624].
Table 1. Traditional uses, pharmacological actions and phytoconstituents of dietary plants.
Table 1. Traditional uses, pharmacological actions and phytoconstituents of dietary plants.
Dietary plants Plant Parts Used Traditional uses Pharmacological actions Diabetic model Treatment Dose Duration of treatment Phytochemicals References
Scientific name Common name
1. Abelmoschus esculentus L. Okra Fruit, roots Chronic kidney disease, T2DM, cardiovascular diseases Blood glucose, TC, TG, LDL-C, VLDL, HDL, body weight, α-amylase and α-glucosidase activity
STZ-induced T2DM mice 200-400
mg/kg/day
56 days Oxalic acid, iodine, pectin, flavonoids, saponins, alkaloidsd-galactose, L-rhamnose, D-galacturonic [143–145,625]
2. Actinidia chinensis Kiwi Fruit Dyspepsia, vomiting, loss of appetite, diabetes serum microRNA-424, Keap1, Nrf2, IL-6, IL-1, SOD, GSH, ALT, AST, inflammation T2DM patients (50-70 years old) 10mg/kg/day 270 days Triterpenoids, polyphenols, β-carotene, lutein, xanthophylls, amino acids [146–149]
3. Aegle marmelos L. Stone apple Fruit Inflammation, asthma, hyperglycemia, febrifuge, hepatitis, analgesic, antifungal agent, colitis, flatulence, dysentery, fever Glucose tolerance, α-amylase and α-glucosidase activities, insulin secretion, intestinal glucose absorption, BMI, polydipsia, polyphagia STZ-induced T2DM
diabetic rats
250-500
mg/kg/day
28 days Marmelosin, psoralen, limonene, citronellal, citral, marmin, skimmianine, aegelin, fagarine, lupeol, cineol,
halfordiol, citronellal, cuminaldehyde, eugenol, marmesinin
[150–152]
4. Agaricus bisporus Mushroom Rhizome Cold, cough, influenza, asthma, cancer, diabetes, hepatic disorders Blood glucose, TC, TG, LDL-C, insulin secretion, glucagon secretion STZ-induced Sprague-Dawley rats 200mg/kg/day 21 days Lectins, β-glucans, polyphenols, p-hydroxybenzoic acid, protocatechuic acid, gallic acid, cinnamic, p-coumaric acid, ferulic acid, chlorogenic acid and catechin [153–157]
5. Allium cepa Onion Fruit Wound healing, scars, keloids, bee sting inflammation, dysmenorrhea, vertigo, fainting, migraine, bruises, earache, jaundice, pimples, diabetes Blood glucose, FBG, TC, TG α-amylase and α-glucosidase activity, insulin secretion,
β-cell protection, oxidative stress
Alloxan-
induced diabetic rats
200-300
mg/kg/day
42 days Quercetin, lectin, steroids, catechol, thiocyanate, isoflavones, humulone, quercetin, apigenin, rutin, myricetin, kaempferol, catechin, resveratrol, ajoene, phenolics, phenolic acids and anthocyanins [158–162]
6. Allium sativum L. Garlic Fruit Cold, fever, headache, abdominal pain, sinus congestion, gout, rheumatism, hemorrhoids, asthma, bronchitis, cancers, cough cardiovascular diseases, arthritis, tuberculosis, rhinitis, malaria, dermatitis, enlarged spleen, fistula, UTI, kidney stone Blood glucose, TC, TG, GLUT-4 activity, β-cell function, glucose uptake, creatinine, uric acid, urea, AST and ALT, insulin sensitivity, insulin secretion , insulin production , glucose tolerance, STZ-induced Wistar rats 100-500
mg/kg/day
14 days AJoene, cysteine, allicin, β-resorcylic acid, gallic acid, rutin, protocatechuic acid, quercetin [163–168]
7. Aloe barbadensis Mill. Aloe vera Leaves Wound healing, constipation, colic, worm infestation, dermatitis, hypertension FBG , TG, TC, AGE formation , body weight, diabetic nephropathy STZ-induced Wistar rats 300 mg/kg/day 49 days Flavonoids, acemannam, flavones, quinone, galactan, pectin, ornanic acids [169–175,626]
8. Anacardium occidentale L. Cashew nut Nut, leaves, bark Fevers, aches, pains, diarrhea, diabetes, skin irritations, arthritis Blood glucose, SOD, IR, gluconeogenesis,
insulin secretion
Alloxan- induced Wistar rats 100-250
mg/kg/ day
40 hours Arginine, isoleucine, leucine, lysine, arachidic acid, lignoceric acid, gadoleic acid, linolenic acid, cyanidin, peonidin, anacardic acid, cardanol, limonene, lactone, palmitic acid [176–179]
9. Ananas comosus L. Pineapple Fruit, peel, leaves Pain, skin diseases, edema, wound, indigestion, diabetes and blood clotting IR, insulin sensitivity,
HDL-c, HbA1c, body weight, LPL activity, HMGCoA reductase activity
Alloxan- induced Wistar rats 400 mg/kg/
day
15 days Bromelain, flavonoids, coumaric acid, ellagic acid, ferulic acid, chlorogenic acid [180–186]
10. Apium graveolens Celery Leaves, seeds, roots Arthritis, spleen dysfunction, diabetes, sleep disturbances, CNS disorders Blood glucose, PPBG, plasma insulin, GLUT-4 transloaction, mitochondrial dysfunction, insulin sensitivity, inflammation Elderly diabetic patients above 60 years 250mg/kg/3 times a day 12 days Quercetin, thymoquinone, frocoumarin coumaric acid, gallic acid, flavonoids, alkaloids, steroids, limonene, selinene, glycosides [187–192,627]
11. Artocarpus heterophyllus Jackfruit Fruit, leaves, bark, seeds, roots Wound healing, cancer, diabetes PPBG, FBG, IR, HbA1c, α-amylase and α-glucosidase activities, HDL-c, LDL T2DM patients (18-60) 30000 mg/kg/day 84 days Carotenoids, tannins, volatile acids, sterols, chrysin, silymarin, isoquercetin [195–199]
12. Asparagus officinalis Asparagus Stem Asthma, liver, rheumatic, kidney, bladder diseases Blood glucose, β-cell function, FBG, TG, serum insulin, body weight, hepatic glycogen STZ-induced Wistar rats 250-500
mg/kg/day
28 days Asparagine, tyrosine, arginine, flavonoid, saponin, resin, tannin [200–204]
13. Avena sativa Oats Grains Dermatitis, cancer, diabetes, cardiovascular disease PPBG, HbA1c, body weight, HDL, MDA, FBG, IR, TC, TG, LDquinol-C, SOD T2DM patients
(50-70 years)
1 IU/kg/ day 28 days β-glucan, tocopherols, tocotrienols, phenolic acids, sterols, selenium, avenanthramides [205–209,628]
14. Averrhoa carambola L. Star fruit Fruit Chronic headache, fever, cough, gastroenteritis, diarrhea, diabetes, ringworm infections, skin inflammations hypertension, hyperglycemia Blood glucose, TG, TC, FFAs, serum insulin, glucose uptake, glycogen synthesis STZ-induced Kunming mice 150-1200
mg/kg/day
21 days Catechin, epicatechin, procyanidins, gallic acid, protocatechuic acid, ferulic acid, rutin, isoquercitrin, quercitrin,
anthocyanin, anthocyanidin, leucoanthocyanidins, triterpenoids
[210–214,629]
15. Azadirachta indica Neem Leaves, stem, bark, flower, roots, fruit Fever, skin diseases, infection, inflammation and dental disorders PPBG, FBG, HbA1c, IR, endothelial function, oxidative stress , systemic inflammation T2DM patients (30-65 years old) 125-500 mg
/kg/twice a day
84 days Nimbidin, nimbin, nimbidol, quercetin nimbosteron, saponin, tannin, flavonoids [215–219]
16. Beta vulgaris Beetroot Fruit Dandruff, loss of libido, stomachaches, diabetes, arthritis, constipation Blood glucose, HbA1c, FBG, TC, TG, LDL-C, IR, HDL, ALT, AST, gluconeogenesis, α-amylase and α-glucosidase activity
T2DM patients (57±4.5 years) 100000 mg/kg/
day
56 days Betalains, betanin, carotenoids, coumarins, sesquiterpenoids, betagarin, betavulgarin, quercetin, kaempherol, tiliroside, astragalin, rhamnocitrin, rhamnetin, betavulgarosides,
betacyanin
[220–222,630]
17. Brassica juncea Mustard Seeds Arthritis, foot-ache, lumbago, diabetes, rheumatism Blood glucose, FBG, TC, TG, prediabetic IR, glucose tolerance, insulin secretion, intestinal glucose absorption Fructose- induced Sprague Dawley rats 100mg/kg/day 30 days Chlorogenic acid, sinigrin, р-coumaric acid, vanillic acid, flavonoids, chlorogenic acid, polyphenols, allyl isothiocyanate, cinnamic acid, kaempferol [223–226]
18. Brassica oleracea var. capitata Cabbage Flower gastritis, peptic ulcers, irritable bowel syndrome, diabetes, idiopathic cephalalgia FBG, TC, TG, LDL-C, HDL, insulin sensitivity, β-cell function Alloxan- induced diabetic rabbits. 500mg/kg/day 30 days Myricetin, quercetin, kaempferol, apigenin, luteolin, cyanidin daidzein, genistein, glycitein, biochanin A, formononetin [227–229]
19. Brassica oleracea var. italica Broccoli Flower
Xerophthalmia, hyperlipidemia,
fibromyalgia, cancer, diabetes
Blood glucose, lipid peroxidation, IL-6,
TNF-α, HbA1c, insulin sensitivity, β-cell function, glucose production .
T2DM Albino Wistar Rats 400mg/kg/day 42 days Glucosinolates, isothiocyanates, sulforaphane, sinapic acid, gallic acid, vanillic acid, p-coumaric acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, luteolin, quercetin and myricetin [230,231,631]
20. Camellia sinensis Tea Leaves Flatulence, indigestion, vomiting, obesity, diarrhea, hyperglycemia, stomach discomfort Blood glucose, IR, MDA, oxidative stress, inflammatory cytokines, α-amylase and α-glucosidase activity, insulin release , glycation , glucose tolerance STZ-induced Wistar rats 100-200
mg/kg/day
28 days Caffeine, theanine, proanthocyanidins, myricetin, kaempferol, quercetin, chlorogenic acid, coumarylquinic acid, theogallin, catechins, epicatechin [232–235,632]
21. Capsicum annuum L. Red pepper Seeds Dyspepsia, ulcer, anorexia, GERD and diabetes. FBG, HbA1c, inflammatory cytokines, TG, TNF-α, IL-6, plasma insulin, gluconeogenesis, AMPK, FOXO1, glucose uptake, GLUT-4 translocation High fat died induced C57BL/KsJ 200mg/kg/day 56 days Lycopene, flavonoids, carotenoids, flavones, apigenin, quercetin, isoquercetin, capsinoids, polyphenols [236–240]
22. Carica papaya Papaya Fruit, seeds, leaves Hypertension, fever (dengue), obesity, jaundice, UTI, ulcer, constipation, bronchitis, cough, diarrhea, asthma, piles, malaria, wound healing Blood glucose, TG, TC, α-amylase and α-glucosidase activities, oxidative stress STZ-induced Wistar rats 750-3000 mg/100mL/
day
28 days Papain, quercetin, kaempferol, p-coumaric acid, carpinine, carpaine, choline, β-carotene, linalool, oleic acid, linolenic acid [241–244]
23. Carissa carandas Bengal currant Fruits Anorexia, brain disease, cough, asthma, constipation, diarrhea, diabetes, pain, pharyngitis, scabies, leprosy, malaria, myopathic spams, fever, epilepsy, seizures Blood glucose, inflammation,
α-amylase and α-glucosidase activity
Alloxan- induced Swiss albino rats 400 mg/kg 1 day Lignans, flavonoids, steroid, phenolic acids alkaloids [245–249]
24. Catharanthus roseus L. Vinca Rosea Flowers, leaves Cancer, diabetes, stomach disorders, kidney, liver, cardiovascular disorders Blood glucose, insulin secretion,
β-cell function, TC, creatinine
Alloxan- induced Albino rabbits 0.5-1mg
/kg/day
24 hours Gallic acid, rutin, p-coumaric acid, ajmalicine, vindoline, catharanthine, vinblastine, vincristine, caffeic acid, quercetin, kaempferol, syringic acid, chlorogenic acid, ellagic acid, coumarins [250–254]
25. Centella asiatica Centella leaves Leaves Leprosy, lupus, varicose ulcers, eczema, psoriasis, diarrhea, fever, amenorrhea, female genitourinary tract infections, diabetes, anxiety Blood glucose,
insulin sensitivity,
oxidative stress, inflammation
STZ-induced Sprague-Dawley 500-1000
mg/kg/day
14 days Asiaticoside, madecassic acid, madecassoside, centellase, quercetin, kaempferol, phytosterol [255–258]
26. Chenopodium quinoa Quinoa Grains Dyslipidemia, diabetes, heart disease Blood glucose, FBG, IR, TC, TG, LDL-C, α-glucosidase activity, lipid accumulation, glucose tolerance, insulin sensitivity High fat diet induced C57BL/6J mice 2000 mg/kg/day 84 days Saponins, phytosterols, phytoecdysteroids, phenolics, tocophenols, betalains, tannins, glycine betaine [259–265]
27. Cicer arietinum Chickpea Grains Digestive diseases, cancer, cardiovascular disease, diabetes Blood glucose, inflammation, organ function, intestinal dysbiosis, α-amylase, α-glucosidase and DPP4 activity, carbohydrate metabolism, body weight
STZ-induced HFF rats 3000 mg/kg/day 28 days Uridine, adenosine, tryptophan, 3-hydroxy-olean-ene, biochanin [266–271,633]
28. Cinnamomum verum Cinnamon Bark Nausea, vomiting, fever, halitosis, arthritis, coughing, hoarseness, frigidity, cramps, intestinal spasms, bronchitis, asthma, odontalgia, cardiac diseases, diarrhea, vaginitis, neuralgia, rheumatism, piles, urinary disease Blood glucose, GLUT-4 translocation, glucose uptake, Mitochondrial UCP-1, insulin secretion, α-glucosidase activity, STZ-induced Wistar rats 30mg/kg/
Day
22 days cinnamaldehyde, cinnamates, cinnamic acid, eugenol, cinnamyl acetate, cubebene, terpinolene, linalool, linalyl acetate, benzyl cinnamate, piperitone, β-sitosterol, flavanol, glucosides, coumarin, protocatechuic acid, vanillic acid, syringic acid [272–275]
29. Citrullus lanatus L. Water-melon Fruit, seeds Gastrointestinal disorders, urinary disorders, aphrodisiac, fever, laxative, emetic FBG, serum lipid profile, glucose-6-phosphatase, lipid peroxidation, GLUT4, GLUT2, hexokinase activity Alloxan- induced Wistar Albino rats 500-1000
mg/kg/day
14 days Stigmasterol, quinic acid, malic acid, epicatechin, caffeic acid, rutin, p-coumaric acid, quercetin, ferulic acid, scopoletin, apigenin, kaempferol, β carotene, citrulline, lycopene, α tocopherol [276–279]
30. Citrus limon Lemon Fruit, peel, leaves Cough, scurvy, cold, fever, rheumatism, sore throat, diabetes, irregular menstruation Serum glucose, body weight, TC, TG, LDL,
VLDL, GSH, insulin sensitivity, GLUT-4 translocation, AGE formation,
Glucose uptake
STZ-induced Wistar rats 200-400
mg/kg/day
15 days Limocitrin, hesperidin, diosmin, hesperetin, didymin, naringin, naringenin, tangeretin, rutine, quercetin, β-pinene, γ-terpinene, D-limonene, ferulic acid [280–287]
31. Citrus maxima Pomelo Fruit, peel Asthma, fever, ulcer, diarrhea, cough, Alzheimer’s disease, diabetes, insomnia Blood glucose, TG, TC, HDL, LDL, α-amylase, α-glucosidase and angiotensin I-converting enzyme activity, body weight, glucose tolerance Alloxan- induced diabetic rats 200-600
mg/kg/day
14 days Terpenoids, sterols, carotenoids, polyphenols,
chlorogenic acid, ferulic acid, caffeic acid, gallic acid, ρ-coumaric acid.
[288–290,634]
32. Citrus reticulata Orange Fruit, peel Alzheimer’s disease, cough, phlegm, diabetes, hepatic steatosis, cancer mRNA expression , GLUT-4 translocation, insulin sensitivity, serum fructosamine level , glucose tolerance STZ-induced Wistar rats 100mg/kg/day 28 days Flavonoids hesperidin, quercetin, naringin, nobiletin, tangeretin [291–295]
33. Cocos nucifera Coconut Fruit, husk, water Diarrhea, diabetes, dermatitis, renal diseases, stomachaches, fever, asthma, abscesses, amenorrhea, gonorrhea, menstrual disorders Blood glucose, α-amylase and α-glucosidase activity , DPPH free radicals, IR, oxidative stress, neuropathy, β-cell regeneration STZ-induced Wistar rats 250-500
mg/kg/day
28 days Chlorogenic, gallic, ferulic, salicylic, coumaric acids, glycosides, rutin, quercetin, vanillin, catechin, epicatechin, neochlorogenic acid, chlorogenic acid, lutein [297–304]
34. Coffea Arabica L. Coffee Leaves, fruit, beans Flu, anemia, edema, asthenia., asthma, backache, cough, jaundice, diarrhea, intestinal pain, migraine, headache, fever, purulent wounds, pharyngitis, diabetes, stomatitis Blood glucose, insulin secretion, α-amylase and α-glucosidase activity,
nephropathy, plasma insulin, IR, TG
STZ-induced Wistar rats 1000mg/
kg/day
90 days Chlorogenic acids, caffeic, p-coumaric, vanillic, ferulic, protocatechuic acids, flavonoids, alkaloids, caffeine, sitosterol, stigmasterol, coffeasterin, kaempherol, quercetin, sinapic, quinolic, trigonelline, caffeoylquinic, dicaffeoylquinic [305–307,635]
35. Colocasia esculenta Taro Stem, leaves Rheumatic pain, diabetes, hypertension, pulmonary congestion Blood glucose, HbA1c, TC, TG, LDL-C, VLDL, HDL, body weight STZ-induced Wistar rats 405-810
mg/kg/day
28 days Tannins, phytates, oxalates, tryptophan, chlorogenic acid, anthraquinone, vitexin, catechins, apigenin, cinnamic acids, isovitexin, orientin, isoorientin, rosmarinic acid [308–312]
36. Coriandrum sativum Coriander Seeds, leaves Diarrhea, flatulence, colic, indigestion, gastrointestinal diseases, diabetes Diabetic neuropathy,
Blood glucose, MDA, GSH, SOD, TC, TG, LDL-C, AGEs formation, lipid peroxidation, oxidative stress, TNF-α
STZ-NA induced Wistar rats 100-400
mg/kg/day
45 days Flavonoid, tocopherol, tocotrienol sterol, carotenoids, terpenoids, steroids, saponin, tannin, alkaloids [313–317]
37. Crocus sativus L. Saffron Flower stigma CNS diseases, diabetes, obesity, cancer, dyslipidemia Blood glucose, MDA, NO, GSH, SOD, TC, TG, LDL-C, α-amylase and α-glucosidase activity, inflammation STZ-induced Wistar rats 10-40mg
/kg/day
28 days Crocin, β carotenes, crocetin, picrocrocin, zeaxanthene, safranal [318–323]
38. Cuminum Cyminum L. Cumin seeds Seeds Diarrhea, dyspepsia, epilepsy, toothache, whooping cough, flatulence, indigestion, diabetes, jaundice Blood glucose, AGEs formation, HbA1c, creatinine, blood urea nitrogen, serum insulin, oxidative stress,
nephropathy
STZ-induced Wistar rats 200-600
mg/kg/day
28 days Carvacrol, carvone, α-pinene, limonene, γ-terpinene, linalool, carvenone, p-cymene, cumin aldehyde, limonene, α- and β-pinene, terpinene,s safranal and linalool [324–326]
39. Cucumis sativus Cucumber Fruit, seeds Sunburn, skin irritation, constipation, thermoplegia, gall bladder stone, hyperdipsia, diabetes Blood glucose IR, body weight, insulin sensitivity, gluconeogenesis, glucagon secretion STZ-induced Wistar rats 200-800 mg
/kg/day
9 days Cucurbitacin, cucumerin, cucumegastigmanes vitexin, orientin, apigenin, isoscoparin [327–330]
40. Cucurbita pepo L. Pumpkin Fruit, seeds Dermatitis, depression, irritable bladder, intestinal inflammation, prostate enlargement, hyperglycemia Blood glucose, TC, TG, LDL-C, HDL, IR, ROS, SOD, GSH, MDA STZ-induced T2DM mice 400mg/kg/day 56 days β-carotene, zeaxanthin, lutein,flavonoids, alkaloids, polysaccharides, polyphenols [331–335]
41. Curcuma longa L. Turmeric Fruit Cough, diabetes, arthritis, gall bladder stones, dermatitis, cancer, intestinal, stomachic diseases Blood glucose, FBG, insulin sensitivity, β-cell function, IR, GLUT-2 activity, insulin secretion, glucose uptake STZ-Na induced Wistar rats 30-60
mg/kg/day
30 days Caffeic acid, curdione, coumaric, caffeic acid, casuarinin, curcuminol, isorhamnetin, valoneic acid, eugenol, corymbolone, demethoxycurcumin [336–340]
42. Daucus carota Carrot Fruit Diarrhea, constipation, intestinal inflammation, weakness, illness, diabetes, rickets Blood glucose IR, Obesity, body weight, BMI, α-amylase and α-glucosidase activity
High fructose induced Wistar rats 50ml/kg/ day 56 days Carotenoid, polyacetylenes, ascorbic acid, α and β-carotene, lutein, lycopene, anthocyanins [341–344,636]
43. Ficus carica Fig Fruit, leaves, bark, roots Dermatitis, leprosy, cancer, anemia, diabetes, paralysis, urinary tract infection, ulcer, liver diseases FBG, PPBG, TG, HDL, LDL, VLDL, TC, pancreatic β-cell apoptosis, pancreatic AMPK, caspase-3, body weight STZ-induced
C57BL/6 mice
2000 mg/kg/day 42 days Eugenol, anthocyanins, volatile compounds, phenolic acids, flavones, flavanols [345–350]
44. Fragaria ananassa Strawberry Fruit, leaves Wound healing, platelet aggregation, obesity, diabetes Blood glucose, IR, insulin secretion, α-amylase and α-glucosidase activities, plasma creatinine, MDA, TNF-α, IL-6, caspase-3 STZ-induced Albino rats 50-200
mg/kg/day
30 days Quercetin, kaempferol, rutin, gallic acid, chlorogenic acid, caffeic acid, ellagitannins, octadecatrienoic acid, vitamin C and E, folic acid, carotenoids, anthocyanins, gallotannins [351–355,637]
45. Glycine max Soya bean Seeds, leaves Osteoporosis, cardiovascular disease, diabetes Blood glucose, FBG, IR, TC, TG, LDL-C, α-glucosidase activity, HbA1c, HDL, body weight, glucose uptake T2DM obese patients
(43-51 years)
2000 mg/kg/day 84 days β-conglycinin, phenolic acids, flavonoids, isoflavones, saponins, phytosterols, sphingolipids [356–360,638]
46. Helianthus annuus Sunflower Flowers, seeds Diabetes, nephrotoxicity, cardiovascular disease, hematologic disorders Blood glucose, nephropathy, FBG, BMI, body weight, AGEs formation, DPPH, NO, urea Alloxan-
Induced
Albino rats
150-600
mg/kg/day
21 days Flavonoids, alkaloids, saponins, tocopherols, carotenoids, saponins, tannins, chlorogenic acid and caffeic acid [361–364]
47. Hibiscus rosa-sinensis Linn. China rose Flowers, leaves Tumor, hairloss, infertility, diabetes, wounds Blood glucose, insulin secretion, β-cell function, TC, TG, hepatic glycogen, SOD STZ-induced Long Evans rats 250-500
mg/kg/day
28 days Quercetin, cyanidin, ascorbic acid, genistic acid, lauric acid, thiamine, niacin, margaric acid, calcium oxalate, hentriacontane [365–369]
48. Hylocereus undatus Dragon fruit Fruit, seeds Diuretic, healing agent, laxative, gastritis aid Blood glucose, MDA, FBG, SOD, GLUT2, oxidative stress STZ-induced Sprague Dawley rats 250-500
mg/kg/day
35 days Lycopene, β-carotene, betacyanin,oleic acid, octacosane, phthalic acid, eicosane, tetratriacontane, tacosane, campesterol linoleic acid, palmitic acid, gallic acid, syringic acid, protocatechuic acid, p-coumaric acid [370–372,639]
49. Ipomoea batatas Sweet potato Fruit Aphrodisiac, burns, catarrh, diarrhea, fever, nausea, splenosis, stomach distress, anemia, tumors,
hypertension, , prostatitis, asthma,
Blood glucose, IR, Insulin sensitivity, glucose tolerance, insulin secretion T2DM patients (58±8 years) 4000 mg/kg/day 42 days Anthraquinones, coumarins, flavonoids, saponins, tannins, phenolic acids, quercetin, chlorogenic acid, terpenoids, β-carotene, zeaxanthin, lutein, anthocyanins [373–377,640]
50. Juglans regia L. Walnut Nut, leaves Curing bacterial infections, stomachaches, thyroid issues, diabetes. cancer, heart conditions, sinusitis Blood glucose, α-amylase and α-glucosidase activity, PTP1B STZ-induced Wistar rats 25-100
mg/kg/day
28 days tocopherol, gallic acid, protocatechuic acid, caffeic acid, chlorogenic acid, catechin, vanillic acid, epicatechin, p-coumaric acid, isoquercitrin, quercetin, luteolin, kaempferol and apigenin [378–381]
51. Lactuca sativa Lettuce Leaves Hyperglycemia, osteodynia, inflammations FBG, TC, TG, LDL-C, HDL, β-cell function, SOD, GSH, glucose production STZ-induced Wistar rats 50mg/kg/ day 28 days flavonoids, quercetin, flavonols, anthocyanins, hydroxycinnamoyl derivatives [382–386]
52. Lagenaria siceraria Bottle gourd Fruit, leaves, seeds Jaundice, diabetes, constipation, flatulence, insomnia, ulcer, piles, colitis, insanity, hypertension, congestive cardiac failure, skin diseases, headaches Blood glucose, HbA1c, FBG, body weight , TC, TG, insulin production, glucose tolerance, intestinal glucose absorption STZ-induced Wistar rats 400mg/kg/day 15 days Isovitexin, isoorientin, saponarin, fucosterol, campesterol, cucurbitacin B, cucurbitacin D, cucurbitacin E, isoquercitrin, kaempferol, gallic acid and protocatechuic acid [387–390]
53. Laurus nobilis Bay leaves Leaves Stomachaches, phlegm, cold, sore throat, headache, indigestion, flatulence, eructation, epigastric bloating, diabetes Blood glucose, β-cell function, α-glucosidase activity, Insulin production,
β-cell regeneration
STZ-induced Wistar rats 200mg/kg/day 28 days Kaempferol, syringic acid, quercetin, apigenin, luteolin, lauric acid, palmitic acid, linoleic acid, lutein, eugenol [391–394]
54. Litchi chinensis Lychee Fruit, seeds Cough, ulcer, flatulence, testicular swelling, diabetes, hernia, obesity Blood glucose, FBG, renoprotection, IR, glucose tolerance, TG, α-glucosidase activity Alloxan- induced
Wistar rats
2.6 mg/kg/day 30 days Flavonoids, triterpenes, sterols, phenolic compounds [395–397]
55. Luffa acutangula Ridge gourd Fruit, seeds Jaundice, hemorrhoids, dysentery, headache, ringworm infection, insect bite, urinary bladder stone, granular conjunctivitis, constipation, leprosy, diabetes Blood glucose, HbA1c, FBG, ALT, AST, TC, TG, LDL-C, VLDL, gluconeogenesis STZ-induced Wistar rats 200-400
mg/kg/day
21 days Luffaculin, luffangulin, apigenin, luteolin, myristic acid, palmitic acid, oleic acid, linoleic acid, oleanolic acid, machaelinic acid, α-thujene, terpinene [398,399,641]
56. Malus domestica Borkh Apple Fruit, peel Wound healing, diabetes, asthma, obesity, cardiovascular disease Blood pressure, endothelial function, lipid homeostasis, insulin resistance HFHF-fed ICR mice 250 mg/kg/
day
28 days Procyanidins, flavonoids, chlorogenic acids, hydroxycinnamic acids, anthocyanins, quercetins [400–409,642]
57. Mangifera indica Mango Fruit, peel, bark, seeds Asthma, tetanus, polyuria, dysentery, anthrax, indigestion, tumor, tympanites, diarrhea, colic FBG, HbA1c, serum fructosamine level, plasma insulin , α-amylase and α-glucosidase activities,
PPBG
STZ-induced Wistar rats 100-200 mg/kg/day 60 days Mangiferins, carotenoids, flavonoids, anthocyanins, gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid [410–415]
58. Mentha spicata Mint leaves Leaves Cough, cold, asthma, fever, obesity, dementia, hypertension, abdominal pain, headache, menstrual pain, depression, insomnia FBG, TC, TG, LDL-C, VLDL MDA, body weight, HDL, α-amylase and α-glucosidase activity Alloxan- induced Wistar rats 300mg/kg/day 21 days Carvone, limonene, 1,8-cineole, pulegone, β-bourbonene, β-pinene, dihydrocarveol, α-phellandrene, borneol, linalool, germacrene D and piperitone [416–418,643]
59. Moringa oleifera Lam. Moringa Fruit, leaves Diabetes, liver disease, cancer, inflammation, hypercholesteremi, hypertension Blood glucose, hepatic functions, FBG, TC, TG, LDL-C, VLDL, HDL, α-amylase and α-glucosidase activity
High fat died induced C57BL/6 mice. 200mg/kg/day 21 days Tannins, βcarotene, vitamin C, quercetin, alkaloids, saponins, steroids, phenolic acids, glucosinolates, flavonoids, terpenes [419–423]
60. Momordica charantia Bitter gourd Fruit, leaves, seeds T2DM, dyslipidemia, cancer, obesity, malaria, dysentery, hypertension, worm infections Blood glucose, fructosamine, IR, TC, TG, insulin secretion, HDL, MDA, GSH, glucose uptake, β-cell function STZ-induced Albino rats 10 mL/kg/
day
21 days Saponins, triterpenes, flavonoids, ascorbic acids, steroids, tannins, alkaloids, cardiac glycosides, phlobatinnins anthraquinones [424–432]
61. Morus alba L. Mulberry Fruit, leaves Insomnia, tinnitus, dizziness, premature aging, diabetes FBG, IR, TG, HDL, LDL, TC, GLUT-4 translocation STZ-induced HFF
Wistar rats
400 mg/kg/ day 49 days Quercetin, isoquercetin alkaloids, polyphenols, flavonoids, anthocyanins [434–437]
62. Murraya koenigii L. Curry leaves Leaves Piles, inflammation, itching, fresh cuts, dysentery, bruises, edema, body aches, diabetes, snakebites Blood glucose, MDA, GSH, IR, β-cell regeneration STZ-NA induced Sprague Dawley rats 200-400
mg/kg/day
28 days Mahanine, mahanimbine, murrayanol, koenimbine, koenigicine, koenigine, murrayone, isomahanine, glycozoline, mukonicine, murrayazolinol, murrayacine, quercetin, apigenin, kaempferol, catechin [438–441]
63. Myristica fragrans Houtt. Nutmeg Fruit, seeds Skin infection, diarrhea, diabetes, Alzheimer’s diseases, rheumatism, asthma, cold, cough, malaria Blood glucose, serum insulin, oxidative stress, β-cell function, AMPK, IL-6, TNF-α Chlorpromazine-induced obese Swiss albino mice 50-450
mg/kg/day
7 days Flavonoids, terpenes, phenylpropanoids, coumarin, lignans, alkanes and indole alkaloids [442–445]
64. Nigella sativa L. Black seeds Seeds Asthma, dyslipidemia, diabetes, diarrhea Blood glucose, α-amylase and α-glucosidase activity, serum lipids insulin sensitivity, gluconeogenesis STZ-induced Swiss albino mice 100-700
mg/kg/day
28 days Thymoquinone, thymol, limonene, carvacrol, p-cymene, longifolene, α-pinene, linoleic acid, oleic acid, palmitic acid, saponins, flavonoids, alkaloids [446–450]
65. Ocimum sanctum L. Holy basil Leaves, seeds Anxiety, cough, asthma, diarrhea, fever, dysentery, arthritis, eye diseases, skin diseases, malaria, vomiting, cardiac and genitourinary infection TC, TG, LDL,
VLDL, atherogenic index , GSH ,
Insulin production, intestinal glucose absorption
Alloxan- induced diabetic rabbits 0.8 mg/kg/
Day
28 days Eugenol, euginal, urosolic acid, carvacrol, linalool, caryophyllene, triterpenoids, tannins [451–454,644]
66. Olea europaea L. Olive Fruit, leaves Diabetes, diarrhea, inflammation, urinary tract infection, intestinal diseases, hemorrhoids, rheumatisms Blood glucose, inflammatory cytokines, body weight, gluconeogenesis,
glucose-6-phosphatase enzyme activity
STZ-induced
Wistar rats
200-400
mg/kg/day
70 days Flavonoids, secoiridoids, hydroxytyrosol and tyrosol, cinnamic acid [455–460]
67. Origanum vulgare Oregano Leaves Acne, cystic fibrosis, diabetes, bacterial infections Blood glucose, glucose uptake, GLUT2, α-amylase and α-glucosidase activity, oxidative stress STZ-induced Diabetic rats 20mg/kg/
Day
15 days Amburoside, apigenin, luteolin 7-O-glucuronide, rosmarinic acid and lithospheric acid [461–465,645]
68. Passiflora edulis Passion fruit Fruit, peel Cough, diabetes, dysmenorrhea, dysentery, arthralgia, constipation Blood glucose, TG, TC, interleukins, body weight, insulin sensitivity , glucose tolerance Cafeteria diet induced C57BL/6 mice 15% of PEPF (P. edulis peel flour) in CAF diet 112 days Piceatannol, flavonoids, triterpenoids, tocopherols, linoleic acid, vitexin, carotenoid, orientin, isoorientin, gallic acid, rutin, quercetin, ascorbic acid [466–474]
69. Persea americana Mill. Avocado Fruit, leaves, seeds, bark Cardiovascular diseases, diabetes Blood glucose, metabolic state , activation of Akt/Pkb, glucose uptake, β-cell regeneration, HDL-c, LDL STZ-induced Wistar rats 150-300 mg
/kg/day
28 days Flavonoids, alkaloids, saponins, tannins, carbohydrates, glycosides [475–479]
70. Petroselinum crispum Parsley Leaves, seeds, roots Otitis, urinary tract infection, dysmenorrhea, hypertension, diabetes, dermatitis, gastrointestinal disorders Blood glucose, NEG, lipid peroxidation, body weight, GSH, insulin sensitivity, gluconeogenesis STZ-induced Swiss albino mice 200 mg/kg/day 42 days Courmarins, phthalides, phenyl propanoids, tocopherols, apigenin, myristicin, apiol [480–483]
71. Phaseolus vulgaris L. Kidney bean Seeds Wound healing, pharyngitis, fever, unpleasant body odor, obesity, diabetes, vaginal infection Blood glucose, insulin sensitivity, TC, TG, gluconeogenesis, α-glucosidase activity STZ-induced Wistar rats 150mg/kg/day 40 days Protocatechuic acid, p-coumaric acid, procyanidin, myricetin, naringenin, gallic acid, quercetin, catechin, kaempferol, ferulic acid [484–487]
72. Phoenix dactylifera L. Date Fruit, leaves Fever, inflammation, nervous disorders, loss of consciousness, dementia Blood glucose, serum insulin, MDA, TNF-α, CRP STZ-induced
diabetic rats
200 mg/kg/ day 30 days Ellagic acid, gallic acid, p-coumaric acid, apigenin, naringin, gallic acid, catechin, ferulic acid, sinapic acid, epicatechin, vanillic acid, coumarin, quercetin, rutin, myricetin, luteolin, kaempferol, isorhamnetin, rhamnetin, β-sitosterol, isorhamnetin, procyanidin, protocatechuic acid [488–491,646]
73.Phyllanthus emblica L. Amla Fruit, leaves, bark, roots Cold, fever, cough, hyperacidity, peptic ulcer, erysipelas, jaundice, diarrhea, dysentery, leprosy, hemorrhages, hematogenesis, anemia, asthma, bronchitis, colic, dyspepsia, hepatopathy, leucorrhea, menorrhagia Blood glucose, TG, TC, LDL, HDL, α-amylase and α-glucosidase activities, AMPK STZ-induced
Wistar rats
25-75 mg /kg/day 28 days Phyllembelic acid, gallic acid, ellagic acid, pectin, quercetin, linolenic, linoleic, oleic, stearic, palmitic, myristic acid, tannins, chebulic, chebulagic, chebulinic acids, alkaloids phyllantidine, phyllantine, lupeol, leucodelphinidin. corilagin, digallic acid, kaempferol and zeatin [492–495,647]
74. Piper betle L. Betel leaf Leaves Wound healing, bronchitis, diabetes, cough, indigestion in children, headaches, arthritis, FBG, HbA1c, IR, insulin production, glucokinase activity STZ-induced Wistar rats 75-150mg
/kg/day
30 days Estragole, linalool, safrol, terpenes, phenols, steroids, saponins, tannins [496–499]
75. Pisum sativum L. Pea Seeds Blood purifying, wrinkled skin, acne, phlegm, intestinal inflammation, constipation, diabetes Blood glucose, HbA1c, NO, plasma insulin , glucose homeostasis, glucose tolerance, polyphagia, TG, LDL-C, α-glucosidase activity, body weight STZ-induced ICR mice 100-400mg
/kg/day
42 days Flavonoid, quercetin, ellagic acid, coumaric acid, β-sitosterol, β-amyrin, catechin, myricetin, vanillic acid, kaempferol [500–503]
76. Prunus armeniaca L. Apricot Fruit, leaves Cancer, atherosclerosis, angina, retinopathy, nephropathy, hypertension, diabetes Blood glucose, FBG, α-glucosidase activity, HbA1c, insulin secretion, oxidative stress Alloxan- induced
Swiss mice
2-8 mg/kg/day 56 days Chlorogenic, gallic, ferulic, salicylic, coumaric acids, glycosides, rutin, quercetin, vanillin, catechin, epicatechin, neochlorogenic acid, chlorogenic acid, lutein [504–506]
77. Prunus domestica Plum Fruit Anemia, neurasthenia, leukorrhea, Alzheimer’s disease, irregular menstruation, anxiety, diabetes, constipation Blood glucose, TG, TC, LDL, α-amylase and α-glucosidase activities, HMGCoA reductase, oxidative stress STZ-induced Swiss Albino mice 50 mg/kg/day 20 days Chlorogenic acid, neochlorogenic acid, tocopherols, β-carotenes, quercetin, myricetin, kaempferol, citric acid, malic acid [507–514]
78. Prunus dulcis Almonds Nut CNS disorders, respiratory disorders, diabetes, urinary tract infections FBG, TC, TG, LDL, stomach emptying, time, insulin production T2DM patients (n=58 years) 60000 mg/kg/ day 84 days Oleic acid, linoleic acid, palmitic acid, arachidic acid, anthocyanin, kaempferol, quercetin, isorhamnetin, galactosidase, chlorogenic acid [515,516]
79. Prunus persica L. Peach Fruit, peel, leaves Enhancing blood circulation, blood clotting, constipation, diabetes Body weight, lipid metabolism, lipogenesis, fatty acid oxidation, α-amylase and α-glucosidase activities, β-cell regeneration HFF C57BL/6 male mice 200-600
mg/kg/day
56 days Procyanidin, epicatechin, catechin, prunin, phloridzin, naringenin, neochlorogenic acid, caffeoylquinic acid, chlorogenic acid, quercetin, aucubin, kaempferol, prunitrin [517–520,648]
80. Punica granatum Pome-granate Fruit, peel, seeds Dysentery, diarrhea, piles, bronchitis, biliousness, diabetes Blood glucose, TG, TC, HDL, LDL, intestinal glucose absorption, GLUT-4 translocation Alloxan- induced Albino eats 500 mg/kg/ day 14 days Ellagic acid, gallotannins, anthocyanins, quercetin, kaempferol, luteolin glycosides, punicalin, punicafolin, luteolin, apigenin, anthocyanins, linoleic, oleic, palmitic, stearic, linolenic, arachidic and palmitoleic acids [521–524]
81. Psidium guajava L. Guava Fruit, leaves Dysentery, diabetes and diarrhea PPBG, FBG, HbA1c, IR, TG, TC, α-amylase and α-glucosidase activities, malondialdehyde Prediabetes and mild T2DM patients 190 mg/kg
3 times a day
84 days Quercetin, avicularin, apigenin, guaijaverin, kaempferol, hyperin, myricetin, gallic acid, catechin, epicatechin, chlorogenic acid, epigallocatechin gallate, caffeic acid [525–533]
82. Raphanus sativus L. Radish Fruit, leaves Gallbladder stone, jaundice, flatulence, indigestion, various gastric ailments, piles, constipation, indigestion, colic, dyspepsia, liver enlargement, diabetes IR, intestinal glucose absorption, glucose uptake, glycoalbumin, fructosamine STZ-induced T2DM rats 2.2% of the diet/ day 21 days Myricetin, catechin, epicatechin, quercetin, vanillic acid, sinapic acid, p-coumaric acid, β-carotene, camphene, piperitone, carvacrol, linoleic acid, oleic acid, anthocyanin [534–537]
83. Rosmarinus officinalis L. Rosemary Leaves Mycosis, alopecia, ultraviolet damage, skin cancer, inflammatory diseases, diabetes FBG, TC, TG, LDL-C, GLUT-4 translocation, HDL, Irs1, IR, gluconeogenesis, glucose uptake STZ-induced Wistar rats 4000 mg/kg/day 28 days Flavonoids, carnosol, carnosoic, rosmarinic, ursolic, oleanolic, micromeric acids [538–544]
84. Rubus fruticosus Blackberry Fruit, leaves Mouthwash, gum inflammations, mouth ulcers, sore throat, respiratory disorders, anemia, diarrhea, dysentery, cystitis, diabetes, hemorrhoids Blood glucose, α-amylase and α-glucosidase activities, oxidative stress STZ-induced Sprague–Dawley rats 300 mg/L/day 35 days Anthocyanins, malvidin, pelargonidin, cyanidins, kaempferol, quercetin, myricetin, p-coumaric acid, ferulic acid, rutin, coumarins, gallic acid [545–548]
85. Salvia hispanica L. Chia seeds Seeds Indigestion, hyperlipidemia, diabetes mellitus Blood glucose, HbA1c, FBG, macrovascular complications, body weight, inflammatory cytokines, TC, TG, LDL-C, α-amylase and α-glucosidase activity T2DM patients (n=42) 40000 mg/kg/day 84 days Myricetin, quercetin, chlorogenic acid, kaempferol and caffeic acid [549–553]
86. Sesamum indicum White sesame seeds Seeds Wound healing, amenorrhea, ulcer, asthma, hemorrhoids, inflammations, diabetes Blood glucose, HbA1c, FBG, TC, PPBG, oxidative stress, IR
nephropathy
T2DM patients (18-60 years) 30 mg/kg/day 90 days Sesamin, sesaminol, gamma tocopherol, cephalin, flavonoids, phenolic acids, alkaloids, tannins, saponins, steroids, terpenoids [554–559]
87. Solanum lycopersicum L. Tomato Fruit Dermatitis, cancer, hypertension, hyperglycemia Blood glucose IR, SOD, GSH, MDA, inflammation STZ-induced T2DM rats 30-270mg
/kg/day
56 days Lycopene, carotenoids, homovanillic acid, chlorogenic acid, tomatine, kaempferol, quercetin, naringenin, p-coumaric acid, caffeic acid [560–566,649]
88. Solanum melongena Eggplant Fruit, leaves Arthritis, diabetes, dyslipidemia, bronchitis, asthma Blood glucose, TC, TG, LDL-C, VLDL, HDL, oxidative stress, MDA, α-glucosidase activity, GLUT-4 translocation, glucose uptake, gluconeogenesis Alloxan-induced diabetic rats 100-300
mg/kg/day
20 days Solasodine, thiamin, niacin, chlorogenic acid, saponins, delphinidin, anthocyanin, phenols, [567–571]
89. Spinacia oleracea Spinach Leaves Remedy for bloody stools, diarrhea, stomachaches, obesity, diabetes Retinopathy, MDA, inflammation, oxidative stress, AGEs formation, lipid peroxidation, IL-6, TNF-α, IR STZ-induced Wistar rats 400mg/kg/day 84 days β-carotenoids, lutein, carotenoids, zeaxanthin, vitamins, minerals [572–577]
90. Syzygium aromaticum Clove Flower buds Flatulence, diarrhea, diabetes, indigestion Blood glucose, PPAR-γ binding, aldose reductase Diabetic KK-Ay
mice
657mg/kg/day 21 days Eugenol acetate, eugenol, gallic acid, terpenes, tannins, phenolics, steroids, flavonoids, glycosides and saponins [578–581,650]
91. Syzygium cumini L. Java plum Fruit, seeds, bark Asthma, bronchitis, sore throat, biliousness, dysentery, diabetes, ulcers Blood glucose, TG, TC, LDL, HDL, HMGCoA reductase, β cells function , urine glucose Alloxan- induced diabetic Albino rabbits 100 mg/kg/day 15 days Anthocyanins, glucoside, isoquercetin, ellagic acid, kaemferol, myricetin [582–584]
92. Tamarindus indica L. Tamarind Fruit, leaves, seeds Inflammation, stomach pain, throat pain, rheumatism, wound, diarrhea, dysentery, fever, malaria, respiratory tract infection, constipation, cell cytotoxicity, gonorrhea, eye diseases Blood glucose, body weight , glucose tolerance , β-cell function, glucose tolerance, β-cells regeneration Alloxan- induced Wistar albino rats 100-250
mg/kg/day
14 days Apigenin, anthocyanin, procyanidin, catechin, epicatechin, taxifolin, eriodyctiol, naringenin [585–589]
93. Theobroma cacao Cocoa Fruit, husk, seeds Measles, malaria, toothache as well as diabetes though improving insulin secretion, GLUT4 translocation, glucose uptake Blood glucose, insulin secretion , ATP, GSH, Nrf2
α-amylase and α-glucosidase activity
STZ-induced Sprague Dawley rats 2.5 mg/mL 4 hours
Flavonoids, procyanidins, catechin, epicatechin, theobromine, caffeine [590–595]
94. Trichosanthes cucumerina L. Snake gourd Fruit, leaves, seeds, roots Bronchitis, headache, cathartic, anthelmintic, stomach disorders, indigestion, bilious fevers, boils, sores, eczema, dermatitis, psoriasis, ulcers, diabetes FBG, IR, TC, TG, LDL-C, insulin secretion, intestinal glucose absorption STZ-induced Albino rats 750mg/kg/day 28 days Gallic acid, neochlorogenic acid, caffeic acid, p-coumaric acid, trans-ferulic acid, catechin hydrate, epicatechin, procyanidin A2, procyanidin B2, rutin, kaempferol, quercetin, ursolic acid, oleanolic acid [596–598]
95. Trigonella foenum-graecum Fenugreek seeds Seeds Ulcer, sinusitis, hay fever, diarrhea, diabetes, kidney diseases Blood glucose, PPBG, FBG, glucose uptake, glucose tolerance, insulin sensitivity, intestinal glucose absorption STZ-induced
Long evans rats
500 mg/kg/
Day
28 days Steroids, alkaloids, flavonoids, polyphenols, saponins [599–602]
97. Vaccinium corymbosum Blueberry Fruit, leaves Cold, inflammation, cardiovascular diseases, diabetes, ocular dysfunction Blood glucose, IR, insulin secretion, retinopathy, α-amylase and α-glucosidase activities STZ-induced Wistar rats 870 mg leaves/kg/ day and 430 mg leaves +1300 mg fresh fruits
/kg/day
56 days Anthocyanins, pectin, anthocyanidins, delphinidin, peonidin, malvidin, cyanidin, chlorogenic acid, malic acid, protocatechuic acid, petunidin [603–605,651]
49. Vigna radiata Mung bean Seeds Heat stroke, gastrointestinal disorders, dermatitis, hyperglycemia, hypertension, hyperlipidemia, melanogenesis Blood glucose, TG, LDL, NO, α-amylase and α-glucosidase activity Alloxan-induced Balb/c mice 200-100mg/kg/day 10 days Flavonoids, quercetin, myricetin, kaempferol, catechin, vitexin, isovitexin, coumaric acid luteolin, caffeic and gallic acid [606–612,652]
98. Vitis vinifera L. Grapes Fruit, seeds, peel Diarrhea, hepatitis, stomachaches, varicose veins, hemorrhoids, atherosclerosis, diabetes, high blood pressure, heavy menstrual bleeding, uterine bleeding, constipation Blood glucose, oxidative stress, β-cell regeneration, intestinal glucose absorption STZ-induced Wistar rats 250-500
mg/kg/day
15 days Triterpenoid acids, oleanolic, betulinic acids, stilbenoid, gallic acid, catechin, epicatechin, gallocatechin, p-coumaric, caffeic and ferulic acids [613–615]
99. Zea mays Corn Grains, husk Malaria, bladder stone, heart diseases, diabetes body weight, FBG, IR, TC, TG, LDL-C, HDL, MDA, SOD, oxidative stress,
α-amylase and α-glucosidase activity
STZ-induced HFF rats 300-1200
mg/kg/day
28 days Flavonoids, alkaloids, saponins, phenols, tannins, phytosterols [616–621]
100. Zingiber officinale Ginger Fruit Muscular aches, pains, sore throats, cramps, constipation, indigestion, vomiting, arthritis, rheumatism, diabetes, sprains, hypertension, dementia, fever, infectious diseases, helminthiasis Blood glucose, TC, TG, β-cell function, GLUT-4 activity, β-cell function, PPAR-γ, glucose uptake, creatinine, body weight, urea STZ-induced Sprague Dawley rats 500 mg/kg/day 49 days β-phellandrene, camphene, cineole, geraniol, curcumene, citral, terpineol, borneol, α-zingiberene, zingiberol, gingerols, shogaols 3-dihydroshogaols, paradols, dihydroparadols, gingerdiols, diarylheptanoids, isogingerol, isoshogaol gingerdiones [622–624,653]
Table 2. Phytoconstituents in dietary plants and their role in T2DM.
Table 2. Phytoconstituents in dietary plants and their role in T2DM.
Dietary plants Plant parts Phytochemicals Pharmacological actions Reference
1. Abelmoschus esculentus L. Fruit, roots Flavonoids, pectin, saponins, alkaloids Lowers blood glucose and lipids, reduces insulin resistance, and enhances GLUT-4 translocation [143–145]
2. Actinidia chinensis Fruit Triterpenoids, flavonoids, phenolic acids Lowers serum glucose, inflammatory cytokines, blood lipids [146–149]
3. Aegle marmelos L. Fruit Oleic acid, p-cymene, linolenic acid, retinoic acid, myristic acid Enhances glucose tolerance and insulin sensitivity, suppresses α-amylase and α-glucosidase, delays intestinal glucose absorption [150–152,654]
4. Agaricus bisporus Rhizome Catechin, lectin, β-glucans, Gallic acid, p-coumaric acid, Ferulic acid, Chlorogenic acid Regulates insulin and glucagon secretion, reduces body weight and serum glucose [153–157]
5.. Allium cepa Fruit Quercetin, lectin, steroids, catechol, isoflavones, humulone, apigenin, rutin, myricetin, kaempferol, catechin Decreases α-glucosidase activity, oxidative stress, boosts insulin and adiponectin secretion, protects β-cells [158–162]
6. Allium sativum L. Fruit Allicin, β-resorcylic acid, gallic acid, rutin, protocatechuic acid, quercetin Enhances insulin production, insulin secretion, glucose tolerance, insulin sensitivity and GLUT-4 expression [163–168]
7. Aloe barbadensis Mill. Leaves Flavonoids, proanthocyanidins, phenolic acids Inhibits the glycation process, AGE formation and α-amylase, α-glucosidase enzyme activity [169–175]
8. Anacardium occidentale L. Nut, leaves, bark Kaempferol, anacardic acid, quercetin, linolenic acid, gallic acid, myricetin, catechin, protocatechuic acid, epigallocatechin, naringenin, epicatechin Inhibits glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1) and dipeptidyl peptidase-4 (DPP-4) activity [176–179,655]
9. Ananas comosus L. Fruit, peel, leaves Sinapic acid, daucosterol, coumarin, tannins, flavonoids, benzofuran, stillbenoid Improves insulin sensitivity and body weight, inhibits HMGCoA reductase activity [180–186]
10. Apium graveolens Leaves, seeds, roots Quercetin, thymoquinone, coumaric acid, gallic acid Improves insulin sensitivity, GLUT-4 translocation, mitochondrial dysfunction and inflammation [187–192]
11. Artocarpus heterophyllus Fruit, leaves, bark, seeds, roots Carotenoid, tannins, sterols, Chysin, isoquercetine Decreases postprandial glucose, blood lipids, and inhibits α-amylase and α-glucosidase [195–199]
12. Asparagus officinalis Stem Asparagine, tyrosine, arginine, flavonoid, saponin, resin Improves insulin secretion, insulin sensitivity, β-cell function and lowers blood glucose [200–204]
13. Avena sativa Grains β-glucan, oleic, linoleic acids, caffeic acids, coumaric acids, gallic acids, avenanthramides Reduces glycosylated HbA1c, fasting blood glucose, postprandial glucose, insulin resistance [205–209,656]
14. Averrhoa carambola L. Fruit Anthocyanins, rutin, triterpenoids, quercetin, catechin, epicatechin Elevates insulin secretion, glucose uptake in skeletal muscles and glycogen synthesis [210–214]
15. Azadirachta indica Leaves, stem, bark, flower, roots, fruit Nimbidin, nimbin, nimbidol, quercetin, nimbosterone, ferulic acid, limonene, oleuropeoside Inhibits α-glucosidase and glucokinase, stimulates insulin secretion [215–219]
16. Beta vulgaris Fruit Lycopene, betalains, betagarin, betavulgarin, quercetin, kaempherol, betanins, carotenoid, coumarin Inhibits α-amylase and α-glucosidase, gluconeogenesis, glycogenesis, and reduces serum glucose and lipids [220–222]
17. Brassica juncea Seeds Chlorogenic acid, cinnamic acid, kaempferol, flavonoid, coumaric acid, vanillic acid Improves blood glucose, glucose tolerance, insulin secretion and inhibits intestinal glucose absorption [223–226]
18. Brassica oleracea var. capitata Flower Myricetin, quercetin, kaempferol, apigenin, luteolin, Anthocyanidin Increases insulin sensitivity, β-cell function and lowers blood glucose [227–229]
19. Brassica oleracea var. italica Flower
Chlorogenic acid, apigenin, kaempferol, luteolin, quercetin and myricetin Reduces ROS formation and oxidative stress, inhibits α-amylase and α-glucosidase, enhances insulin sensitivity and β-cell function [230,231]
21. Camellia sinensis Leaves Theanine, proanthocyanidins, caffeine, myricetin, kaempferol, quercetin, chlorogenic acid, Catechins, epicatechin Attenuates insulin resistance and oxidative stress, inhibits α-amylase and α-glucosidase, regulates inflammatory cytokines production [232–235]
20. Capsicum annuum L. Seeds Flavonoids, carotenoids, flavones, apigenin, quercetin and isoquercetin Activates AMPK, increases GLUT4 translocation, glucose uptake in skeletal muscle and inhibits gluconeogenesis [236–240]
22. Carica papaya Fruit, seeds, leaves Saponins, alkaloids, kaempferol, flavonoids, phenols, terpenoids,
steroids, quercetin, caffeic acid
Decreases α-amylase and α-glucosidase activity, oxidative stress and plasma blood glucose [241–244]
23. Carissa carandas Fruits Lignans, flavonoids, Steroid, phenolic acid Inhibits α-amylase and α-glucosidase, pro-inflammatory cytokine release, and lowers blood glucose [245–249]
24. Catharanthus roseus L. Flowers, leaves Gallic acid, rutin, p-coumaric acid, caffeic acid, quercetin, kaempferol, chlorogenic acid, ellagic acid, coumarin Increases insulin secretion and β-cell function, decreases blood glucose and lipids [250–254]
25. Centella asiatica Leaves Centallase, quercetine, kaempferilm triterpene, ferulic acid Decreases oxidative and inflammatory stress, body weight, serum glucose and lipids [255–258]
26. Chenopodium quinoa Grains Phytosterols, phytoecdysteroids, phenolics,
tocophenols, betalains, tannins, glycine betaines
Inhibits α-glucosidase, improves insulin sensitivity, lowers postprandial glycemia [259–265]
27. Cicer arietinum Grains Uridine, adenosine, tryptophan, 3-hydroxy-olean-ene, biochanin Inhibits α-amylase, α-glucosidase and dipeptidyl-4 (DPP4) enzymes [266–271]
28. Cinnamomum verum Bark Cinnamaldehyde, cinnamates, cinnamic acid, eugenol, cinnamyl acetate, linalool Enhances β-cell function, insulin secretion, GLUT-4 translocation and inhibits α-amylase and α-glucosidase [272–275]
29. Citrullus lanatus L. Fruit, seeds Lycopene, apigenin, kaempferol, rutin, p-coumaric acid, quercetin, ferulic acid Inhibits α-amylase and α-glucosidase activity, enhances GLUT4 and GLUT2 translocation, and lowers blood glucose [276–279]
30. Citrus limon Fruit, peel, leaves Limocitrin, D-limonene, hesperidin, naringenin, flavonoid Decreases blood glucose and body weight and enhances GLUT4 translocation [280–287]
31. Citrus maxima Fruit, peel Carotenoids, terpenoids, sterols, alkaloids, phenolics Facilitates weight loss, inhibits α-amylase and α-glucosidase, increases glucose tolerance and aids diabetic nephropathy [288–290]
32. Citrus reticulata Fruit, peel Hesperidin, quercetin, flavonoids, tannins, anthraquinones Enhances mRNA expression,
GLUT-4 translocation, insulin sensitivity and glucose tolerance
[291–295]
33. Cocos nucifera Fruit, husk, water Tannins, resins, flavonoid, alkaloids Inhibits α-amylase and α-glucosidase activity, regenerate β-cells and aids diabetic neuropathy [297–304]
34. Coffea Arabica L. Leaves, fruit, beans Coffeasterin, caffeine, caffeic acid, p-coumaric acid, vanillic acid, ferulic acid, sitosterol, stigmasterol, kaempherol, quercetin, sinapic acid Regenerates β-cells, inhibits α-glucosidase and enhances insulin secretion [305–307]
35. Colocasia esculenta Stem, leaves Viexin, isovitexin, orientin, isoorientin, rosmarinic acid, luteolin Lowers blood glucose levels, oxidative stress and inflammation, inhibits aldose reductase and aids diabetic neuropathy [308–312,657]
36. Coriandrum sativum Seeds, leaves Flavonoids, tocol, carotenoid, saponins Inhibits TNF-α, IL-6, AGEs formation and aids diabetic neuropathy and nephropathy [313–317]
37. Crocus sativus L. Flower stigma Safranal, β carotenes, crocetin, crocin, picrocrocin, zeaxanthene Inhibits α-glucosidase and α-amylase, lowers blood glucose, lipids and inflammatory cytokines [318–323]
38. Cuminum Cyminum L. Seeds Cumin aldehyde, safranal, linalool, carvone, carvacrol Protects β-cells, improves insulin secretion, lowers blood glucose [324–326]
39. Cucumis sativus Fruit, seeds Cucurbitacin, cucumerin A and B, cucumegastigmanes I and II, orientin, apigenin Reduces glucagon secretion, gluconeogenesis, glycolysis, enhances insulin sensitivity [327–330]
40. Cucurbita pepo L. Fruit, seeds β-carotene, lutein flavonoids, zeaxanthin, alkaloid Lowers glucose in blood and urine, enhances glucose sensitivity, glutathione, reduces lipid levels [331–335]
41. Curcuma longa L. Fruit Turmerine, turmerone, Cucurmin, curcuminol, demethoxycurcumin, caffeic acid, sinapic acid Induces glucose uptake, GLUT-2 activity and insulin production, increases insulin secretion, insulin sensitivity, decreases insulin resistance [336–340,658]
42. Daucus carota Fruit α and β-carotene, lutein, lycopene, anthocyanins, ascorbic acid Regulates hyperglycemia, improves insulin resistance, delays intestinal glucose absorption, inhibits α-amylase and α-glucosidase [341–344]
43. Ficus carica Fruit, leaves, bark, roots Eugenol, anthocyanins, phenolic acids, flavones, flavanols Reduces postprandial glucose, plasma lipids, body weight, and β-cell apoptosis [345–350]
44. Fragaria ananassa Fruit, leaves Quercetin, kaempferol, p-coumaric acid, p-tyrosol, methyl gallate, rutin Ameliorates peripheral insulin resistance, inhibits α-amylase and α-glucosidase activity, increases insulin production [351–355]
45. Glycine max Seeds, leaves β-conglycinin, flavonoids, saponins, phytosterols Decreases insulin resistance, enhances glucose uptake in skeletal muscles through AMPK activation [356–360]
46. Helianthus annuus Flowers, seeds Flavonoids, tocopherols, carotenoids, saponins, tannins, chlorogenic acid, caffeic acid Reduces body weight, BMI, oxidative stress, AGEs formation and fasting blood glucose [361–364]
47. Hibiscus rosa-sinensis Linn. Flowers, leaves Quercetin, cyanidin, ascorbic acid, genistic acid, lauric acid, thiamine, niacin Stimulates β-cells, enhances insulin secretion and glycogen accumulation in the liver [365–369]
48. Hylocereus undatus Fruit, seeds Oleic acid, gallic acid, lycopene, p-coumaric acid, linoleic acid, β-carotene Attenuates plasma glucose, endothelial dysfunction, oxidative stress, intestinal glucose absorption, and boosts insulin sensitivity [370–372]
49. Ipomoea batatas Fruit Anthraquinones, coumarins, flavonoids, saponins, tannins, quercetin, chlorogenic acid, terpenoids Mitigates insulin secretion, serum glucose, enhances β-cell function and insulin production [373–377]
50. Juglans regia L. Nut, leaves Gallic acid, caffeoylquinic acid, coumaroylquinic, juglone, quercetin Increases glucose uptake, inhibits α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B) activity [378–381,659]
51. Lactuca sativa Leaves Flavonoids, quercetin, flavonols, anthocyanins, lutein, β-carotene Inhibits α-amylase, α-glucosidase and DPP-4, improves postprandial glucose and blood lipids [382–386]
52. Lagenaria siceraria Fruit, leaves, seeds cucurbitacin B, cucurbitacin D, cucurbitacin E, isoquercitrin, kaempferol, gallic acid Improves glucose tolerance, insulin production, and inhibits intestinal glucose absorption [387–390]
53. Laurus nobilis Leaves Eugenol, kaempferol, syringic acid, quercetin, apigenin, luteolin Enhances β-cell function, insulin sensitivity and inhibits α-amylase and α-glucosidase [391–394]
54. Litchi chinensis Fruit, seeds Sterols, triterpenoids, flavonoids, phenolics Improves insulin resistance, serum triglyceride level, glucose tolerance and inhibits α-glucosidase activity [395–397]
55. Luffa acutangula Fruit, seeds Apigenin, luteolin, myristic acid, α-pinene, carotene, oleanolic acid, β-myrcene, linalool Enhances insulin secretion, suppresses glycogenolysis and gluconeogenesis [398,399]
56. Malus domestica Borkh Fruit, peel Quercetin, pectin, flavonols, flavanols, catechin epicatechin, cyanidin galactoside Improves endothelial function, lipid homeostasis, insulin resistance, and lowers serum glucose [400–409]
57. Mangifera indica Fruit, peel, bark, seeds Mangiferin, rhamnetin, catechin, epicatechin, gallic acid Increases insulin sensitivity, lowers postprandial glucose, inhibits α-amylase and α-glucosidase [410–415]
58. Mentha spicata Leaves Limonene, carvone, linalool, piperitone Suppresses α-amylase and α-glucosidase activity, oxidative stress, and decreases blood glucose and lipids [416–418]
59. Moringa oleifera Lam. Fruit, leaves Anthocyanins, sitogluside, tannin, anthraquinones, β-carotene Inhibits α-amylase and α-glucosidase, lowers postprandial glucose and cholesterol, and improves lipid metabolism [419–423,660]
60. Momordica charantia Fruit, leaves, seeds Triterpene, proteid, steroids, flavonoids, ascorbic acid, saponins Regenerates β-cells, increases glucose uptake in skeletal muscle and suppresses intestinal glucose absorption [424–432]
61. Morus alba L. Fruit, leaves Quercetin, isoquercetin, stillbenoids, flavonoids Enhances insulin secretion, lowers blood glucose, blood lipids and promotes GLUT-4 translocation [434–437]
62. Murraya koenigii L. Leaves Murrayanol, mahanimbine, kaemferol, catechin, apgenin Regenerates β-cells, inhibits α-amylase and α-glucosidase, lowers blood glucose [438–441]
63. Myristica fragrans Houtt. Fruit, seeds Lignan, flavonoids, terpenes, coumarin Inhibits TNF-α and IL-6 release, ameliorates blood glucose, β-cell function, inflammation and obesity [442–445]
64. Nigella sativa L. Seeds Thymoquinone, thymol, limonene, carvacrol, p-cymene, linoleic acid, oleic acid Inhibits hepatic gluconeogenesis, α-amylase and α-glucosidase, increases insulin sensitivity [446–450]
65. Ocimum sanctum L. Leaves, seeds Ursolic acid, eugenol, carvacrol, linalool, caryophyllene Lowers serum glucose and albumin, increases insulin secretion and lipid metabolism, regenerates β cells [451–454,661]
66. Olea europaea L. Fruit, leaves Secoiridoid glycoside, oleuropein, oleanolic acid, flavonoid, cinnamic acid Enhances glucose tolerance, reduces body weight, inhibits gluconeogenesis and lowers plasma glucose [455–460]
67. Origanum vulgare Leaves Rosmarinic acid, apigenin, luteolin Increases glucose uptake in skeletal muscle, GLUT-2, decreases blood glucose, oxidative stress,inhibits α-amylase and α-glucosidase [461–465]
68. Passiflora edulis Fruit, peel Piceatannol, flavonoids, tocopherols, carotenoid, gallic acid, rutin Improves serum glucose, insulin sensitivity, glucose tolerance, glucose uptake in skeletal muscle, and reduces lipid accumulation and body weight [466–474]
69. Persea americana Mill. Fruit, leaves, seeds, bark Myricetin, luteolin, gallic acid, ascorbic acid Activates PI3K to facilitate insulin action, inhibits α-amylase and α-glucosidase [475–479]
70. Petroselinum crispum Leaves, seeds, roots Coumarins, tocopherols, apigenin, myristicin Regulates plasma glucose, body weight, glutathione levels, increases glucose uptake in skeletal muscles and inhibits gluconeogenesis [480–483]
71. Phaseolus vulgaris L. Seeds p-coumaric acid, myricetin, naringenin, gallic acid, quercetin, catechin, kaempferol, ferulic acid Suppresses α-glucosidase activity, gluconeogenesis, delays the absorption of glucose, increases insulin sensitivity [484–487]
72. Phoenix dactylifera L. Fruit, leaves Flavonoids, oleic acid, linoleic acid, catechin, epicatechin, apigenin, naringenin, anthocyanin Enhances β-cell function, insulin secretion, decreases blood glucose, inhibits α-amylase and α-glucosidase [488–491]
73.Phyllanthus emblica L. Fruit, leaves, bark, roots Gallic acid, ellagic acid, pectin, quercetin, linoleic, oleic acid, myristic acid, Inhibits α-amylase and α-glucosidase, activates AMPK and lowers blood glucose [492–495]
74. Piper betle L. Leaves Eugenol, selinene, hydroxychavicol, cadinene, caryophyllene Elevates insulin production and glucose usage, activates glucokinase and lowers plasma glucose [496–499]
75. Pisum sativum L. Seeds Uridine, adenosine, tryptophan, 3-hydroxy-olean-ene, biochanin Inhibits α-amylase, α-glucosidase and dipeptidyl-4 (DPP4) enzymes [500–503]
76. Prunus armeniaca L. Fruit, leaves Quercetin, ferulic acid, chlorogenic acid, lutein, catechin, epicatechin Stimulates insulin secretion, decreases oxidative stress, inhibits α-amylase and α-glucosidase [504–506]
77. Prunus domestica Fruit Catechin, epicatechin, chlorogenic acid, kaempferol, quercetin Inhibits HMGCoA reductase and α-amylase, lowers blood glucose, lipids, and oxidative stress [507–514]
78. Prunus dulcis Nut Oleic acid, linoleic acid, P-coumaric acid, anthocyanin, kaempferol, quercetin, chlorogenic acid Increases insulin production and decreases stomach emptying time [515,516]
79. Prunus persica L. Fruit, peel, leaves Naringenin, ferulic acid, Chlorogenic acid, astragalin, carotenoid, anthocyanin, caffeic acid Ameliorates insulin secretion, pancreatic β-cell regeneration and inhibits α-amylase and α-glucosidase [517–520]
80. Punica granatum Fruit, peel, seeds Punicalin, punicsfolin, apigenin, quercetin, ellagic acid, gallotannins, anthocyanins, luteolin, kaempferol, lycopene Enhances insulin sensitivity, insulin production, GLUT-4 translocation, and lowers blood glucose [521–524]
81. Psidium guajava L. Fruit, leaves Quercetin, avicularin, guaijaverin, tannins, triterpenes Decreases plasma glucose, gluconeogenesis, triglycerides, total cholesterol, and increases glucose uptake in skeletal muscle [525–533,662]
82. Raphanus sativus L. Fruit, leaves Myricetin, catechin, epicatechin, quercetin, vanillic acid, Oleic acid, p-coumaric acid, β-carotene Inhibits intestinal glucose absorption, increases glucose uptake in skeletal muscle, and lowers blood glucose [534–537]
83. Rosmarinus officinalis L. Leaves Rosmarinic acid, ursolic acid, oleonic acid, carnosol Enhances insulin sensitivity, GLUT-4 translocation, glucose uptake in skeletal muscle, and inhibits gluconeogenesis [538–544]
84. Rubus fruticosus Fruit, leaves anthocyanins, malvidins, pelargonidin, cyanidins, kaempferol, quercetin Lowers blood glucose, inhibits α-amylase and α-glucosidase [545–548]
85. Salvia hispanica L. Seeds Omega-3 fatty acid, myricetin, quercetin, chlorogenic acid, kaempferol, caffeic acid Inhibits α-amylase and α-glucosidase, reduces body weight, inflammatory cytokines release, blood glucose and lipids [549–553]
86. Sesamum indicum Seeds Sesamin, sesaminol, tocopherol, flavonoids, saponins, steroids, terpenoids Attenuates postprandial glucose and oxidative stress, improves insulin secretion, glutathione levels and lipid metabolism [554–559]
87. Solanum lycopersicum L. Fruit Lycopene, tomatine, kaempferol, quercetin, chlorogenic acid, β-carotene, naringenin Attenuates plasma glucose, inflammation, insulin resistance via PI3K/Akt, FOXO1, PPAR-γ regulation [560–566]
88. Solanum melongena Fruit, leaves Thiamin, niacin, flavonoids, saponins, tannins, triterpenoids, anthraquinones Enhances glucose uptake in skeletal muscles, GLUT-4 translocation, reduces gluconeogenesis, α-amylase, α-glucosidase enzymes and hyperlipidemia [567–571]
89. Spinacia oleracea Leaves β-carotenoids, lutein, carotenoids, zeaxanthin Reduces serum C-reactive protein, TNF α, IL-6, excess AGEs production, and aids in retinopathy [572–577]
90. Syzygium aromaticum Flower buds Eugenol, gallic acid, ferulic acid, catechin, quercetin Inhibits α-amylase, α-glucosidase and aldose reductase, lowers blood glucose and activates PPAR-γ [578–581]
91. Syzygium cumini L. Fruit, seeds, bark Anthocyanins, isoquercetin, ellagic acid, kaempferols, myricetin Regenerates β-cells, improves insulin production and lowers glucose in plasma and urine [582–584,663]
92. Tamarindus indica L. Fruit, leaves, seeds Catechin, anthocyanin, epicatechin, apigenin Lowers blood glucose, inhibits α-amylase and α-glucosidase, elevates glucose tolerance and regenerate β-cells [585–589]
93. Theobroma cacao Fruit, husk, seeds Catechin, epicatechin, procyanidin, saponins, terpenoids Protects β-cells, inhibits α-amylase and α-glucosidase, elevates ATP, GSH, Nrf2 and glucose uptake in skeletal muscle [590–595]
94. Trichosanthes cucumerina L. Fruit, leaves, seeds, roots Carotenoids, gallic acid, neochlorogenic acid, caffeic acid, p-coumaric acid, rutin, kaempferol, quercetin, ursolic, oleanolic acids Simulates insulin secretion, enhances the peripheral use of glucose and prevents intestinal glucose absorption [596–598]
95. Trigonella foenum-graecum Seeds Steroids, alkaloids, flavonoids, polyphenols, saponins Decreases blood glucose, enhances glucose uptake, insulin sensitivity and glucose tolerance [599–602]
96. Vaccinium corymbosum Fruit, leaves Anthocyanins, pectin, anthocyanidins, delphinidin, peonidin, malvidins Suppresses α-amylase and α-glucosidase activity and aids diabetic retinopathy [603–605]
97. Vigna radiata Seeds quercetin, myricetin, kaempferol, catechin, coumaric acid, luteolin, caffeic, gallic acid Hinders gluconeogenesis, glycolysis, inhibits α-glucosidase and α-amylase [606–612]
98. Vitis vinifera L. Fruit, seeds, peel Catechin, epicatechin, epicatechin gallate, quercetin, myricetin, resveratrol Regenerates β-cells, lowers blood glucose, inhibits intestinal glucose absorption and facilitates glycogen synthesis [613–615,664]
99. Zea mays Grains, husk Hirsutrin, flavonoids, alkaloids, saponins, phenols, tannins, phytosterols Ameliorates diabetic complications by suppressing aldose reductase and reducing galactitol formation, inhibits α-amylase and α-glucosidase activity [616–621]
100. Zingiber officinale Fruit Vanilloids, gingerol, paradol, shogaols, zingerone, gingerdiols, Activates GLUT-4 and PPAR-γ, protects β-cells, facilitate glucose uptake in tissues [622,623]

Conclusion and Future Perspectives

Plant-based dietary adjunct represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM, but also supports weight management in obese individuals and has broad health benefits [665–667]. The plants highlighted in this review can interact with a variety of ways to regulate blood glucose and restore insulin sensitivity. In addition, it is important to mention that fiber-rich plants also play a role in obesity management [668–670]. To date, the majority of scientific studies on antidiabetic plants have been carried out in vitro and/or in vivo. More research is needed to identify the antidiabetic potential of the plants selected in this review in patients with diabetes. Furthermore, more research is needed to better understand the identity and mechanism of action of the active phytoconstituents at the molecular level. We also need to determine what the future holds for the potential exploitation of these natural products for development of new and safer pharmaceuticals that could assist the treatment of DM and its complications.

Author Contributions

Conceptualisation, P.R.F., P.A., and Y.H.A.A.-W.; formal Analysis, P.R.F., P.A., V.S. and J.T.K.; funding acquisition, P.R.F., P.A. and Y.H.A.A.-W.; investigation, resources, writing, P.A., J.T.K., S.C. A.D.R. and S.K.; Visualization, P.R.F., P.A. and V.S.; supervision, reviewing and editing P.R.F., P.A. and V.S. All authors have read and agreed to the published version of the manuscript.

Funding

Research conducted over many years in the authors’ laboratories and referred to in the text was supported by Diabetes UK, NI, Department of Health and Social Services, SAAD Trading Company and Ulster University Strategic Funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors gratefully acknowledge the Diabetes Research Centre, School of Biomedical Sciences, Ulster University, UK and Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, USA for providing access to their library resources and relevant literature.

Conflicts of Interest

The authors affirm that there are no conflicts of interest present in this paper.

Abbreviation

AGEs Advanced Glycation End Products
ALT Alanine Aminotransferase
AMPK AMP-activated Protein Kinase
AST Aspartate Aminotransferase
ATP Adenosine triphosphate
BMI Body Mass Index
DAGs Diacylglycerols
DM Diabetes Mellitus
DPP-4 Dipeptidyl Peptidase-4
DPPH 2,2-Diphenyl-1-picrylhydrazyl
ER Endoplasmic Reticulum
ETC Electron Transport Chain
FOXO1 Forkhead Box O1
GIT Gastrointestinal Tract
GLP-1 Glucagon-Like Peptide-1
GLUT-4 Glucose Transporter type 4
GLUT2 Glucose Transporter 2
GSH Glutathione
HbA1c Glycated Hemoglobin
HDL High-Density Lipoprotein
IL-1 Interleukin-1
IL-6 Interleukin-6
IRS-1 Insulin Receptor Substrate 1
IRS-2 Insulin Receptor Substrate 2
IR Insulin Resistance
Keap1 Kelch-Like ECH-Associated Protein 1
LDL-c Low-Density Lipoprotein Cholesterol
LPL Lipoprotein Lipase
MDA Malondialdehyde
Nrf2 Nuclear Factor Erythroid 2-Related Factor 2
NO Nitric Oxide
PI3K/AKT Phosphatidylinositol-3-Kinase/Protein Kinase B Pathway
PKB/Akt Protein Kinase B/Protein Kinase B
PKC Protein Kinase C
PPAR-γ Peroxisome Proliferator-Activated Receptor gamma
PPBG Postprandial Blood Glucose
PPAR-γ Peroxisome Proliferator-Activated Receptor-gamma
PTP1B Protein Tyrosine Phosphatase 1B
ROS Reactive Oxygen Species
SGLT2 Sodium-Glucose Cotransporter 2
SOD Superoxide Dismutase
SUR Sulfonylurea Receptors
TC Total Cholesterol
TG Triglycerides
TNF-α Tumor Necrosis Factor-alpha
UCP-1 Uncoupling Protein 1
VLDL Very Low-Density Lipoprotein

References

  1. Maggio, C. A.; Pi-Sunyer, F. X. Obesity and Type 2 Diabetes. Endocrinol. Metab. Clin. N. Am. 2003, 32 (4), 805–viii. [CrossRef]
  2. Harreiter, J.; Roden, M. Diabetes Mellitus – Definition, Klassifikation, Diagnose, Screening und Prävention (Update 2019) [Diabetes Mellitus-Definition, Classification, Diagnosis, Screening and Prevention (Update 2019)]. Wien. Klin. Wochenschr. 2019, 131 (Suppl 1), 6–15. [CrossRef]
  3. Malone, J. I.; Hansen, B. C. Does Obesity Cause Type 2 Diabetes Mellitus (T2DM)? Or Is It the Opposite? Pediatr. Diabetes 2019, 20 (1), 5–9. [CrossRef]
  4. Thomas, C. C.; Philipson, L. H. Update on Diabetes Classification. Med. Clin. N. Am. 2015, 99 (1), 1–16. [CrossRef]
  5. Acharjee, S.; Ghosh, B.; Al-Dhubiab, B.; Nair, A. Understanding Type 1 Diabetes: Etiology and Models. Can. J. Diabetes 2013, 37 (4), 269–276. [CrossRef]
  6. Chatterjee, S.; Khunti, K.; Davies, M. Type 2 Diabetes. Lancet 2017, 389 (10085), 2239–2251. [CrossRef]
  7. Lu, X.; Zhao, C. Exercise and Type 1 Diabetes. In Physical Exercise For Human Health; 2020; pp 107–121. [CrossRef]
  8. Vijan, S. Type 2 Diabetes. Ann. Intern. Med. 2015, 162 (5), ITC1–ITC16. [CrossRef]
  9. IDF Diabetes Atlas Ninth Edition 2019. https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/159-idf-diabetes-atlas-ninth-edition-2019.html (accessed 28th July, 2022).
  10. Henning, R. Type-2 Diabetes Mellitus and Cardiovascular Disease. Future Cardiol. 2018, 14 (6), 491–509. [CrossRef]
  11. Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11 (11), 1185–1200. [CrossRef]
  12. Whiting, D. R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global Estimates of the Prevalence of Diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 2011, 94 (3), 311–321. [CrossRef]
  13. Chakraborty, C.; Das, S. Dynamics of Diabetes and Obesity: An Alarming Situation in the Developing Countries in Asia. Mini Rev. Med. Chem. 2016, 16 (15), 1258–1268. [CrossRef]
  14. Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global Prevalence of Diabetes. Diabetes Care 2004, 27 (5), 1047–1053. [CrossRef]
  15. Sarker, A. R.; Khanam, M. Socio-economic Inequalities in Diabetes and Prediabetes Among Bangladeshi Adults. Diabetol. Int. 2022, 13, 421–435. [CrossRef]
  16. Standl, E.; Khunti, K.; Hansen, T. B.; Schnell, O. The Global Epidemics of Diabetes in the 21st Century: Current Situation and Perspectives. Eur. J. Prev. Cardiol. 2019, 26 (2_suppl), 7–14. [CrossRef]
  17. Pulgaron, E.; Delamater, A. Obesity and Type 2 Diabetes in Children: Epidemiology and Treatment. Curr. Diabetes Rep. 2014, 14 (8). [CrossRef]
  18. DeFronzo, R. A.; Ferrannini, E.; Zimmet, P., et al. International Textbook of Diabetes Mellitus, 2 Volume Set, 4th ed.; WileyBlackwell: Hoboken, NJ, 2015.
  19. Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural Products for the Treatment of Type 2 Diabetes Mellitus: Pharmacology and Mechanisms. Pharmacol. Res. 2018, 130, 451–465. [CrossRef]
  20. Bluestone, J.; Herold, K.; Eisenbarth, G. Genetics, Pathogenesis and Clinical Interventions in Type 1 Diabetes. Nature 2010, 464 (7293), 1293–1300. [CrossRef]
  21. Bolli, G. B. Insulin treatment in type 1 diabetes. Endocrine Practice 2006, 12, Suppl 1, 105-109. [CrossRef]
  22. Marín-Peñalver, J. J.; Martín-Timón, I.; Sevillano-Collantes, C.; Del Cañizo-Gómez, F. J. Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes 2016, 7(17), 354-395. [CrossRef]
  23. Chaudhury, A.; Duvoor, C.; Reddy Dendi, V. S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N. S.; Montales, M. T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C. K.; Lohani, G. P.; Mirza, W. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Frontiers in Endocrinology 2017, 8, 6. [CrossRef]
  24. Dey, L.; Attele, A. S.; Yuan, C. S. Alternative therapies for type 2 diabetes. Alternative Medicine Review 2002, 7(1), 45-58.
  25. Clark, T. A.; Deniset, J. F.; Heyliger, C. E.; Pierce, G. N. Alternative therapies for diabetes and its cardiac complications: role of vanadium. Heart Failure Reviews 2014, 19(1), 123-132. [CrossRef]
  26. Salehi, B.; Ata, A.; V Anil Kumar, N.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Tsouh Fokou, P. V.; Kobarfard, F.; Amiruddin Zakaria, Z.; Iriti, M.; Taheri, Y.; Martorell, M.; Sureda, A.; Setzer, W. N.; Durazzo, A.; Lucarini, M.; Santini, A.; Capasso, R.; Ostrander, E. A.; ... Sharifi-Rad, J. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9(10), 551. [CrossRef]
  27. Zhang, Z. R.; Leung, W. N.; Cheung, H. Y.; Chan, C. W. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. Evidence-Based Complementary and Alternative Medicine 2015, 919616. [CrossRef]
  28. Guthrie, R. A.; Guthrie, D. W. Pathophysiology of Diabetes Mellitus. Crit. Care Nurs. Q. 2004, 27 (2), 113-125. [CrossRef]
  29. Skyler, J. S.; Bakris, G. L.; Bonifacio, E.; Darsow, T.; Eckel, R. H.; Groop, L.; Groop, P. H.; Handelsman, Y.; Insel, R. A.; Mathieu, C.; McElvaine, A. T.; Palmer, J. P.; Pugliese, A.; Schatz, D. A.; Sosenko, J. M.; Wilding, J. P.; Ratner, R. E. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes 2017, 66 (2), 241-255. [CrossRef]
  30. Sosenko, J. M.; Skyler, J. S.; Beam, C. A.; Krischer, J. P.; Greenbaum, C. J.; Mahon, J.; Rafkin, L. E.; Matheson, D.; Herold, K. C.; Palmer, J. P.; Type 1 Diabetes TrialNet and Diabetes Prevention Trial–Type 1 Study Groups. Acceleration of the Loss of the First-Phase Insulin Response During the Progression to Type 1 Diabetes in Diabetes Prevention Trial-Type 1 Participants. Diabetes 2013, 62 (12), 4179-4183. [CrossRef]
  31. Sosenko, J. M.; Palmer, J. P.; Rafkin, L. E.; Krischer, J. P.; Cuthbertson, D.; Greenbaum, C. J.; Eisenbarth, G.; Skyler, J. S.; Diabetes Prevention Trial-Type 1 Study Group. Trends of Earlier and Later Responses of C-Peptide to Oral Glucose Challenges with Progression to Type 1 Diabetes in Diabetes Prevention Trial-Type 1 Participants. Diabetes Care 2010, 33 (3), 620-625. [CrossRef]
  32. Ferrannini, E.; Mari, A.; Nofrate, V.; Sosenko, J. M.; Skyler, J. S.; DPT-1 Study Group. Progression to Diabetes in Relatives of Type 1 Diabetic Patients: Mechanisms and Mode of Onset. Diabetes 2010, 59 (3), 679-685. [CrossRef]
  33. Cerf, M. Beta Cell Dysfunction and Insulin Resistance. Front. Endocrinol. 2013, 4. [CrossRef]
  34. Zheng, Y.; Ley, S.; Hu, F. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nat. Rev. Endocrinol. 2018, 14 (2), 88-98. [CrossRef]
  35. Christensen, A.; Gannon, M. The Beta Cell in Type 2 Diabetes. Curr. Diab. Rep. 2019, 19 (9). [CrossRef]
  36. Halban, P. A.; Polonsky, K. S.; Bowden, D. W.; Hawkins, M. A.; Ling, C.; Mather, K. J.; Powers, A. C.; Rhodes, C. J.; Sussel, L.; Weir, G. C. β-cell Failure in Type 2 Diabetes: Postulated Mechanisms and Prospects for Prevention and Treatment. Diabetes Care 2014, 37 (6), 1751–1758. [CrossRef]
  37. Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced Glycation End Products and Oxidative Stress in Type 2 Diabetes Mellitus. Biomolecules 2015, 5 (1), 194–222. [CrossRef]
  38. Singh, V. P.; Bali, A.; Singh, N.; Jaggi, A. S. Advanced Glycation End Products and Diabetic Complications. Korean J. Physiol. Pharmacol. 2014, 18 (1), 1–14. [CrossRef]
  39. Steinberg, G. R.; Kemp, B. E. AMPK in Health and Disease. Physiol. Rev. 2009, 89 (3), 1025–1078. [CrossRef]
  40. Lee, J. W.; Brancati, F. L.; Yeh, H. C. Trends in the prevalence of type 2 diabetes in Asians versus whites: results from the United States National Health Interview Survey, 1997-2008. Diabetes Care 2011, 34(2), 353-357. [CrossRef]
  41. Polak, K.; Czyzyk, A.; Simoncini, T.; Meczekalski, B. New Markers of Insulin Resistance in Polycystic Ovary Syndrome. J. Endocrinol. Invest. 2016, 40 (1), 1-8. [CrossRef]
  42. Handschin, C.; Spiegelman, B. The Role of Exercise and PGC1α in Inflammation and Chronic Disease. Nature 2008, 454 (7203), 463-469. [CrossRef]
  43. Hee Park, K.; Zaichenko, L.; Brinkoetter, M.; Thakkar, B.; Sahin-Efe, A.; Joung, K.; et al. Circulating Irisin in Relation to Insulin Resistance and the Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2013, 98 (12), 4899-4907. [CrossRef]
  44. El-Lebedy, D.; Ibrahim, A.; Ashmawy, I. Novel Adipokines Vaspin and Irisin as Risk Biomarkers for Cardiovascular Diseases in Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. 2018, 12 (5), 643-648. [CrossRef]
  45. Lynch, S. V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375 (24), 2369–2379. [CrossRef]
  46. Ng, A.; Delgado, V.; Borlaug, B. A.; Bax, J. J. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nature Reviews Cardiology 2021, 18(4), 291-304. [CrossRef]
  47. Boden, G.; Homko, C.; Barrero, C. A.; Stein, T. P.; Chen, X.; Cheung, P.; Fecchio, C.; Koller, S.; Merali, S. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Science Translational Medicine 2015, 7(304), 304re7. [CrossRef]
  48. Freeman, A. M.; Pennings, N. Insulin Resistance. In StatPearls; StatPearls Publishing, 2021.
  49. Flier, J. S.; Kahn, C. R.; Roth, J. Receptors, antireceptor antibodies and mechanisms of insulin resistance. The New England Journal of Medicine 1979, 300(8), 413-419. [CrossRef]
  50. Duncan, J. A.; Shah, S. C.; Shulman, D. I.; Siegel, R. L.; Kappy, M. S.; Malone, J. I. Type b insulin resistance in a 15-year-old white youth. The Journal of Pediatrics 1983, 103(3), 421-424. [CrossRef]
  51. Ye, J. Mechanisms of insulin resistance in obesity. Frontiers Of Medicine 2013, 7(1), 14-24. [CrossRef]
  52. Ye, J. Role of Insulin in the Pathogenesis of Free Fatty Acid-Induced Insulin Resistance in Skeletal Muscle. Endocrine, Metabolic & Immune Disorders-Drug Targets 2007, 7(1), 65-74. [CrossRef]
  53. Gray, S.; Donald, C.; Jetha, A.; Covey, S.; Kieffer, T. Hyperinsulinemia Precedes Insulin Resistance in Mice Lacking Pancreatic β-Cell Leptin Signaling. Endocrinology 2010, 151(9), 4178-4186. [CrossRef]
  54. Minokoshi, Y.; Alquier, T.; Furukawa, N.; Kim, Y. B.; Lee, A.; Xue, B.; Mu, J.; Foufelle, F.; Ferré, P.; Birnbaum, M. J.; Stuck, B. J.; Kahn, B. B. AMP-Kinase Regulates Food Intake by Responding to Hormonal and Nutrient Signals in the Hypothalamus. Nature 2004, 428 (6982), 569–574. [CrossRef]
  55. Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.; Paquot, N. Inflammation as a Link between Obesity, Metabolic Syndrome and Type 2 Diabetes. Diabetes Res. Clin. Pract. 2014, 105 (2), 141-150. [CrossRef]
  56. Valera Mora, M.; Scarfone, A.; Calvani, M.; Greco, A.; Mingrone, G. Insulin Clearance in Obesity. J. Am. Coll. Nutr. 2003, 22 (6), 487-493. [CrossRef]
  57. Michael, M.; Kulkarni, R.; Postic, C.; Previs, S.; Shulman, G.; Magnuson, M.; Kahn, C. Loss of Insulin Signaling in Hepatocytes Leads to Severe Insulin Resistance and Progressive Hepatic Dysfunction. Mol. Cell 2000, 6 (1), 87-97. [CrossRef]
  58. Farris, W.; Mansourian, S.; Leissring, M.; Eckman, E.; Bertram, L.; Eckman, C. et al. Partial Loss-of-Function Mutations in Insulin-Degrading Enzyme that Induce Diabetes also Impair Degradation of Amyloid β-Protein. Am. J. Pathol. 2004, 164 (4), 1425-1434. [CrossRef]
  59. Small, L.; Brandon, A.; Turner, N.; Cooney, G. Modeling insulin resistance in rodents by alterations in diet: what have high-fat and high-calorie diets revealed? American Journal of Physiology-Endocrinology and Metabolism 2018, 314(3), E251-E265. [CrossRef]
  60. Adams, J.; Pratipanawatr, T.; Berria, R.; Wang, E.; DeFronzo, R.; Sullards, M.; Mandarino, L. Ceramide Content Is Increased in Skeletal Muscle From Obese Insulin-Resistant Humans. Diabetes 2004, 53(1), 25-31. [CrossRef]
  61. Bosma, M.; Kersten, S.; Hesselink, M.; Schrauwen, P. Re-evaluating lipotoxic triggers in skeletal muscle: Relating intramyocellular lipid metabolism to insulin sensitivity. Progress In Lipid Research 2012, 51(1), 36-49. [CrossRef]
  62. Holland, W.; Brozinick, J.; Wang, L.; Hawkins, E.; Sargent, K.; Liu, Y.; et al. Inhibition of Ceramide Synthesis Ameliorates Glucocorticoid-, Saturated-Fat-, and Obesity-Induced Insulin Resistance. Cell Metabolism 2007, 5(3), 167-179. [CrossRef]
  63. Itani, S.; Ruderman, N.; Schmieder, F.; Boden, G. Lipid-Induced Insulin Resistance in Human Muscle Is Associated With Changes in Diacylglycerol, Protein Kinase C, and IκB-α. Diabetes 2002, 51 (7), 2005-2011. [CrossRef]
  64. Erion, D.; Shulman, G. Diacylglycerol-mediated insulin resistance. Nat. Med. 2010, 16 (4), 400-402. [CrossRef]
  65. El-Lebedy, D.; Ibrahim, A.; Ashmawy, I. Novel Adipokines Vaspin and Irisin as Risk Biomarkers for Cardiovascular Diseases in Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. 2018, 12 (5), 643-648. [CrossRef]
  66. Bunney, P.; Zink, A.; Holm, A.; Billington, C.; Kotz, C. Orexin Activation Counteracts Decrease in Non-Exercise Activity Thermogenesis (NEAT) Caused by High-Fat Diet. Physiol. Behav. 2017, 176, 139-148. [CrossRef]
  67. Boström, P.; Wu, J.; Jedrychowski, M.; Korde, A.; Ye, L.; Lo, J.; et al. A PGC1-α-dependent Myokine that Drives Brown-Fat-Like Development of White Fat and Thermogenesis. Nature 2012. [CrossRef]
  68. Paradies, G.; Petrosillo, G.; Pistolese, M.; Ruggiero, F. M. Reactive Oxygen Species Affect Mitochondrial Electron Transport Complex I Activity Through Oxidative Cardiolipin Damage. Gene 2002, 286 (1), 135-141. [CrossRef]
  69. Hurrle, S.; Hsu, W. H. The Etiology of Oxidative Stress in Insulin Resistance. Biomed. J. 2017, 40 (5), 257-262. [CrossRef]
  70. Mailloux, R. J. An Update on Methods and Approaches for Interrogating Mitochondrial Reactive Oxygen Species Production. Redox Biol. 2021, 45, 102044. [CrossRef]
  71. Burkart, A. M.; Tan, K.; Warren, L.; Iovino, S.; Hughes, K. J.; Kahn, C. R.; Patti, M. E. Insulin Resistance in Human iPS Cells Reduces Mitochondrial Size and Function. Sci. Rep. 2016, 6, 22788. [CrossRef]
  72. Ceriello, A.; Ihnat, M.; Thorpe, J. The “Metabolic Memory”: Is More Than Just Tight Glucose Control Necessary to Prevent Diabetic Complications? J. Clin. Endocrinol. Metab. 2009, 94 (2), 410-415. [CrossRef]
  73. Blomen, V.; Boonstra, J. Stable Transmission of Reversible Modifications: Maintenance of Epigenetic Information Through the Cell Cycle. Cell. Mol. Life Sci. 2010, 68 (1), 27-44. [CrossRef]
  74. Sircana, A.; Framarin, L.; Leone, N.; Berrutti, M.; Castellino, F.; Parente, R.; De Michieli, F.; Paschetta, E.; Musso, G. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? Curr. Diab. Rep. 2018, 18 (10), 98. [CrossRef]
  75. Sergi, D.; Naumovski, N.; Heilbronn, L. K.; Abeywardena, M.; O'Callaghan, N.; Lionetti, L.; Luscombe-Marsh, N. Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front. Physiol. 2019, 10, 532. [CrossRef]
  76. Kelley, D. E.; Wing, R.; Buonocore, C.; Sturis, J.; Polonsky, K.; Fitzsimmons, M. Relative Effects of Calorie Restriction+ and Weight Loss in Noninsulin-Dependent Diabetes Mellitus. J. Clin. Endocrinol. Metab. 1993, 77 (5), 1287-1293. [CrossRef]
  77. Gumbiner, B.; Polonsky, K. S.; Beltz, W. F.; Griver, K.; Wallace, P.; Brechtel, G.; Henry, R. R. Effects of Weight Loss and Reduced Hyperglycemia on the Kinetics of Insulin Secretion in Obese Non-Insulin Dependent Diabetes Mellitus. J. Clin. Endocrinol. Metab. 1990, 70 (6), 1594-1602. [CrossRef]
  78. Dixon, J. ’.; O'Brien, P. E. Health Outcomes of Severely Obese Type 2 Diabetic Subjects 1 Year After Laparoscopic Adjustable Gastric Banding. Diabetes Care 2002, 25 (2), 358-363. [CrossRef]
  79. Huang, D.; Refaat, M.; Mohammedi, K.; Jayyousi, A.; Al Suwaidi, J.; Abi Khalil, C. Macrovascular Complications in Patients with Diabetes and Prediabetes. BioMed Res. Int. 2017, 2017, 7839101. [CrossRef]
  80. Joseph, J. J.; Deedwania, P.; Acharya, T.; Aguilar, D.; Bhatt, D. L.; Chyun, D. A.; Di Palo, K. E.; Golden, S. H.; Sperling, L. S.; American Heart Association Diabetes Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Clinical Cardiology; Council on Hypertension. Comprehensive Management of Cardiovascular Risk Factors for Adults With Type 2 Diabetes: A Scientific Statement From the American Heart Association. Circulation 2022, 145 (9), e722–e759. [CrossRef]
  81. Haffner, S.; Lehto, S.; Rönnemaa, T.; Pyörälä, K.; Laakso, M. Mortality from Coronary Heart Disease in Subjects with Type 2 Diabetes and in Nondiabetic Subjects with and without Prior Myocardial Infarction. N. Engl. J. Med. 1998, 339 (4), 229-234. https://www.nejm.org/doi/full/10.1056/NEJM199807233390404.
  82. Beckman, J.; Creager, M.; Libby, P. Diabetes and Atherosclerosis. JAMA 2002, 287 (19), 2570. https://jamanetwork.com/journals/jama/article-abstract/194930.
  83. Nesto, R. Correlation between Cardiovascular Disease and Diabetes Mellitus: Current Concepts. Am. J. Med. 2004, 116 (5), 11-22. [CrossRef]
  84. Wiebe, N.; Stenvinkel, P.; Tonelli, M. Associations of Chronic Inflammation, Insulin Resistance, and Severe Obesity With Mortality, Myocardial Infarction, Cancer, and Chronic Pulmonary Disease. JAMA Netw. Open 2019, 2 (8), e1910456. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2749271.
  85. Kenchaiah, S.; Evans, J.; Levy, D.; Wilson, P.; Benjamin, E.; Larson, M.; et al. Obesity and the Risk of Heart Failure. N. Engl. J. Med. 2002, 347 (5), 305-313. https://www.nejm.org/doi/full/10.1056/NEJMoa020245.
  86. Manson, J.; Colditz, G.; Stampfer, M.; Willett, W.; Rosner, B.; Monson, R.; et al. A Prospective Study of Obesity and Risk of Coronary Heart Disease in Women. N. Engl. J. Med. 1990, 322 (13), 882-889. https://www.nejm.org/doi/full/10.1056/NEJM199003293221303.
  87. Calle, E.; Thun, M.; Petrelli, J.; Rodriguez, C.; Heath, C. Body-Mass Index and Mortality in a Prospective Cohort of U.S. Adults. N. Engl. J. Med. 1999, 341 (15), 1097-1105.
  88. Unamuno, X.; Gómez-Ambrosi, J.; Rodríguez, A.; Becerril, S.; Frühbeck, G.; Catalán, V. Adipokine Dysregulation and Adipose Tissue Inflammation in Human Obesity. Eur. J. Clin. Invest. 2018, 48 (9), e12997. [CrossRef]
  89. Jiang, L.; Shi, K.; Guo, Y.; Ren, Y.; Li, Z.; Xia, C.; et al. The Additive Effects of Obesity on Myocardial Microcirculation in Diabetic Individuals: A Cardiac Magnetic Resonance First-Pass Perfusion Study. Cardiovasc. Diabetol. 2020, 19 (1). [CrossRef]
  90. Dyck, P.; Kratz, K.; Karnes, J.; Litchy, W.; Klein, R.; Pach, J.; et al. The Prevalence by Staged Severity of Various Types of Diabetic Neuropathy, Retinopathy, and Nephropathy in a Population-Based Cohort: The Rochester Diabetic Neuropathy Study. Neurology 1993, 43 (4), 817-817. https://n.neurology.org/content/43/4/817.
  91. Barrett, A. M.; Lucero, M. A.; Le, T.; Robinson, R. L.; Dworkin, R. H.; Chappell, A. S. Epidemiology, Public Health Burden, and Treatment of Diabetic Peripheral Neuropathic Pain: A Review. Pain Med. 2007, 8 Suppl 2, S50–S62. [CrossRef]
  92. Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D. J.; Lim, J.; Malik, R. A.; Alam, U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin. Ther. 2018, 40 (6), 828–849. [CrossRef]
  93. Kaku, M.; Vinik, A.; Simpson, D. M. Pathways in the Diagnosis and Management of Diabetic Polyneuropathy. Curr. Diab. Rep. 2015, 15 (6), 609. [CrossRef]
  94. Bodman, M. A.; Varacallo, M. Peripheral Diabetic Neuropathy. In StatPearls. StatPearls Publishing 2022. https://pubmed.ncbi.nlm.nih.gov/28723038/.
  95. Hébert, H. L.; Veluchamy, A.; Torrance, N.; Smith, B. H. Risk Factors for Neuropathic Pain in Diabetes Mellitus. Pain 2017, 158 (4), 560–568. [CrossRef]
  96. Sharma, K. R.; Cross, J.; Farronay, O.; Ayyar, D. R.; Shebert, R. T.; Bradley, W. G. Demyelinating Neuropathy in Diabetes Mellitus. Arch. Neurol. 2002, 59 (5), 758–765. [CrossRef]
  97. Freeman, R. Not All Neuropathy in Diabetes Is of Diabetic Etiology: Differential Diagnosis of Diabetic Neuropathy. Curr. Diab. Rep. 2009, 9 (6), 423–431. [CrossRef]
  98. Pugazhenthi, S.; Qin, L.; Reddy, P. H. Common Neurodegenerative Pathways in Obesity, Diabetes, and Alzheimer’s Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863 (5), 1037–1045. [CrossRef]
  99. Levin, A.; Tonelli, M.; Bonventre, J.; Coresh, J.; Donner, J. A.; Fogo, A. B.; Fox, C. S.; Gansevoort, R. T.; Heerspink, H.; Jardine, M.; Kasiske, B.; Köttgen, A.; Kretzler, M.; Levey, A. S.; Luyckx, V. A.; Mehta, R.; Moe, O.; Obrador, G.; Pannu, N.; Parikh, C. R.; … ISN Global Kidney Health Summit Participants. Global Kidney Health 2017 and Beyond: A Roadmap for Closing Gaps in Care, Research, and Policy. Lancet 2017, 390 (10105), 1888–1917. [CrossRef]
  100. Saran, R.; Robinson, B.; Abbott, K. C.; Agodoa, L.; Bragg-Gresham, J.; Balkrishnan, R.; Bhave, N.; Dietrich, X.; Ding, Z.; Eggers, P. W.; Gaipov, A.; Gillen, D.; Gipson, D.; Gu, H.; Guro, P.; Haggerty, D.; Han, Y.; He, K.; Herman, W.; Heung, M.; Shahinian, V. US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2019, 73(3 Suppl 1), A7–A8. [CrossRef]
  101. Alicic, R. Z.; Cox, E. J.; Neumiller, J. J.; Tuttle, K. R. Incretin Drugs in Diabetic Kidney Disease: Biological Mechanisms and Clinical Evidence. Nat. Rev. Nephrol. 2021, 17(4), 227–244. [CrossRef]
  102. Chatzikyrkou, C.; Menne, J.; Izzo, J.; Viberti, G.; Rabelink, T.; Ruilope, L. M.; Rump, C.; Mertens, P. R.; Haller, H. Predictors for the Development of Microalbuminuria and Interaction with Renal Function. J. Hypertens. 2017, 35(12), 2501–2509. [CrossRef]
  103. Campos, A.; Campos, E. J.; Martins, J.; Ambrósio, A. F.; Silva, R. Viewing the Choroid: Where We Stand, Challenges and Contradictions in Diabetic Retinopathy and Diabetic Macular Oedema. Acta Ophthalmol. 2017, 95(5), 446–459. [CrossRef]
  104. Wang, W.; Lo, A. Diabetic Retinopathy: Pathophysiology and Treatments. Int. J. Mol. Sci. 2018, 19(6), 1816. [CrossRef]
  105. Turner, R. C.; Cull, C. A.; Frighi, V.; Holman, R. R. Glycemic Control with Diet, Sulfonylurea, Metformin, or Insulin in Patients with Type 2 Diabetes Mellitus: Progressive Requirement for Multiple Therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999, 281(21), 2005–2012. [CrossRef]
  106. Ashcroft, S. J.; Niki, I.; Kenna, S.; Weng, L.; Skeer, J.; Coles, B.; Ashcroft, F. M. The Beta-Cell Sulfonylurea Receptor. Adv. Exp. Med. Biol. 1993, 334, 47–61. [CrossRef]
  107. Ashcroft, F. M. Mechanisms of the Glycaemic Effects of Sulfonylureas. Horm. Metab. Res. 1996, 28(9), 456–463. [CrossRef]
  108. Proks, P.; Reimann, F.; Green, N.; Gribble, F.; Ashcroft, F. Sulfonylurea Stimulation of Insulin Secretion. Diabetes 2002, 51(Suppl 3), S368–S376. [CrossRef]
  109. Sola, D.; Rossi, L.; Schianca, G. P.; Maffioli, P.; Bigliocca, M.; Mella, R.; Corlianò, F.; Fra, G. P.; Bartoli, E.; Derosa, G. Sulfonylureas and Their Use in Clinical Practice. Arch. Med. Sci. 2015, 11(4), 840–848. [CrossRef]
  110. Douros, A.; Yin, H.; Yu, O.; Filion, K. B.; Azoulay, L.; Suissa, S. Pharmacologic Differences of Sulfonylureas and the Risk of Adverse Cardiovascular and Hypoglycemic Events. Diabetes Care 2017, 40(11), 1506–1513. [CrossRef]
  111. Melander, A.; Lebovitz, H. E.; Faber, O. K. Sulfonylureas. Why, Which, and How?. Diabetes Care 1990, 13(Suppl 3), 18–25. [CrossRef]
  112. Owen, M. R.; Doran, E.; Halestrap, A. P. Evidence that Metformin Exerts Its Anti-Diabetic Effects through Inhibition of Complex 1 of the Mitochondrial Respiratory Chain. Biochem. J. 2000, 348(Pt 3), 607–614. https://pubmed.ncbi.nlm.nih.gov/10839993/.
  113. Milner, Z.; Akhondi, H. Repaglinide. In StatPearls; StatPearls Publishing, 2022. https://pubmed.ncbi.nlm.nih.gov/32644731/.
  114. Thornberry, N. A.; Gallwitz, B. Mechanism of Action of Inhibitors of Dipeptidyl-Peptidase-4 (DPP-4). Best Practice & Research. Clinical Endocrinology & Metabolism 2009, 23 (4), 479–486. [CrossRef]
  115. Hawley, S. A.; Ross, F. A.; Chevtzoff, C.; Green, K. A.; Evans, A.; Fogarty, S.; Towler, M. C.; Brown, L. J.; Ogunbayo, O. A.; Evans, A. M.; Hardie, D. G. Use of Cells Expressing Gamma Subunit Variants to Identify Diverse Mechanisms of AMPK Activation. Cell Metab. 2010, 11(6), 554–565. [CrossRef]
  116. Vincent, M. F.; Marangos, P. J.; Gruber, H. E.; Van den Berghe, G. Inhibition by AICA Riboside of Gluconeogenesis in Isolated Rat Hepatocytes. Diabetes 1991, 40(10), 1259–1266. [CrossRef]
  117. Miller, R. A.; Chu, Q.; Xie, J.; Foretz, M.; Viollet, B.; Birnbaum, M. J. Biguanides Suppress Hepatic Glucagon Signalling by Decreasing Production of Cyclic AMP. Nature 2013, 494(7436), 256–260. [CrossRef]
  118. Wang, G. S.; Hoyte, C. Review of Biguanide (Metformin) Toxicity. J. Intensive Care Med. 2019, 34(11-12), 863–876. [CrossRef]
  119. Inzucchi, S. E.; Lipska, K. J.; Mayo, H.; Bailey, C. J.; McGuire, D. K. Metformin in Patients with Type 2 Diabetes and Kidney Disease: A Systematic Review. JAMA 2014, 312(24), 2668–2675. [CrossRef]
  120. Hauner, H. The Mode of Action of Thiazolidinediones. Diabetes/Metabolism Research and Reviews 2002, 18 (Suppl 2), S10–S15. [CrossRef]
  121. Eggleton, J. S.; Jialal, I. Thiazolidinediones. In StatPearls; StatPearls Publishing, 2022. https://pubmed.ncbi.nlm.nih.gov/31869120/.
  122. Bischoff, H. The Mechanism of Alpha-Glucosidase Inhibition in the Management of Diabetes. Clinical and Investigative Medicine. Médecine Clinique et Experimentale 1995, 18 (4), 303–311. https://pubmed.ncbi.nlm.nih.gov/8549017/.
  123. Derosa, G.; Maffioli, P. α-Glucosidase Inhibitors and Their Use in Clinical Practice. Archives of Medical Science : AMS 2012, 8 (5), 899–906. [CrossRef]
  124. Lopaschuk, G. D.; Verma, S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC. Basic to Translational Science 2020, 5 (6), 632–644. [CrossRef]
  125. Halimi, S.; Vergès, B. Adverse Effects and Safety of SGLT-2 Inhibitors. Diabetes & Metabolism 2014, 40 (6 Suppl 1), S28–S34. [CrossRef]
  126. Black, C.; Donnelly, P.; McIntyre, L.; Royle, P. L.; Shepherd, J. P.; Thomas, S. Meglitinide Analogues for Type 2 Diabetes Mellitus. The Cochrane Database of Systematic Reviews 2007, 2007 (2), CD004654. [CrossRef]
  127. Pathak, R.; Bridgeman, M. B. Dipeptidyl Peptidase-4 (DPP-4) Inhibitors in the Management of Diabetes. P & T : A Peer-Reviewed Journal for Formulary Management 2010, 35 (9), 509–513.
  128. Thota, S.; Akbar, A. Insulin. In StatPearls; StatPearls Publishing, 2021. https://pubmed.ncbi.nlm.nih.gov/32809523/.
  129. Jensen, M.; De Meyts, P. Molecular Mechanisms of Differential Intracellular Signaling from the Insulin Receptor. Vitamins and Hormones 2009, 80, 51–75. [CrossRef]
  130. Hay, D. L.; Chen, S.; Lutz, T. A.; Parkes, D. G.; Roth, J. D. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacological Reviews 2015, 67 (3), 564–600. [CrossRef]
  131. Schmitz, O.; Brock, B.; Rungby, J. Amylin Agonists: A Novel Approach in the Treatment of Diabetes. Diabetes 2004, 53 (Suppl 3), S233–S238. [CrossRef]
  132. Adeghate, E.; Kalász, H. Amylin Analogues in the Treatment of Diabetes Mellitus: Medicinal Chemistry and Structural Basis of Its Function. The Open Medicinal Chemistry Journal 2011, 5 (Suppl 2), 78–81. [CrossRef]
  133. Nauck, M. A.; Quast, D. R.; Wefers, J.; Meier, J. J. GLP-1 Receptor Agonists in the Treatment of Type 2 Diabetes - State-of-the-Art. Molecular Metabolism 2021, 46, 101102. [CrossRef]
  134. Skov-Jeppesen, K.; Hepp, N.; Oeke, J.; Hansen, M. S.; Jafari, A.; Svane, M. S.; Balenga, N.; Olson, J. A., Jr.; Frost, M.; Kassem, M.; Madsbad, S.; Beck Jensen, J. E.; Holst, J. J.; Rosenkilde, M. M.; Hartmann, B. The Antiresorptive Effect of GIP, But Not GLP-2, Is Preserved in Patients with Hypoparathyroidism - A Randomized Crossover Study. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research 2021, 36 (8), 1448–1458. [CrossRef]
  135. Spranger, J.; Gundert–Remy, U.; Stammschulte, T. GLP-1–Based Therapies: The Dilemma of Uncertainty. Gastroenterology 2011, 141 (1), 20–23. [CrossRef]
  136. Nauck, M. A.; D’Alessio, D. A. Tirzepatide, a Dual GIP/GLP-1 Receptor Co-Agonist for the Treatment of Type 2 Diabetes with Unmatched Effectiveness Regrading Glycaemic Control and Body Weight Reduction. Cardiovasc Diabetol 2022, 21 (1), 169. [CrossRef]
  137. Yaribeygi, H.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Natural Insulin Sensitizers for the Management of Diabetes Mellitus: A Review of Possible Molecular Mechanisms. Advances in Experimental Medicine and Biology 2021, 1328, 401–410. [CrossRef]
  138. Salimifar, M.; Fatehi-Hassanabad, Z.; Fatehi, M. A Review on Natural Products for Controlling Type 2 Diabetes with an Emphasis on Their Mechanisms of Actions. Current Diabetes Reviews 2013, 9 (5), 402–411. [CrossRef]
  139. Jung, H.; Lim, Y.; Kim, E. Therapeutic Phytogenic Compounds for Obesity and Diabetes. International Journal of Molecular Sciences 2014, 15 (11), 21505–21537. [CrossRef]
  140. Ansari, P.; Samia, J.F.; Khan, J.T.; Rafi, M.R.; Rahman, M.S.; Rahman, A.B.; Abdel-Wahab, Y.H.A.; Seidel, V. Protective Effects of Medicinal Plant-Based Foods against Diabetes: A Review on Pharmacology, Phytochemistry, and Molecular Mechanisms. Nutrients 2023, 15, 3266. [CrossRef]
  141. Ansari, P.; Akther, S.; Khan, J.T.; Islam, S.S.; Masud, M.S.R.; Rahman, A.; Seidel, V.; Abdel-Wahab, Y.H.A. Hyperglycaemia-Linked Diabetic Foot Complications and Their Management Using Conventional and Alternative Therapies. Appl. Sci. 2022, 12, 11777. [CrossRef]
  142. Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [CrossRef]
  143. Elkhalifa, A.; Alshammari, E.; Adnan, M.; Alcantara, J. C.; Awadelkareem, A. M.; Eltoum, N. E.; Mehmood, K.; Panda, B. P.; Ashraf, S. A. Okra (Abelmoschus Esculentus) as a Potential Dietary Medicine with Nutraceutical Importance for Sustainable Health Applications. Molecules 2021, 26 (3), 696. [CrossRef]
  144. Islam, M. T. Phytochemical Information and Pharmacological Activities of Okra (Abelmoschus esculentus): A Literature-Based Review. Phytother. Res. 2019, 33 (1), 72–80. [CrossRef]
  145. Elkhalifa, A.; Al-Shammari, E.; Adnan, M.; Alcantara, J. C.; Mehmood, K.; Eltoum, N. E.; Awadelkareem, A. M.; Khan, M. A.; Ashraf, S. A. Development and Characterization of Novel Biopolymer Derived from Abelmoschus esculentus L. Extract and Its Antidiabetic Potential. Molecules 2021, 26 (12), 3609. [CrossRef]
  146. He, M.; Hou, J.; Wang, L.; Zheng, M.; Fang, T.; Wang, X.; Xia, J. Actinidia chinensis Planch Root Extract Inhibits Cholesterol Metabolism in Hepatocellular Carcinoma through Upregulation of PCSK9. Oncotarget 2017, 8 (26), 42136–42148. [CrossRef]
  147. Suksomboon, N.; Poolsup, N.; Lin, W. Effect of Kiwifruit on Metabolic Health in Patients with Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Obes. 2019, 12, 171–180. [CrossRef]
  148. Sun, L.; Li, X.; Li, G.; Dai, B.; Tan, W. Actinidia chinensis Planch. Improves the Indices of Antioxidant and Anti-Inflammation Status of Type 2 Diabetes Mellitus by Activating Keap1 and Nrf2 via the Upregulation of MicroRNA-424. Oxid. Med. Cell. Longev. 2017, 7038789. [CrossRef]
  149. He, X.; Fang, J.; Chen, X.; Zhao, Z.; Li, Y.; Meng, Y.; Huang, L. Actinidia chinensis Planch.: A Review of Chemistry and Pharmacology. Front. Pharmacol. 2019, 10, 1236. [CrossRef]
  150. Venthodika, A.; Chhikara, N.; Mann, S.; Garg, M. K.; Sofi, S. A.; Panghal, A. Bioactive Compounds of Aegle marmelos L., Medicinal Values and Its Food Applications: A Critical Review. Phytother. Res. 2021, 35 (4), 1887–1907. [CrossRef]
  151. Ansari, P.; Afroz, N.; Jalil, S.; Azad, S. B.; Mustakim, M. G.; Anwar, S.; Haque, S. M.; Hossain, S. M.; Tony, R. R.; Hannan, J. M. Anti-Hyperglycemic Activity of Aegle marmelos (L.) Corr. Is Partly Mediated by Increased Insulin Secretion, α-Amylase Inhibition, and Retardation of Glucose Absorption. J. Pediatr. Endocrinol. Metab. 2017, 30 (1), 37–47. [CrossRef]
  152. Sharma, P.; Joshi, T.; Mathpal, S.; Chandra, S.; Tamta, S. In Silico Identification of Antidiabetic Target for Phytochemicals of Aegle marmelos and Mechanistic Insights by Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2021, 1–18. [CrossRef]
  153. Ismaya, W. T.; Tjandrawinata, R. R.; Rachmawati, H. Lectins from the Edible Mushroom Agaricus bisporus and Their Therapeutic Potentials. Molecules 2020, 25 (10), 2368. [CrossRef]
  154. Yasin, H.; Zahoor, M.; Yousaf, Z.; Aftab, A.; Saleh, N.; Riaz, N.; Shamsheer, B. Ethnopharmacological exploration of medicinal mushroom from Pakistan. Phytomedicine 2019, 54, 43–55. [CrossRef]
  155. Ramos, M.; Burgos, N.; Barnard, A.; Evans, G.; Preece, J.; Graz, M.; Ruthes, A. C.; Jiménez-Quero, A.; Martínez-Abad, A.; Vilaplana, F.; Ngoc, L. P.; Brouwer, A.; van der Burg, B.; Del Carmen Garrigós, M.; Jiménez, A. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019, 292, 176–187. [CrossRef]
  156. Jeong, S. C.; Jeong, Y. T.; Yang, B. K.; Islam, R.; Koyyalamudi, S. R.; Pang, G.; Cho, K. Y.; Song, C. H. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr. Res. (N. Y., N. Y.) 2010, 30 (1), 49–56. [CrossRef]
  157. Swanston-Flatt, S. K.; Day, C.; Flatt, P. R.; Bailey, C. J. Evaluation of the Antihyperglycemic Properties of Traditional Plant Treatments for Diabetes in Streptozotocin-Diabetic and db/db Mice. Frontiers in Diabetes Research, 1990, 6 (3), 286-293.
  158. Beigoli, S.; Behrouz, S.; Memarzia, A.; Ghasemi, S.; Boskabady, M.; Marefati, N., et al. Effects of Allium cepa and Its Constituents on Respiratory and Allergic Disorders: A Comprehensive Review of Experimental and Clinical Evidence. Evid. Based Complement. Alternat. Med. 2021, 2021, 1-22. [CrossRef]
  159. Akash, M. S.; Rehman, K.; Chen, S. Spice plant Allium cepa: dietary supplement for treatment of type 2 diabetes mellitus. Nutrition (Burbank, Los Angeles County, Calif.) 2014, 30 (10), 1128–1137. [CrossRef]
  160. Kianian, F.; Marefati, N.; Boskabady, M.; Ghasemi, S. Z.; Boskabady, M. H. Pharmacological Properties of Allium cepa, Preclinical and Clinical Evidences; A Review. Iranian J. Pharm. Res. 2021, 20 (2), 107–134. [CrossRef]
  161. Teshika, J. D.; Zakariyyah, A. M.; Zaynab, T.; Zengin, G.; Rengasamy, K. R.; Pandian, S. K.; Fawzi, M. M. Traditional and Modern Uses of Onion Bulb (Allium cepa L.): A Systematic Review. Crit. Rev. Food Sci. Nutr. 2019, 59 (sup1), S39–S70. [CrossRef]
  162. Swanston-Flatt, S. K.; Flatt, P. R. Traditional Dietary Adjuncts for the Treatment of Diabetes Mellitus. Proc. Nutr. Soc. 1991, 50 (3), 641-651.
  163. Tesfaye, A. Revealing the Therapeutic Uses of Garlic (Allium sativum) and Its Potential for Drug Discovery. Sci. World J. 2021, 2021, 8817288. [CrossRef]
  164. Eidi, A.; Eidi, M.; Esmaeili, E. Antidiabetic Effect of Garlic (Allium sativum L.) in Normal and Streptozotocin-Induced Diabetic Rats. Phytomedicine 2006, 13 (9-10), 624–629. [CrossRef]
  165. Liu, C. T.; Hsu, T. W.; Chen, K. M.; Tan, Y. P.; Lii, C. K.; Sheen, L. Y. The Antidiabetic Effect of Garlic Oil is Associated with Ameliorated Oxidative Stress but Not Ameliorated Level of Pro-inflammatory Cytokines in Skeletal Muscle of Streptozotocin-Induced Diabetic Rats. J. Tradit. Complement. Med. 2012, 2 (2), 135–144. [CrossRef]
  166. Shang, A.; Cao, S. Y.; Xu, X. Y.; Gan, R. Y.; Tang, G. Y.; Corke, H.; Mavumengwana, V.; Li, H. B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8 (7), 246. [CrossRef]
  167. El-Saber Batiha, G.; Magdy Beshbishy, A.; G Wasef, L.; Elewa, Y.; A Al-Sagan, A.; Abd El-Hack, M. E.; Taha, A. E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12 (3), 872. [CrossRef]
  168. Swanston-Flatt, S. K.; Day, C.; Bailey, C. J.; Flatt, P. R. Traditional Plant Treatments for Diabetes. Studies in Normal and Streptozotocin Diabetic Mice. Diabetologia 1990, 33 (8), 462-464.
  169. Ríos, J.; Francini, F.; Schinella, G. Natural Products for the Treatment of Type 2 Diabetes Mellitus. Planta Medica 2015, 81 (12/13), 975–994. [CrossRef]
  170. Benzie, I.; Wachtel-Galor, S., Eds. Herbal Medicine: Biomolecular and Clinical Aspects; 2nd ed.; CRC Press/Taylor & Francis, 2011.
  171. Medina-Cruz, D.; Vernet-Crua, A.; Mostafavi, E.; González, M. U.; Martínez, L.; Kusper, M.; Sotelo, E.; Gao, M.; Geoffrion, L. D.; Shah, V.; Guisbiers, G.; Cholula-Díaz, J. L.; Guillermier, C.; Khanom, F.; Huttel, Y.; García-Martín, J. M.; Webster, T. J. Aloe Vera-Mediated Te Nanostructures: Highly Potent Antibacterial Agents and Moderated Anticancer Effects. Nanomaterials (Basel, Switzerland) 2021, 11 (2), 514. [CrossRef]
  172. Muñiz-Ramirez, A.; Perez, R. M.; Garcia, E.; Garcia, F. E. Antidiabetic Activity of Aloe vera Leaves. Evidence-Based Complementary and Alternative Medicine : eCAM 2020, 2020, 6371201. [CrossRef]
  173. Zhang, Y.; Liu, W.; Liu, D.; Zhao, T.; Tian, H. Efficacy of Aloe Vera Supplementation on Prediabetes and Early Non-Treated Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8 (7), 388. [CrossRef]
  174. Haghani, F.; Arabnezhad, M. R.; Mohammadi, S.; Ghaffarian-Bahraman, A. Aloe vera and Streptozotocin-Induced Diabetes Mellitus. Revista Brasileira de Farmacognosia : Haseoluoficial da Sociedade Brasileira de Farmacognosia 2022, 32 (2), 174–187. [CrossRef]
  175. Muñiz-Ramirez, A.; Perez, R. M.; Garcia, E.; Garcia, F. E. Antidiabetic Activity of Aloe vera Leaves. Evidence-Based Complementary and Alternative Medicine : eCAM 2020, 2020, 6371201. [CrossRef]
  176. Jaiswal, Y. S.; Tatke, P. A.; Gabhe, S. Y.; Vaidya, A. B. Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. Journal of Traditional and Complementary Medicine 2016, 7 (4), 421–427. [CrossRef]
  177. Salehi, B.; Gültekin-Özgüven, M.; Kırkın, C.; Özçelik, B.; Morais-Braga, M.; Carneiro, J.; Bezerra, C. F.; Silva, T.; Coutinho, H.; Amina, B.; Armstrong, L.; Selamoglu, Z.; Sevindik, M.; Yousaf, Z.; Sharifi-Rad, J.; Muddathir, A. M.; Devkota, H. P.; Martorell, M.; Jugran, A. K.; Martins, N.; … Cho, W. C. Anacardium Plants: Chemical, Nutritional Composition and Biotechnological Applications. Biomolecules 2019, 9 (9), 465. [CrossRef]
  178. Okpashi, V. E.; Bayim, B. P.; Obi-Abang, M. Comparative Effects of Some Medicinal Plants: Anacardium occidentale, Eucalyptus globulus, Psidium guajava, and Xylopia aethiopica Extracts in Alloxan-Induced Diabetic Male Wistar Albino Rats. Biochemistry Research International 2014, 2014, 203051. [CrossRef]
  179. Alexander-Lindo, R. L.; Morrison, E. Y.; Nair, M. G. Hypoglycaemic effect of stigmast-4-en-3-one and its corresponding alcohol from the bark of Anacardium occidentale (cashew). Phytotherapy Research 2004, 18 (5), 403–407. [CrossRef]
  180. Xie, W.; Xing, D.; Sun, H.; Wang, W.; Ding, Y.; Du, L. The Effects of Ananas comosus L. Leaves on Diabetic-Dyslipidemic Rats Induced by Alloxan and a High-Fat/High-Cholesterol Diet. Am. J. Chin. Med. 2005, 33 (1), 95–105. [CrossRef]
  181. Suhrabi, Z.; Taghinejad, H. A Comparative Study on the Efficacy of Ibuprofen and Celecoxib on the Intensity of Perineal Pain Following Episiotomy: A Randomized Clinical Trial. Iran. Red Crescent Med. J. 2013, 15 (12), e9980. [CrossRef]
  182. Brown, S. A.; Coimbra, M.; Coberly, D. M.; Chao, J. J.; Rohrich, R. J. Oral Nutritional Supplementation Accelerates Skin Wound Healing: A Randomized, Placebo-Controlled, Double-Arm, Crossover Study. Plast. Reconstr. Surg. 2004, 114 (1), 237–244. [CrossRef]
  183. Golezar, S. Ananas comosus Effect on Perineal Pain and Wound Healing After Episiotomy: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Iran. Red Crescent Med. J. 2016, 18 (3), e21019. [CrossRef]
  184. Xie, W.; Wang, W.; Su, H.; Xing, D.; Cai, G.; Du, L. Hypolipidemic Mechanisms of Ananas comosus L. Leaves in Mice: Different from Fibrates but Similar to Statins. J. Pharmacol. Sci. 2007, 103 (3), 267–274. [CrossRef]
  185. Xie, W.; Wang, W.; Su, H.; Xing, D.; Pan, Y.; Du, L. Effect of Ethanolic Extracts of Ananas comosus L. Leaves on Insulin Sensitivity in Rats and HepG2. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 143 (4), 429–435. [CrossRef]
  186. Maurer, H. R. Bromelain: Biochemistry, Pharmacology and Medical Use. Cell. Mol. Life Sci. 2001, 58 (9), 1234–1245. [CrossRef]
  187. Sowbhagya, H. B. Chemistry, Technology, and Nutraceutical Functions of Celery (Apium graveolens L.): An Overview. Crit. Rev. Food Sci. Nutr. 2014, 54 (3), 389–398. [CrossRef]
  188. Al-Asmari, A. K.; Athar, M. T.; Kadasah, S. G. An Updated Phytopharmacological Review on Medicinal Plant of Arab Region: Apium graveolens Linn. Pharmacogn. Rev. 2017, 11 (21), 13–18. [CrossRef]
  189. Rebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M. A.; de Mejia, E. G. Cocoa Shell Aqueous Phenolic Extract Preserves Mitochondrial Function and Insulin Sensitivity by Attenuating Inflammation between Macrophages and Adipocytes In Vitro. Mol. Nutr. Food Res. 2019, 63 (10), e1801413. [CrossRef]
  190. Wang, T.; Wang, J.; Hu, X.; Huang, X. J.; Chen, G. X. Current Understanding of Glucose Transporter 4 Expression and Functional Mechanisms. World J. Biol. Chem. 2020, 11 (3), 76–98. [CrossRef]
  191. Panchamoorthy, R.; Mohan, U.; Muniyan, A. Apium graveolens Reduced Phytofabricated Gold Nanoparticles and Their Impacts on the Glucose Utilization Pattern of the Isolated Rat Hemidiaphragm. Heliyon 2022, 8 (1), e08805. [CrossRef]
  192. Chonpathompikunlert, P.; Boonruamkaew, P.; Sukketsiri, W.; Hutamekalin, P.; Sroyraya, M. The Antioxidant and Neurochemical Activity of Apium graveolens L. and Its Ameliorative Effect on MPTP-Induced Parkinson-like Symptoms in Mice. BMC Complement. Altern. Med. 2018, 18 (1), 103. [CrossRef]
  193. Gupta, N.; Jain, U. K.; Pathak, A. K. Wound Healing Properties of Artocarpus heterophyllus Lam. Ancient Sci. Life 2009, 28 (4), 36–37.
  194. Fernando, M. R.; Thabrew, M. I.; Karunanayake, E. H. Hypoglycaemic Activity of Some Medicinal Plants in Sri-Lanka. Gen. Pharmacol. 1990, 21 (5), 779–782. [CrossRef]
  195. Ansari, P.; Akther, S.; Hannan, J.; Seidel, V.; Nujat, N.; Abdel-Wahab, Y. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022, 27 (13), 4278. [CrossRef]
  196. Ajiboye, B. O.; Ojo, O. A.; Adeyonu, O.; Imiere, O. D.; Fadaka, A. O.; Osukoya, A. O. Ameliorative Activity of Ethanol Extract of Artocarpus heterophyllus Stem Bark on Pancreatic β-Cell Dysfunction in Alloxan-Induced Diabetic Rats. J. Evid. Based Complementary Altern. Med. 2017, 22 (4), 538–543. [CrossRef]
  197. Zhang, L.; Tu, Z. C.; Xie, X.; Wang, H.; Wang, H.; Wang, Z. X.; Sha, X. M.; Lu, Y. Jackfruit (Artocarpus heterophyllus Lam.) Peel: A Better Source of Antioxidants and α-Glucosidase Inhibitors than Pulp, Flake, and Seed, and Phytochemical Profile by HPLC-QTOF-MS/MS. Food Chem. 2017, 234, 303–313. [CrossRef]
  198. Ranasinghe, R.; Maduwanthi, S.; Marapana, R. Nutritional and Health Benefits of Jackfruit (Artocarpus heterophyllus Lam.): A Review. Int. J. Food Sci. 2019, 2019, 4327183. [CrossRef]
  199. Rao, A. G.; Naik, K. S.; Unnikrishnan, A. G.; Joseph, J. Efficacy of Green Jackfruit Flour as a Medical Nutrition Therapy Replacing Rice or Wheat in Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Study. Nutr. Diabetes 2021, 11 (1), 18. [CrossRef]
  200. Pegiou, E.; Mumm, R.; Acharya, P.; de Vos, R.; Hall, R. D. Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue. Metabolites 2019, 10 (1), 17. [CrossRef]
  201. Hafizur, R. M.; Kabir, N.; Chishti, S. Asparagus officinalis Extract Controls Blood Glucose by Improving Insulin Secretion and β-Cell Function in Streptozotocin-Induced Type 2 Diabetic Rats. Br. J. Nutr. 2012, 108 (9), 1586–1595. [CrossRef]
  202. Zhao, J.; Zhang, W.; Zhu, X.; Zhao, D.; Wang, K.; Wang, R.; Qu, W. The Aqueous Extract of Asparagus officinalis L. By-Product Exerts Hypoglycaemic Activity in Streptozotocin-Induced Diabetic Rats. J. Sci. Food Agric. 2011, 91 (11), 2095–2099. [CrossRef]
  203. Negi, J. S.; Singh, P.; Joshi, G. P.; Rawat, M. S.; Bisht, V. K. Chemical Constituents of Asparagus. Pharmacogn. Rev. 2010, 4 (8), 215–220. [CrossRef]
  204. Mader, T. L.; Brumm, M. C. Effect of Feeding Sarsaponin in Cattle and Swine Diets. J. Anim. Sci. 1987, 65 (1), 9–15. [CrossRef]
  205. Paudel, D.; Dhungana, B.; Caffe, M.; Krishnan, P. A Review of Health-Beneficial Properties of Oats. Foods (Basel, Switz.) 2021, 10 (11), 2591. [CrossRef]
  206. Singh, R.; De, S.; Belkheir, A. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview. Crit. Rev. Food Sci. Nutr. 2013, 53 (2), 126–144. [CrossRef]
  207. Hou, Q.; Li, Y.; Li, L.; Cheng, G.; Sun, X.; Li, S.; Tian, H. The Metabolic Effects of Oats Intake in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2015, 7 (12), 10369–10387. [CrossRef]
  208. Hozlár, P.; Gregusová, V.; Nemeček, P.; Šliková, S.; Havrlentová, M. Study of Dynamic Accumulation in β-D-Glucan in Oat (Avena sativa L.) during Plant Development. Polymers 2022, 14 (13), 2668. [CrossRef]
  209. Amerizadeh, A.; Ghaheh, H. S.; Vaseghi, G.; Farajzadegan, Z.; Asgary, S. Effect of Oat (Avena sativa L.) Consumption on Lipid Profile With Focus on Triglycerides and High-density Lipoprotein Cholesterol (HDL-C): An Updated Systematic Review. Curr. Probl. Cardiol. 2022, 101153. Advance online publication. [CrossRef]
  210. Jia, X.; Yang, D.; Yang, Y.; Xie, H. Carotenoid-Derived Flavor Precursors from Averrhoa carambola Fresh Fruit. Molecules (Basel, Switz.) 2019, 24 (2), 256. [CrossRef]
  211. Yang, Y.; Xie, H.; Jiang, Y.; Wei, X. Flavan-3-ols and 2-diglycosyloxybenzoates from the leaves of Averrhoa carambola. Fitoterapia 2020, 140, 104442. [CrossRef]
  212. Muthu, N.; Lee, S. Y.; Phua, K. K.; Bhore, S. J. Nutritional, Medicinal and Toxicological Attributes of Star-Fruits (Averrhoa carambola L.): A Review. Bioinformation 2016, 12 (12), 420–424. [CrossRef]
  213. Lakmal, K.; Yasawardene, P.; Jayarajah, U.; Seneviratne, S. L. Nutritional and medicinal properties of Star fruit (Averrhoa carambola): A review. Food Sci. Nutr. 2021, 9 (3), 1810–1823. [CrossRef]
  214. Cazarolli, L. H.; Kappel, V. D.; Pereira, D. F.; Moresco, H. H.; Brighente, I. M.; Pizzolatti, M. G.; Silva, F. R. Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola. Fitoterapia 2012, 83 (7), 1176–1183. [CrossRef]
  215. Subapriya, R.; Nagini, S. Medicinal Properties of Neem Leaves: A Review. Current Medicinal Chemistry. Anti-Cancer Agents 2005, 5 (2). [CrossRef]
  216. Atangwho, I. J.; Ebong, P. E.; Eyong, E. U.; Asmawi, M. Z.; Ahmad, M. Synergistic Antidiabetic Activity of Vernonia amygdalina and Azadirachta indica: Biochemical Effects and Possible Mechanism. Journal of Ethnopharmacology 2012, 141 (3), 878–887. [CrossRef]
  217. Alam, F.; Shafique, Z.; Amjad, S. T.; Bin Asad, M. Enzymes Inhibitors from Natural Sources with Antidiabetic Activity: A Review. Phytotherapy Research : PTR 2019, 33 (1), 41–54. [CrossRef]
  218. Chaudhari, S.; Zambad, S.; Ali, M. Effect of Aqueous Extract of Azadirachta indica Leaves on Pharmacokinetics and Pharmacodynamics of Glipizide. Drug Metabolism Letters 2019, 13 (1), 19–24. [CrossRef]
  219. Pingali, U.; Ali, M. A.; Gundagani, S.; Nutalapati, C. Evaluation of the Effect of an Aqueous Extract of Azadirachta indica (Neem) Leaves and Twigs on Glycemic Control, Endothelial Dysfunction and Systemic Inflammation in Subjects with Type 2 Diabetes Mellitus - A Randomized, Double-Blind, Placebo-Controlled Clinical Study. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy 2020, 13, 4401–4412. [CrossRef]
  220. Hamedi, S.; Honarvar, M. Beta vulgaris - A Mini Review of Traditional Uses in Iran, Phytochemistry and Pharmacology. Curr. Drug Discov. Technol. 2019, 16 (1), 74–81. [CrossRef]
  221. Hadipour, E.; Taleghani, A.; Tayarani-Najaran, N.; Tayarani-Najaran, Z. Biological Effects of Red Beetroot and Betalains: A Review. Phytother. Res. 2020, 34 (8), 1847–1867. [CrossRef]
  222. Ninfali, P.; Angelino, D. Nutritional and Functional Potential of Beta vulgaris Cicla and Rubra. Fitoterapia 2013, 89, 188–199. [CrossRef]
  223. Rahman, M.; Khatun, A.; Liu, L.; Barkla, B. J. Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules 2018, 23 (1), 231. [CrossRef]
  224. Thakur, A. K.; Parmar, N.; Singh, K. H.; Nanjundan, J. Current Achievements and Future Prospects of Genetic Engineering in Indian Mustard (Brassica juncea L. Czern & Coss.). Planta 2020, 252 (4), 56. [CrossRef]
  225. Kwon, H. Y.; Choi, S. I.; Han, X.; Men, X.; Jang, G. W.; Choi, Y. E.; Lee, O. H. Antiobesity Effect of Brassica juncea Cultivated in Jeongseon with Optimized Sinigrin Content using 3T3-L1 Adipocytes. J. Food Biochem. 2021, 45 (4), e13650. [CrossRef]
  226. Yadav, S. P.; Vats, V.; Ammini, A. C.; Grover, J. K. Brassica juncea (Rai) Significantly Prevented the Development of Insulin Resistance in Rats Fed Fructose-Enriched Diet. J. Ethnopharmacol. 2004, 93 (1), 113–116. [CrossRef]
  227. Yang, D. K. Cabbage (Brassica oleracea var. capitata) Protects Against H2O2-Induced Oxidative Stress by Preventing Mitochondrial Dysfunction in H9c2 Cardiomyoblasts. Evid.-Based Complementary Altern. Med. 2018, 2018, 2179021. [CrossRef]
  228. Mageney, V.; Neugart, S.; Albach, D. C. A Guide to the Variability of Flavonoids in Brassica oleracea. Molecules 2017, 22 (2), 252. [CrossRef]
  229. Assad, T.; Khan, R. A.; Feroz, Z. Evaluation of Hypoglycemic and Hypolipidemic Activity of Methanol Extract of Brassica oleracea. Chin. J. Nat. Med. 2014, 12 (9), 648–653. [CrossRef]
  230. Radünz, M.; Mota Camargo, T.; Dos Santos Hackbart, H. C.; Blank, J. P.; Hoffmann, J. F.; Moro Stefanello, F.; da Rosa Zavareze, E. Encapsulation of Broccoli Extract by Electrospraying: Influence of in Vitro Simulated Digestion on Phenolic and Glucosinolate Contents, and on Antioxidant and Antihyperglycemic Activities. Food Chem. 2021, 339, 128075. [CrossRef]
  231. Le, T. N.; Chiu, C. H.; Hsieh, P. C. Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. Plants 2020, 9 (8), 946. [CrossRef]
  232. Ahmed, S. R.; Rabbee, M. F.; Roy, A.; Chowdhury, R.; Banik, A.; Kubra, K.; Hassan Chowdhury, M. M.; Baek, K. H. Therapeutic Promises of Medicinal Plants in Bangladesh and Their Bioactive Compounds against Ulcers and Inflammatory Diseases. Plants (Basel, Switzerland) 2021, 10 (7), 1348. [CrossRef]
  233. Ansari, P.; Flatt, P. R.; Harriott, P.; Abdel-Wahab, Y. H. A. Anti-Hyperglycaemic and Insulin-Releasing Effects of Camellia Sinensis Leaves and Isolation and Characterisation of Active Compounds. Br J Nutr 2021, 126 (8), 1149–1163. [CrossRef]
  234. Fu, Q. Y.; Li, Q. S.; Lin, X. M.; Qiao, R. Y.; Yang, R.; Li, X. M.; Dong, Z. B.; Xiang, L. P.; Zheng, X. Q.; Lu, J. L.; Yuan, C. B.; Ye, J. H.; Liang, Y. R. Antidiabetic Effects of Tea. Molecules (Basel, Switzerland) 2017, 22 (5), 849. [CrossRef]
  235. Prasanth, M. I.; Sivamaruthi, B. S.; Chaiyasut, C.; Tencomnao, T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019, 11 (2), 474. [CrossRef]
  236. Maji, A. K.; Banerji, P. Phytochemistry and Gastrointestinal Benefits of the Medicinal Spice, Capsicum annuum L. (Chilli): A Review. J. Complement. Integr. Med. 2016, 13 (2), 97–122. [CrossRef]
  237. Kim, H. K.; Jeong, J.; Kang, E. Y.; Go, G. W. Red Pepper (Capsicum annuum L.) Seed Extract Improves Glycemic Control by Inhibiting Hepatic Gluconeogenesis via Phosphorylation of FOXO1 and AMPK in Obese Diabetic db/db Mice. Nutrients 2020, 12 (9), 2546. [CrossRef]
  238. Kim, H.; Cho, K. W.; Jeong, J.; Park, K.; Ryu, Y.; Moyo, K. M.; Kim, H. K.; Go, G. W. Red Pepper (Capsicum annuum L.) Seed Extract Decreased Hepatic Gluconeogenesis and Increased Muscle Glucose Uptake In Vitro. J. Med. Food 2018, 21 (7), 665–671. [CrossRef]
  239. Sinisgalli, C.; Faraone, I.; Vassallo, A.; Caddeo, C.; Bisaccia, F.; Armentano, M. F.; Milella, L.; Ostuni, A. Phytochemical Profile of Capsicum annuum L. cv Senise, Incorporation into Liposomes, and Evaluation of Cellular Antioxidant Activity. Antioxidants 2020, 9 (5), 428. [CrossRef]
  240. Silva, L. R.; Azevedo, J.; Pereira, M. J.; Carro, L.; Velazquez, E.; Peix, A.; Valentão, P.; Andrade, P. B. Inoculation of the Nonlegume Capsicum annuum (L.) with Rhizobium Strains. 1. Effect on Bioactive Compounds, Antioxidant Activity, and Fruit Ripeness. J. Agric. Food Chem. 2014, 62 (3), 557–564. [CrossRef]
  241. Singh, S. P.; Kumar, S.; Mathan, S. V.; Tomar, M. S.; Singh, R. K.; Verma, P. K.; Kumar, A.; Kumar, S.; Singh, R. P.; Acharya, A. Therapeutic application of Carica papaya leaf extract in the management of human diseases. Daru J. Pharm. Sci. 2020, 28 (2), 735–744. [CrossRef]
  242. Kaur, M.; Talniya, N.; Sahrawat, S.; Kumar, A.; Stashenko, E. Ethnomedicinal Uses, Phytochemistry and Pharmacology of Carica papaya Plant: A Compendious Review. Mini-Rev. Org. Chem. 2019, 16 (5), 463-480. [CrossRef]
  243. Juárez-Rojop, I. E.; Díaz-Zagoya, J. C.; Ble-Castillo, J. L.; Miranda-Osorio, P. H.; Castell-Rodríguez, A. E.; Tovilla-Zárate, C. A.; Rodríguez-Hernández, A.; Aguilar-Mariscal, H.; Ramón-Frías, T.; Bermúdez-Ocaña, D. Y. Hypoglycemic Effect of Carica papaya Leaves in Streptozotocin-Induced Diabetic Rats. BMC Complement. Altern. Med. 2012, 12, 236. [CrossRef]
  244. Agada, R.; Usman, W. A.; Shehu, S.; Thagariki, D. In Vitro and In Vivo Inhibitory Effects of Carica papaya Seed on α-Amylase and α-Glucosidase Enzymes. Heliyon 2020, 6 (3), e03618. [CrossRef]
  245. Neimkhum, W.; Anuchapreeda, S.; Lin, W. C.; Lue, S. C.; Lee, K. H.; Chaiyana, W. Effects of Carissa carandas Linn. Fruit, Pulp, Leaf, and Seed on Oxidation, Inflammation, Tyrosinase, Matrix Metalloproteinase, Elastase, and Hyaluronidase Inhibition. Antioxidants 2021, 10 (9), 1345. [CrossRef]
  246. Itankar, P. R.; Lokhande, S. J.; Verma, P. R.; Arora, S. K.; Sahu, R. A.; Patil, A. T. Antidiabetic potential of unripe Carissa carandas Linn. fruit extract. J. Ethnopharmacol. 2011, 135 (2), 430–433. [CrossRef]
  247. Purohit, P.; Palamthodi, S.; Lele, S. S. Effect of karwanda (Carissa congesta Wight) and sugar addition on physicochemical characteristics of ash gourd (Benincasa hispida) and bottle gourd (Lagenaria siceraria) based beverages. J. Food Sci. Technol. 2019, 56 (2), 1037–1045. [CrossRef]
  248. Singh, S.; Bajpai, M.; Mishra, P. Carissa carandas L. - phyto-pharmacological review. J. Pharm. Pharmacol. 2020, 72 (12), 1694–1714. [CrossRef]
  249. El-Desoky, A. H.; Abdel-Rahman, R. F.; Ahmed, O. K.; El-Beltagi, H. S.; Hattori, M. Anti-inflammatory and antioxidant activities of naringin isolated from Carissa carandas L.: In vitro and in vivo evidence. Phytomedicine 2018, 42, 126–134. [CrossRef]
  250. Nammi, S.; Boini, M. K.; Lodagala, S. D.; Behara, R. B. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement. Altern. Med. 2003, 3, 4. [CrossRef]
  251. Kumar, S.; Singh, B.; Singh, R. Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. J. Ethnopharmacol. 2022, 284, 114647. [CrossRef]
  252. Tiong, S. H.; Looi, C. Y.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W. F.; Cheah, S. C.; Mustafa, M. R.; Awang, K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules (Basel, Switzerland) 2013, 18 (8), 9770–9784. [CrossRef]
  253. Pham, H.; Sakoff, J. A.; Vuong, Q. V.; Bowyer, M. C.; Scarlett, C. J. Phytochemical, antioxidant, anti-proliferative and antimicrobial properties of Catharanthus roseus root extract, saponin-enriched and aqueous fractions. Mol. Biol. Rep. 2019, 46 (3), 3265–3273. [CrossRef]
  254. Lee, O. N.; Ak, G.; Zengin, G.; Cziáky, Z.; Jekő, J.; Rengasamy, K.; Park, H. Y.; Kim, D. H.; Sivanesan, I. Phytochemical Composition, Antioxidant Capacity, and Enzyme Inhibitory Activity in Callus, Somaclonal Variant, and Normal Green Shoot Tissues of Catharanthus roseus (L) G. Don. Molecules (Basel, Switzerland) 2020, 25 (21), 4945. [CrossRef]
  255. Gohil, K. J.; Patel, J. A.; Gajjar, A. K. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J. Pharm. Sci. 2010, 72 (5), 546–556. [CrossRef]
  256. Razali, N.; Ng, C. T.; Fong, L. Y. Cardiovascular Protective Effects of Centella asiatica and Its Triterpenes: A Review. Planta Med. 2019, 85 (16), 1203–1215. [CrossRef]
  257. Oyenihi, A. B.; Langa, S.; Mukaratirwa, S.; Masola, B. Effects of Centella asiatica on Skeletal Muscle Structure and Key Enzymes of Glucose and Glycogen Metabolism in Type 2 Diabetic Rats. Biomed. Pharmacother. 2019, 112, 108715. [CrossRef]
  258. Maulidiani, M.; Abas, F.; Khatib, A.; Perumal, V.; Suppaiah, V.; Ismail, A.; Hamid, M.; Shaari, K.; Lajis, N. H. Metabolic Alteration in Obese Diabetes Rats upon Treatment with Centella asiatica Extract. J. Ethnopharmacol. 2016, 180, 60–69. [CrossRef]
  259. Angeli, V.; Miguel Silva, P.; Crispim Massuela, D.; Khan, M. W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials “f the "Golde” Grain" and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods (Basel, Switz.) 2020, 9 (2), 216. [CrossRef]
  260. Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E. A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J. Sci. Food Agric. 2010, 90 (15), 2541–2547. [CrossRef]
  261. Graf, B. L.; Rojas-Silva, P.; Rojo, L. E.; Delatorre-Herrera, J.; Baldeón, M. E.; Raskin, I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr. Rev. Food Sci. Food Saf. 2015, 14 (4), 431–445. [CrossRef]
  262. An, T.; Liu, J. X.; Yang, X. Y.; Lv, B. H.; Wu, Y. X.; Jiang, G. J. Supplementation of quinoa regulates glycolipid metabolism and endoplasmic reticulum stress in the high-fat diet-induced female obese mice. Nutr. Metab. 2021, 18 (1), 95. [CrossRef]
  263. Zhang, Y.; Bai, B.; Yan, Y.; Liang, J.; Guan, X. Bound Polyphenols from Red Quinoa Prevailed over Free Polyphenols in Reducing Postprandial Blood Glucose Rises by Inhibiting α-Glucosidase Activity and Starch Digestion. Nutrients 2022, 14 (4), 728. [CrossRef]
  264. Díaz-Rizzolo, D. A.; Acar-Denizli, N.; Kostov, B.; Roura, E.; Sisó-Almirall, A.; Delicado, P.; Gomis, R. Glycaemia Fluctuations Improvement in Old-Age Prediabetic Subjects Consuming a Quinoa-Based Diet: A Pilot Study. Nutrients 2022, 14 (11), 2331. [CrossRef]
  265. Gabrial, S. G.; Shakib, M. R.; Gabrial, G. N. Effect of Pseudocereal-Based Breakfast Meals on the First and Second Meal Glucose Tolerance in Healthy and Diabetic Subjects. Open Access Maced. J. Med. Sci. 2016, 4 (4), 565–573. [CrossRef]
  266. Quintero-Soto, M. F.; Chávez-Ontiveros, J.; Garzón-Tiznado, J. A.; Salazar-Salas, N. Y.; Pineda-Hidalgo, K. V.; Delgado-Vargas, F.; López-Valenzuela, J. A. Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates. J. Food Sci. 2021, 86 (7), 2962–2977. [CrossRef]
  267. Yegrem, L. Nutritional Composition, Antinutritional Factors, and Utilization Trends of Ethiopian Chickpea (Cicer arietinum L.). Int. J. Food Sci. 2021, 5570753. [CrossRef]
  268. Bhagyawant, S. S.; Narvekar, D. T.; Gupta, N.; Bhadkaria, A.; Gautam, A. K.; Srivastava, N. Chickpea (Cicer arietinum L.) Lectin Exhibit Inhibition of ACE-I, α-amylase and α-glucosidase Activity. Protein Pept. Lett. 2019, 26 (7), 494–501. [CrossRef]
  269. Jukanti, A. K.; Gaur, P. M.; Gowda, C. L.; Chibbar, R. N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br. J. Nutr. 2012, 108 (Suppl 1), S11–S26. [CrossRef]
  270. Tan, Y. X.; Sun, Y. H.; Chen, R. Y. Zhongguo Zhong Yao Za Zhi = China J. Chin. Mater. Med. 2007, 32 (16), 1650–1652. https://pubmed.ncbi.nlm.nih.gov/34848240/.
  271. Faridy, J. M.; Stephanie, C. M.; Gabriela, M. O.; Cristian, J. M. Biological Activities of Chickpea in Human Health (Cicer arietinum L.): A Review. Plant Foods Hum. Nutr. 2020, 75 (2), 142–153. [CrossRef]
  272. Singh, N.; Rao, A. S.; Nandal, A.; Kumar, S.; Yadav, S. S.; Ganaie, S. A.; Narasimhan, B. Phytochemical and Pharmacological Review of Cinnamomum verum J. Presl - A Versatile Spice Used in Food and Nutrition. Food Chem. 2021, 338, 127773. [CrossRef]
  273. Shen, Y.; Fukushima, M.; Ito, Y.; Muraki, E.; Hosono, T.; Seki, T.; Ariga, T. Verification of the Antidiabetic Effects of Cinnamon (Cinnamomum zeylanicum) using Insulin-Uncontrolled Type 1 Diabetic Rats and Cultured Adipocytes. Biosci. Biotechnol. Biochem. 2010, 74 (12), 2418–2425. [CrossRef]
  274. Kim, S. H.; Hyun, S. H.; Choung, S. Y. Anti-diabetic Effect of Cinnamon Extract on Blood Glucose in db/db Mice. J. Ethnopharmacol. 2006, 104 (1-2), 119–123. [CrossRef]
  275. Sharifi-Rad, J.; Dey, A.; Koirala, N.; Shaheen, S.; El Omari, N.; Salehi, B.; Goloshvili, T.; Cirone Silva, N. C.; Bouyahya, A.; Vitalini, S.; Varoni, E. M.; Martorell, M.; Abdolshahi, A.; Docea, A. O.; Iriti, M.; Calina, D.; Les, F.; López, V.; Caruntu, C. Cinnamomum Species: Bridging Phytochemistry Knowledge, Pharmacological Properties and Toxicological Safety for Health Benefits. Front. Pharmacol. 2021, 12, 600139. [CrossRef]
  276. Wahid, M.; Saqib, F.; Qamar, M.; Ziora, Z. Antispasmodic Activity of the Ethanol Extract of Citrullus lanatus Seeds: Justifying Ethnomedicinal Use in Pakistan to Treat Asthma and Diarrhea. J. Ethnopharmacol. 2022, 295, 115314. [CrossRef]
  277. Eke, R.; Ejiofor, E.; Oyedemi, S.; Onoja, S.; Omeh, N. Evaluation of Nutritional Composition of Citrullus lanatus Linn. (Watermelon) Seed and Biochemical Assessment of the Seed Oil in Rats. J. Food Biochem. 2021, 45 (6), e13763. [CrossRef]
  278. Oyenihi, O. R.; Afolabi, B. A.; Oyenihi, A. B.; Ogunmokun, O. J.; Oguntibeju, O. O. Hepato- and Neuro-Protective Effects of Watermelon Juice on Acute Ethanol-Induced Oxidative Stress in Rats. Toxicol. Rep. 2016, 3, 288–294. [CrossRef]
  279. Ajiboye, B. O.; Shonibare, M. T.; Oyinloye, B. E. Antidiabetic Activity of Watermelon (Citrullus lanatus) Juice in Alloxan-Induced Diabetic Rats. J. Diabetes Metab. Disord. 2020, 19 (1), 343–352. [CrossRef]
  280. Clement, Y. N.; Baksh-Comeau, Y. S.; Seaforth, C. E. An Ethnobotanical Survey of Medicinal Plants in Trinidad. J. Ethnobiol. Ethnomed. 2015, 11, 67. [CrossRef]
  281. Balogun, F. O.; Ashafa, A. A Review of Plants Used in South African Traditional Medicine for the Management and Treatment of Hypertension. Planta Med. 2019, 85(4), 312–334. [CrossRef]
  282. Ali, M. Y.; Zaib, S.; Rahman, M. M.; Jannat, S.; Iqbal, J.; Park, S. K.; Chang, M. S. Didymin, a Dietary Citrus Flavonoid Exhibits Anti-Diabetic Complications and Promotes Glucose Uptake through the Activation of PI3K/Akt Signaling Pathway in Insulin-Resistant HepG2 Cells. Chem. Biol. Interact. 2019, 305, 180–194. [CrossRef]
  283. Rao, Y. K.; Lee, M. J.; Chen, K.; Lee, Y. C.; Wu, W. S.; Tzeng, Y. M. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L.) Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells. Evid.-Based Complement. Alternat. Med. 2011, 624375. [CrossRef]
  284. Onda, K.; Horike, N.; Suzuki, T.; Hirano, T. Polymethoxyflavonoids Tangeretin and Nobiletin Increase Glucose Uptake in Murine Adipocytes. Phytother. Res. 2013, 27(2), 312–316. [CrossRef]
  285. Gandhi, G. R.; Vasconcelos, A.; Wu, D. T.; Li, H. B.; Antony, P. J.; Li, H.; Geng, F.; Gurgel, R. Q.; Narain, N.; Gan, R. Y. Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients 2020, 12(10), 2907. [CrossRef]
  286. Kundusen, S.; Haldar, P. K.; Gupta, M.; Mazumder, U. K.; Saha, P.; Bala, A.; Bhattacharya, S.; Kar, B. Evaluation of Antihyperglycemic Activity of Citrus limetta Fruit Peel in Streptozotocin-Induced Diabetic Rats. ISRN Endocrinol. 2011, 869273. [CrossRef]
  287. Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of Their Molecular Mechanisms and Experimental Models. Phytother. Res. 2015, 29(3), 323–331. [CrossRef]
  288. Sapkota, B.; Devkota, H. P.; Poudel, P. Citrus maxima (Brum.) Merr. (Rutaceae): Bioactive Chemical Constituents and Pharmacological Activities. Evid.-Based Complement. Altern. Med. 2022, 8741669. [CrossRef]
  289. Oboh, G.; Ademosun, A. O. Shaddock peels (Citrus maxima) phenolic extracts inhibit α-amylase, α-glucosidase and angiotensin I-converting enzyme activities: a nutraceutical approach to diabetes management. Diabetes Metab. Syndr. 2011, 5 (3), 148–152. [CrossRef]
  290. Somanathan Karthiga, R.; Sukhdeo, S. V.; Madhugiri Lakshminarayan, S.; Mysuru Nanjarajurs, S. Efficacy of Citrus maxima fruit segment supplemented paranthas in STZ induced diabetic rats. J. Food Sci. 2021, 86 (5), 2091–2102. [CrossRef]
  291. Ho, S. C.; Lin, C. C. Investigation of Heat Treating Conditions for Enhancing the Anti-Inflammatory Activity of Citrus Fruit (Citrus reticulata) Peels. J. Agric. Food Chem. 2008, 56(17), 7976–7982. [CrossRef]
  292. Seki, T.; Kamiya, T.; Furukawa, K.; Azumi, M.; Ishizuka, S.; Takayama, S.; Nagase, S.; Arai, H.; Yamakuni, T.; Yaegashi, N. Nobiletin-Rich Citrus reticulata Peels, a Kampo Medicine for Alzheimer's Disease: A Case Series. Geriatr. Gerontol. Int. 2013, 13(1), 236–238. [CrossRef]
  293. Ali, A. M.; Gabbar, M. A.; Abdel-Twab, S. M.; Fahmy, E. M.; Ebaid, H.; Alhazza, I. M.; Ahmed, O. M. Antidiabetic Potency, Antioxidant Effects, and Mode of Actions of Citrus reticulata Fruit Peel Hydroethanolic Extract, Hesperidin, and Quercetin in Nicotinamide/Streptozotocin-Induced Wistar Diabetic Rats. Oxid. Med. Cell. Longevity 2020, 1730492. [CrossRef]
  294. Kanaze, F. I.; Termentzi, A.; Gabrieli, C.; Niopas, I.; Georgarakis, M.; Kokkalou, E. The Phytochemical Analysis and Antioxidant Activity Assessment of Orange Peel (Citrus sinensis) Cultivated in Greece-Crete Indicates a New Commercial Source of Hesperidin. Biomed. Chromatogr. 2009, 23(3), 239–249. [CrossRef]
  295. Guo, J.; Tao, H.; Cao, Y.; Ho, C. T.; Jin, S.; Huang, Q. Prevention of Obesity and Type 2 Diabetes with Aged Citrus Peel (Chenpi) Extract. J. Agric. Food Chem. 2016, 64(10), 2053–2061. [CrossRef]
  296. Song, X.; Wang, L.; Liu, T.; Liu, Y.; Wu, X.; Liu, L. Mandarin (Citrus reticulata L.) Essential Oil Incorporated into Chitosan Nanoparticles: Characterization, Anti-Biofilm Properties and Application in Pork Preservation. Int. J. Biol. Macromol. 2021, 185, 620–628. [CrossRef]
  297. Lima, E. B.; Sousa, C. N.; Meneses, L. N.; Ximenes, N. C.; Santos Júnior, M. A.; Vasconcelos, G. S.; Lima, N. B.; Patrocínio, M. C.; Macedo, D.; Vasconcelos, S. M. Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz. J. Med. Biol. Res. 2015, 48 (11), 953–964. [CrossRef]
  298. Mitchell, S. A.; Ahmad, M. H. A review of medicinal plant research at the University of the West Indies, Jamaica, 1948-2001. West Indian Med. J. 2006, 55 (4), 243–269. [CrossRef]
  299. Bhandary, M. J.; Chandrashekar, K. R.; Kaveriappa, K. M. Medical ethnobotany of the Siddis of Uttara Kannada district, Karnataka, India. J. Ethnopharmacol. 1995, 47 (3), 149–158. [CrossRef]
  300. Hope, B. E.; Massey, D. G.; Fournier-Massey, G. Hawaiian materia medica for asthma. Hawaii Med. J. 1993, 52 (6), 160–166.
  301. Renjith, R. S.; Chikku, A. M.; Rajamohan, T. Cytoprotective, antihyperglycemic and phytochemical properties of Cocos nucifera (L.) inflorescence. Asian Pacific Journal of Tropical Medicine 2013, 6 (10), 804–810. [CrossRef]
  302. Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. Journal of Diabetes and Metabolic Disorders 2013, 12 (1), 43. [CrossRef]
  303. Sandhya, V. G.; Rajamohan, T. Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat-cholesterol enriched diet. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 2008, 46 (12), 3586–3592. [CrossRef]
  304. Golbidi, S.; Ebadi, S. A.; Laher, I. Antioxidants in the treatment of diabetes. Current Diabetes Reviews 2011, 7 (2), 106–125. [CrossRef]
  305. Patay, É. B.; Bencsik, T.; Papp, N. Phytochemical Overview and Medicinal Importance of Coffea Species from the Past until Now. Asian Pac. J. Trop. Med. 2016, 9 (12), 1127–1135. [CrossRef]
  306. Hu, G.; Peng, X.; Dong, D.; Nian, Y.; Gao, Y.; Wang, X.; Hong, D.; Qiu, M. New ent-Kaurane Diterpenes from the Roasted Arabica Coffee Beans and Molecular Docking to α-Glucosidase. Food Chem. 2021, 345, 128823. [CrossRef]
  307. Nemzer, B.; Kalita, D.; Abshiru, N. Quantification of Major Bioactive Constituents, Antioxidant Activity, and Enzyme Inhibitory Effects of Whole Coffee Cherries (Coffea arabica) and Their Extracts. Molecules (Basel, Switzerland) 2021, 26 (14), 4306. [CrossRef]
  308. Vasant, O. K.; Vijay, B. G.; Virbhadrappa, S. R.; Dilip, N. T.; Ramahari, M. V.; Laxamanrao, B. S. Antihypertensive and Diuretic Effects of the Aqueous Extract of Colocasia esculenta Linn. Leaves in Experimental Paradigms. Iran. J. Pharm. Res. 2012, 11 (2), 621–634.
  309. Giannoulaki, P.; Kotzakioulafi, E.; Chourdakis, M.; Hatzitolios, A.; Didangelos, T. Impact of Crocus Sativus L. on Metabolic Profile in Patients with Diabetes Mellitus or Metabolic Syndrome: A Systematic Review. Nutrients 2020, 12 (5), 1424. [CrossRef]
  310. Mitharwal, S.; Kumar, A.; Chauhan, K.; Taneja, N. K. Nutritional, Phytochemical Composition and Potential Health Benefits of Taro (Colocasia esculenta L.) Leaves: A Review. Food Chem. 2022, 383, 132406. [CrossRef]
  311. Gupta, K.; Kumar, A.; Tomer, V.; Kumar, V.; Saini, M. Potential of Colocasia Leaves in Human Nutrition: Review on Nutritional and Phytochemical Properties. J. Food Biochem. 2019, 43 (7), e12878. [CrossRef]
  312. Li, H. M.; Hwang, S. H.; Kang, B. G.; Hong, J. S.; Lim, S. S. Inhibitory Effects of Colocasia esculenta (L.) Schott Constituents on Aldose Reductase. Molecules 2014, 19 (9), 13212–13224. [CrossRef]
  313. Hosseini, M.; Boskabady, M. H.; Khazdair, M. R. Neuroprotective Effects of Coriandrum sativum and its Constituent, Linalool: A Review. Avicenna J. Phytomed. 2021, 11 (5), 436–450. [CrossRef]
  314. Kajal, A.; Singh, R. Coriandrum sativum Seeds Extract Mitigate Progression of Diabetic Nephropathy in Experimental Rats via AGEs Inhibition. PLoS One 2019, 14 (3), e0213147. [CrossRef]
  315. Kajal, A.; Singh, R. Coriandrum sativum Improve Neuronal Function via Inhibition of Oxidative/Nitrosative Stress and TNF-α in Diabetic Neuropathic Rats. J. Ethnopharmacol. 2020, 263, 112959. [CrossRef]
  316. Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Coriandrum sativum L.: A Promising Functional Food Toward the Well-being. Food Res. Int. 2018, 105, 305–323. [CrossRef]
  317. Wei, J. N.; Liu, Z. H.; Zhao, Y. P.; Zhao, L. L.; Xue, T. K.; Lan, Q. K. Phytochemical and Bioactive Profile of Coriandrum sativum L. Food Chem. 2019, 286, 260–267. [CrossRef]
  318. Yaribeygi, H.; Zare, V.; Butler, A. E.; Barreto, G. E.; Sahebkar, A. Antidiabetic Potential of Saffron and its Active Constituents. J. Cell. Physiol. 2019, 234 (6), 8610–8617. [CrossRef]
  319. Singh D. Neuropharmacological Aspects of Crocus sativus L.: A Review of Preclinical Studies and Ongoing Clinical Research. CNS Neurol. Disord. Drug Targets 2015, 14 (7), 880–902. [CrossRef]
  320. Patel, S.; Sarwat, M.; Khan, T. H. Mechanism behind the Anti-tumour Potential of Saffron (Crocus sativus L.): The Molecular Perspective. Crit. Rev. Oncol. Hematol. 2017, 115, 27–35. [CrossRef]
  321. Giannoulaki, P.; Kotzakioulafi, E.; Chourdakis, M.; Hatzitolios, A.; Didangelos, T. Impact of Crocus sativus L. on Metabolic Profile in Patients with Diabetes Mellitus or Metabolic Syndrome: A Systematic Review. Nutrients 2020, 12 (5), 1424. [CrossRef]
  322. Zengin, G.; Aumeeruddy, M. Z.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Yıldıztugay, A.; Yıldıztugay, E.; Mahomoodally, M. F. A Comprehensive Appraisal on Crocus chrysanthus (Herb.) Herb. Flower Extracts with HPLC-MS/MS Profiles, Antioxidant and Enzyme Inhibitory Properties. J. Pharm. Biomed. Anal. 2019, 164, 581–589. [CrossRef]
  323. Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Immunomodulatory and Antioxidant Effects of Saffron Aqueous Extract (Crocus sativus L.) on Streptozotocin-Induced Diabetes in Rats. Indian Heart J. 2017, 69 (2), 151–159. [CrossRef]
  324. Allaq, A.; Sidik, N.; Abdul-Aziz, A.; Ahmed, I. Cumin (Cuminum cyminum L.): A Review of Its Ethnopharmacology, Phytochemistry. Biomed. Res. Ther. 2020, 7 (9), 4016-4021. [CrossRef]
  325. Johri, R. K. Cuminum cyminum and Carum carvi: An Update. Pharmacogn. Rev. 2011, 5 (9), 63–72. [CrossRef]
  326. Jagtap, A. G.; Patil, P. B. Antihyperglycemic Activity and Inhibition of Advanced Glycation End Product Formation by Cuminum cyminum in Streptozotocin Induced Diabetic Rats. Food Chem. Toxicol. 2010, 48 (8-9), 2030–2036. [CrossRef]
  327. Mukherjee, P. K.; Nema, N. K.; Maity, N.; Sarkar, B. K. Phytochemical and Therapeutic Potential of Cucumber. Fitoterapia 2013, 84, 227–236. [CrossRef]
  328. Roman-Ramos, R.; Flores-Saenz, J. L.; Alarcon-Aguilar, F. J. Anti-Hyperglycemic Effect of Some Edible Plants. J. Ethnopharmacol. 1995, 48 (1), 25–32. [CrossRef]
  329. Atta, A. H.; Saad, S. A.; Atta, S. A.; Mouneir, S. M.; Nasr, S. M.; Desouky, H. M.; Shaker, H. M. Cucumis sativus and Cucurbita maxima Extract Attenuate Diabetes-Induced Hepatic and Pancreatic Injury in a Rat Model. J. Physiol. Pharmacol. 2020, 71 (4), 10.26402/jpp.2020.4.06. [CrossRef]
  330. Minaiyan, M.; Zolfaghari, B.; Kamal, A. Effect of Hydroalcoholic and Buthanolic Extract of Cucumis sativus Seeds on Blood Glucose Level of Normal and Streptozotocin-Induced Diabetic Rats. Iran. J. Basic Med. Sci. 2011, 14 (5), 436–442. [CrossRef]
  331. Balgoon, M. J.; Al-Zahrani, M. H.; Jaouni, S. A.; Ayuob, N. Combined Oral and Topical Application of Pumpkin (Cucurbita pepo L.) Alleviates Contact Dermatitis Associated With Depression Through Downregulation Pro-Inflammatory Cytokines. Front. Pharmacol. 2021, 12, 663417. [CrossRef]
  332. Andolfo, G.; Di Donato, A.; Darrudi, R.; Errico, A.; Aiese Cigliano, R.; Ercolano, M. R. Draft of Zucchini (Cucurbita pepo L.) Proteome: A Resource for Genetic and Genomic Studies. Front. Genet. 2017, 8, 181. [CrossRef]
  333. Yoshinari, O.; Sato, H.; Igarashi, K. Anti-Diabetic Effects of Pumpkin and Its Components, Trigonelline and Nicotinic Acid, on Goto-Kakizaki Rats. Biosci., Biotechnol., Biochem. 2009, 73 (5), 1033–1041. [CrossRef]
  334. Adams, G. G.; Imran, S.; Wang, S.; Mohammad, A.; Kok, M. S.; Gray, D. A.; Channell, G. A.; Harding, S. E. The Hypoglycemic Effect of Pumpkin Seeds, Trigonelline (TRG), Nicotinic Acid (NA), and D-Chiro-Inositol (DCI) in Controlling Glycemic Levels in Diabetes Mellitus. Crit. Rev. Food Sci. Nutr. 2014, 54 (10), 1322–1329. [CrossRef]
  335. Chen, X.; Qian, L.; Wang, B.; Zhang, Z.; Liu, H.; Zhang, Y.; Liu, J. Synergistic Hypoglycemic Effects of Pumpkin Polysaccharides and Puerarin on Type II Diabetes Mellitus Mice. Molecules 2019, 24 (5), 955. [CrossRef]
  336. Ayati, Z.; Ramezani, M.; Amiri, M. S.; Moghadam, A. T.; Rahimi, H.; Abdollahzade, A.; Sahebkar, A.; Emami, S. A. Ethnobotany, Phytochemistry and Traditional Uses of Curcuma spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Curr. Pharm. Des. 2019, 25 (8), 871–935. [CrossRef]
  337. Sayeli, V. K.; Shenoy, A. K. Antidiabetic Effect of Bio-enhanced Preparation of Turmeric in Streptozotocin-Nicotinamide Induced Type 2 Diabetic Wistar Rats. J. Ayurveda Integr. Med. 2021, 12 (3), 474–479. [CrossRef]
  338. Sabir, S. M.; Zeb, A.; Mahmood, M.; Abbas, S. R.; Ahmad, Z.; Iqbal, N. Phytochemical Analysis and Biological Activities of Ethanolic Extract of Curcuma longa Rhizome. Braz. J. Biol. 2021, 81 (3), 737–740. [CrossRef]
  339. Abdel-Lateef, E.; Mahmoud, F.; Hammam, O.; El-Ahwany, E.; El-Wakil, E.; Kandil, S.; Abu Taleb, H.; El-Sayed, M.; Hassenein, H. Bioactive Chemical Constituents of Curcuma longa L. Rhizomes Extract Inhibit the Growth of Human Hepatoma Cell Line (HepG2). Acta Pharm. 2016, 66 (3), 387–398. [CrossRef]
  340. Den Hartogh, D. J.; Gabriel, A.; Tsiani, E. Antidiabetic Properties of Curcumin II: Evidence from In Vivo Studies. Nutrients 2020, 12 (1), 58. [CrossRef]
  341. Asdaq, S.; Swathi, E.; Dhamanigi, S. S.; Asad, M.; Ali Mohzari, Y.; Alrashed, A. A.; Alotaibi, A. S.; Mohammed Alhassan, B.; Nagaraja, S. Role of Daucus carota in Enhancing Antiulcer Profile of Pantoprazole in Experimental Animals. Molecules 2020, 25 (22), 5287. [CrossRef]
  342. Esatbeyoglu, T.; Rodríguez-Werner, M.; Schlösser, A.; Liehr, M.; Ipharraguerre, I.; Winterhalter, P.; Rimbach, G. Fractionation of Plant Bioactives from Black Carrots (Daucus carota subspecies sativus varietas atrorubens Alef.) by Adsorptive Membrane Chromatography and Analysis of Their Potential Anti-Diabetic Activity. J. Agric. Food Chem. 2016, 64 (29), 5901–5908. [CrossRef]
  343. Miras-Moreno, B.; Almagro, L.; Pedreño, M. A.; Sabater-Jara, A. B. Effect of Terbinafine on the Biosynthetic Pathway of Isoprenoid Compounds in Carrot Suspension Cultured Cells. Plant Cell Rep. 2018, 37 (7), 1011–1019. [CrossRef]
  344. Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and Their Health Benefits-Review Article. Foods 2019, 8 (9), 424. [CrossRef]
  345. Badgujar, S. B.; Patel, V. V.; Bandivdekar, A. H.; Mahajan, R. T. Traditional Uses, Phytochemistry and Pharmacology of Ficus carica: A Review. Pharm. Biol. 2014, 52 (11), 1487–1503. [CrossRef]
  346. Zhang, Y.; Li, Y.; Ma, P.; Chen, J.; Xie, W. Ficus carica Leaves Extract Inhibited Pancreatic β-Cell Apoptosis by Inhibiting AMPK/JNK/Caspase-3 Signaling Pathway and Antioxidation. Biomed. Pharmacother. 2020, 122, 109689. [CrossRef]
  347. Ergül, M.; Ergül, M.; Eruygur, N.; Ataş, M.; Uçar, E. In Vitro Evaluation of the Chemical Composition and Various Biological Activities of Ficus carica Leaf Extracts. Turk. J. Pharm. Sci. 2019, 16 (4), 401–409. [CrossRef]
  348. Salehi, B.; Mishra, A. P.; Nigam, M.; Karazhan, N.; Shukla, I.; Kiełtyka-Dadasiewicz, A.; Sawicka, B.; Głowacka, A.; Abu-Darwish, M. S.; Tarawneh, A. H.; Gadetskaya, A. V.; Cabral, C.; Salgueiro, L.; Victoriano, M.; Martorell, M.; Docea, A. O.; Abdolshahi, A.; Calina, D.; Sharifi-Rad, J. Ficus Plants: State of the Art from a Phytochemical, Pharmacological, and Toxicological Perspective. Phytother. Res. 2021, 35 (3), 1187–1217. [CrossRef]
  349. Raafat, K.; Wurglics, M. Phytochemical Analysis of Ficus carica L. Active Compounds Possessing Anticonvulsant Activity. J. Tradit. Complement. Med. 2018, 9 (4), 263–270. [CrossRef]
  350. Mawa, S.; Husain, K.; Jantan, I. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities. Evid.-Based Complement. Altern. Med. 2013, 974256. [CrossRef]
  351. El-Hawary, S. S.; Mohammed, R.; El-Din, M. E.; Hassan, H. M.; Ali, Z. Y.; Rateb, M. E.; Bellah El Naggar, E. M.; Othman, E. M.; Abdelmohsen, U. R. Comparative Phytochemical Analysis of Five Egyptian Strawberry Cultivars (Fragaria × ananassa Duch.) and Antidiabetic Potential of Festival and Red Merlin Cultivars. RSC Adv. 2021, 11 (27), 16755–16767. [CrossRef]
  352. Yang, D.; Liang, J.; Xie, H.; Wei, X. Norsesquiterpenoids and Triterpenoids from Strawberry cv. Falandi. Food Chem. 2016, 203, 67–72. [CrossRef]
  353. da Silva Pinto, M.; Kwon, Y. I.; Apostolidis, E.; Lajolo, F. M.; Genovese, M. I.; Shetty, K. Functionality of Bioactive Compounds in Brazilian Strawberry (Fragaria x ananassa Duch.) Cultivars: Evaluation of Hyperglycemia and Hypertension Potential Using in Vitro Models. J. Agric. Food Chem. 2008, 56 (12), 4386–4392. [CrossRef]
  354. Giampieri, F.; Forbes-Hernandez, T. Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Reboredo-Rodriguez, P.; Varela-Lopez, A.; Quiles, J. L.; Mezzetti, B.; Battino, M. The Healthy Effects of Strawberry Bioactive Compounds on Molecular Pathways Related to Chronic Diseases. Ann. N. Y. Acad. Sci. 2017, 1398 (1), 62–71. [CrossRef]
  355. Afrin, S.; Gasparrini, M.; Forbes-Hernandez, T. Y.; Reboredo-Rodriguez, P.; Mezzetti, B.; Varela-López, A.; Giampieri, F.; Battino, M. Promising Health Benefits of the Strawberry: A Focus on Clinical Studies. J. Agric. Food Chem. 2016, 64 (22), 4435–4449. [CrossRef]
  356. Chen, K. I.; Erh, M. H.; Su, N. W.; Liu, W. H.; Chou, C. C.; Cheng, K. C. Soyfoods and soybean products: from traditional use to modern applications. Appl. Microbiol. Biotechnol. 2012, 96 (1), 9–22. [CrossRef]
  357. Das, D.; Kabir, M. E.; Sarkar, S.; Wann, S. B.; Kalita, J.; Manna, P. Antidiabetic potential of soy protein/peptide: A therapeutic insight. Int. J. Biol. Macromol. 2022, 194, 276–288. [CrossRef]
  358. Tachibana, N.; Yamashita, Y.; Nagata, M.; Wanezaki, S.; Ashida, H.; Horio, F.; Kohno, M. Soy β-conglycinin improves glucose uptake in skeletal muscle and ameliorates hepatic insulin resistance in Goto-Kakizaki rats. Nutr. Res. (N. Y., N. Y.) 2014, 34 (2), 160–167. [CrossRef]
  359. Wanezaki, S.; Tachibana, N.; Nagata, M.; Saito, S.; Nagao, K.; Yanagita, T.; Kohno, M. Soy β-conglycinin improves obesity-induced metabolic abnormalities in a rat model of nonalcoholic fatty liver disease. Obes. Res. Clin. Pract. 2015, 9 (2), 168–174. [CrossRef]
  360. Zang, Y.; Sato, H.; Igarashi, K. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Me’rill. ’Jindai') leaves on KK-A(y) mice. Biosci. Biotechnol. Biochem. 2011, 75 (9), 1677–1684. [CrossRef]
  361. Onoja, S. O.; Udem, S. C.; Anaga, A. O. Ameliorative Effects of Helianthus annuus Against Nephrotoxic, Cardiac, and Haematological Disorders in Alloxan-induced Hyperglycaemia in Albino Rats. J. Vet. Res. 2018, 62 (3), 371–377. [CrossRef]
  362. Leverrier, A.; Daguet, D.; Calame, W.; Dhoye, P.; Kodimule, S. P. Helianthus annuus Seed Extract Affects Weight and Body Composition of Healthy Obese Adults during 12 Weeks of Consumption: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Nutrients 2019, 11 (5), 1080. [CrossRef]
  363. Onoja, S. O.; Nnadi, C. O.; Udem, S. C.; Anaga, A. O. Potential antidiabetic and antioxidant activities of a heliangolide sesquiterpene lactone isolated from Helianthus annuus L. leaves. Acta Pharm. (Zagreb, Croat.) 2020, 70 (2), 215–226. [CrossRef]
  364. Sun, Z.; Chen, J.; Ma, J.; Jiang, Y.; Wang, M.; Ren, G.; Chen, F. Cynarin-rich sunflower (Helianthus annuus) sprouts possess both antiglycative and antioxidant activities. J. Agric. Food Chem. 2012, 60 (12), 3260–3265. [CrossRef]
  365. Afiune, L.; Leal-Silva, T.; Sinzato, Y. K.; Moraes-Souza, R. Q.; Soares, T. S.; Campos, K. E.; Fujiwara, R. T.; Herrera, E.; Damasceno, D. C.; Volpato, G. T. Beneficial Effects of Hibiscus rosa-sinensis L. Flower Aqueous Extract in Pregnant Rats with Diabetes. PLoS One 2017, 12 (6), e0179785. [CrossRef]
  366. Kumar, V.; Mahdi, F.; Khanna, A. K.; Singh, R.; Chander, R.; Saxena, J. K.; Mahdi, A. A.; Singh, R. K. Antidyslipidemic and Antioxidant Activities of Hibiscus rosa sinensis Root Extract in Alloxan Induced Diabetic Rats. Indian J. Clin. Biochem. 2013, 28 (1), 46–50. [CrossRef]
  367. Pillai, S. S.; Mini, S. Hibiscus rosa sinensis Linn. Petals Modulates Glycogen Metabolism and Glucose Homeostasis Signalling Pathway in Streptozotocin-Induced Experimental Diabetes. Plant Foods Hum. Nutr. 2016, 71 (1), 42–48. [CrossRef]
  368. Ansari, P.; Azam, S.; Hannan, J.; Flatt, P. R.; Abdel Wahab, Y. Anti-hyperglycaemic Activity of H. rosa-sinensis Leaves Is Partly Mediated by Inhibition of Carbohydrate Digestion and Absorption, and Enhancement of Insulin Secretion. J. Ethnopharmacol. 2020, 253, 112647. [CrossRef]
  369. Sachdewa, A.; Khemani, L. D. A Preliminary Investigation of the Possible Hypoglycemic Activity of Hibiscus rosa-sinensis. Biomed. Environ. Sci. 1999, 12 (3), 222–226.
  370. Liu, J.; Liu, Z. Y.; Zheng, C.; Niu, Y. F. Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Dragon Fruit (Selenicereus undatus (Haw.) D.R.Hunt). Mitochondrial DNA Part B 2021, 6 (3), 1154–1156. [CrossRef]
  371. Michelle, C.; Joice, V.; Maria, R. Nutritional Pharmacological and Toxicological Characteristics of Pitaya (Hylocereus undatus): A Review of the Literature. Afr. J. Pharm. Pharmacol. 2017, 11 (27), 300–304. [CrossRef]
  372. Joshi, M.; Prabhakar, B. Phytoconstituents and Pharmaco-Therapeutic Benefits of Pitaya: A Wonder Fruit. J. Food Biochem. 2020, 44 (7), e13260. [CrossRef]
  373. Pavithra Bharathi, V.; Ragavendran, C.; Murugan, N.; Natarajan, D. Ipomoea batatas (Convolvulaceae)-mediated synthesis of silver nanoparticles for controlling mosquito vectors of Aedes albopictus, Anopheles stephensi, and Culex quinquefasciatus (Diptera). Artif. Cells Nanomed. Biotechnol. 2017, 45 (8), 1568–1580. [CrossRef]
  374. Majid, M.; Nasir, B.; Zahra, S. S.; Khan, M. R.; Mirza, B.; Haq, I. U. Ipomoea batatas L. Lam. ameliorates acute and chronic inflammations by suppressing inflammatory mediators, a comprehensive exploration using in vitro and in vivo models. BMC Complement. Altern. Med. 2018, 18 (1), 216. [CrossRef]
  375. Mohanraj, R.; Sivasankar, S. Sweet potato (Ipomoea batatas [L.] Lam)—a valuable medicinal food: a review. J. Med. Food 2014, 17 (7), 733–741. [CrossRef]
  376. Das, G.; Patra, J. K.; Basavegowda, N.; Vishnuprasad, C. N.; Shin, H. S. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam. Int. J. Nanomed. 2019, 14, 4741–4754. [CrossRef]
  377. Kusano, S.; Abe, H.; Tamura, H. Isolation of antidiabetic components from white-skinned sweet potato (Ipomoea batatas L.). Biosci. Biotechnol. Biochem. 2001, 65 (1), 109–114. [CrossRef]
  378. Croitoru, A.; Ficai, D.; Craciun, L.; Ficai, A.; Andronescu, E. Evaluation and Exploitation of Bioactive Compounds of Walnut, Juglans regia. Curr. Pharm. Des. 2019, 25 (2), 119–131. [CrossRef]
  379. Nasiry, D.; Khalatbary, A. R.; Ahmadvand, H.; Talebpour Amiri, F.; Akbari, E. Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats. BMC Complement. Med. Ther. 2017, 17 (1), 476. [CrossRef]
  380. Mollica, A.; Zengin, G.; Locatelli, M.; Stefanucci, A.; Macedonio, G.; Bellagamba, G.; Onaolapo, O.; Onaolapo, A.; Azeez, F.; Ayileka, A.; Novellino, E. An assessment of the nutraceutical potential of Juglans regia L. leaf powder in diabetic rats. Food Chem. Toxicol. 2017, 107 (Pt B), 554–564. [CrossRef]
  381. Rusu, M. E.; Fizesan, I.; Pop, A.; Mocan, A.; Gheldiu, A. M.; Babota, M.; Vodnar, D. C.; Jurj, A.; Berindan-Neagoe, I.; Vlase, L.; Popa, D. S. Walnut (Juglans regia L.) Septum: Assessment of Bioactive Molecules and In Vitro Biological Effects. Molecules 2020, 25 (9), 2187. [CrossRef]
  382. Sayyah, M.; Hadidi, N.; Kamalinejad, M. Analgesic and Anti-inflammatory Activity of Lactuca sativa Seed Extract in Rats. J. Ethnopharmacol. 2004, 92 (2-3), 325–329. [CrossRef]
  383. Gopal, S. S.; Lakshmi, M. J.; Sharavana, G.; Sathaiah, G.; Sreerama, Y. N.; Baskaran, V. Lactucaxanthin - a Potential Anti-diabetic Carotenoid from Lettuce (Lactuca sativa) Inhibits α-Amylase and α-Glucosidase Activity In Vitro and in Diabetic Rats. Food Funct. 2017, 8 (3), 1124–1131. [CrossRef]
  384. Ismail, H.; Gillespie, A. L.; Calderwood, D.; Iqbal, H.; Gallagher, C.; Chevallier, O. P.; Elliott, C. T.; Pan, X.; Mirza, B.; Green, B. D. The Health Promoting Bioactivities of Lactuca sativa can be Enhanced by Genetic Modulation of Plant Secondary Metabolites. Metabolites 2019, 9 (5), 97. [CrossRef]
  385. Farzaei, F.; Morovati, M. R.; Farjadmand, F.; Farzaei, M. H. A Mechanistic Review on Medicinal Plants Used for Diabetes Mellitus in Traditional Persian Medicine. J. Evid.-Based Complementary Altern. Med. 2017, 22 (4), 944–955. [CrossRef]
  386. Assefa, A. D.; Hur, O. S.; Hahn, B. S.; Kim, B.; Ro, N. Y.; Rhee, J. H. Nutritional Metabolites of Red Pigmented Lettuce (Lactuca sativa) Germplasm and Correlations with Selected Phenotypic Characters. Foods 2021, 10 (10), 2504. [CrossRef]
  387. Omokhua-Uyi, A. G.; Van Staden, J. Phytomedicinal relevance of South African Cucurbitaceae species and their safety assessment: A review. J. Ethnopharmacol. 2020, 259, 112967. [CrossRef]
  388. Prajapati, R. P.; Kalariya, M.; Parmar, S. K.; Sheth, N. R. Phytochemical and pharmacological review of Lagenaria sicereria. J. Ayurveda Integr. Med. 2010, 1 (4), 266–272. [CrossRef]
  389. Sulaiman, S. F.; Ooi, K. L.; Supriatno. Antioxidant and α-glucosidase inhibitory activities of cucurbit fruit vegetables and identification of active and major constituents from phenolic-rich extracts of Lagenaria siceraria and Sechium edule. J. Agric. Food Chem. 2013, 61 (42), 10080–10090. [CrossRef]
  390. Roopan, S. M.; Devi Rajeswari, V.; Kalpana, V. N.; Elango, G. Biotechnology and pharmacological evaluation of Indian vegetable crop Lagenaria siceraria: an overview. Appl. Microbiol. Biotechnol. 2016, 100 (3), 1153–1162. [CrossRef]
  391. Batool, S.; Khera, R. A.; Hanif, M. A.; Ayub, M. A. Bay Leaf. Medicinal Plants South Asia 2020, 63–74. [CrossRef]
  392. Mohammed, R. R.; Omer, A. K.; Yener, Z.; Uyar, A.; Ahmed, A. K. Biomedical Effects of Laurus nobilis L. Leaf Extract on Vital Organs in Streptozotocin-Induced Diabetic Rats: Experimental Research. Ann. Med. Surg. 2020, 61, 188–197. [CrossRef]
  393. USMANI, Q.; AHMAD, A.; JAMALDEEN, F. Laurus nobilis L., (Habb-ul-Ghar), A Review on Phytochemistry, Pharmacology and Ethnomedicinal Uses. J. Drug Deliv. Ther. 2021, 11 (5), 136–144. [CrossRef]
  394. Heghes, S. C.; Filip, L.; Vostinaru, O.; Mogosan, C.; Miere, D.; Iuga, C. A.; Moldovan, M. Essential Oil-Bearing Plants From Balkan Peninsula: Promising Sources for New Drug Candidates for the Prevention and Treatment of Diabetes Mellitus and Dyslipidemia. Front. Pharmacol. 2020, 11, 989. [CrossRef]
  395. Ibrahim, S. R.; Mohamed, G. A. Litchi chinensis: Medicinal Uses, Phytochemistry, and Pharmacology. J. Ethnopharmacol. 2015, 174, 492–513. [CrossRef]
  396. Zhang, Y.; Jin, D.; An, X.; Duan, L.; Duan, Y.; Lian, F. Lychee Seed as a Potential Hypoglycemic Agent, and Exploration of its Underlying Mechanisms. Front. Pharmacol. 2021, 12, 737803. [CrossRef]
  397. Li, C. Q.; Liao, X. B.; Li, X. H.; Guo, J. W.; Qu, X. L.; Li, L. M. Zhong Yao Cai = Zhongyaocai = Journal of Chinese Medicinal Materials 2015, 38 (7), 1466–1471.
  398. Shendge, P. N.; Belemkar, S. Therapeutic Potential of Luffa acutangula: A Review on Its Traditional Uses, Phytochemistry, Pharmacology and Toxicological Aspects. Front. Pharmacol. 2018, 9, 1177. [CrossRef]
  399. Sharmin, R.; Khan, M.; Akhtar, M.; Alim, A.; Islam, M.; Anisuzzaman, A.; Ahmed, M. Hypoglycemic and Hypolipidemic Effects of Cucumber, White Pumpkin and Ridge Gourd in Alloxan Induced Diabetic Rats. J. Sci. Res. 2012, 5 (1), 161–170. [CrossRef]
  400. Hammam, W. E.; Gad, A. M.; Gad, M. K.; Kirollos, F. N.; Yassin, N. A.; Tantawi, M.; El Hawary, S. Pyrus communis L. (Pear) and Malus domestica Borkh. (Apple) Leaves Lipoidal Extracts as Sources for Beta-Sitosterol Rich Formulae and Their Wound Healing Evaluation. Nat. Prod. Res. 2022, 1–5. [CrossRef]
  401. Hyson, D. A. A Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health. Adv. Nutr. 2011, 2 (5), 408–420. [CrossRef]
  402. Chen, Z.; Yu, L.; Liu, W.; Zhang, J.; Wang, N.; Chen, X. Research Progress of Fruit Color Development in Apple (Malus domestica Borkh.). Plant Physiol. Biochem. 2021, 162, 267–279. [CrossRef]
  403. Williamson, G. The Role of Polyphenols in Modern Nutrition. Nutr. Bull. 2017, 42 (3), 226–235. [CrossRef]
  404. Waldbauer, K.; McKinnon, R.; Kopp, B. Apple Pomace as Potential Source of Natural Active Compounds. Planta Med. 2017, 83 (12-13), 994–1010. [CrossRef]
  405. Boyer, J.; Liu, R. H. Apple Phytochemicals and Their Health Benefits. Nutr. J. 2004, 3, 5. [CrossRef]
  406. Balasuriya, N.; Rupasinghe, H. P. Antihypertensive Properties of Flavonoid-Rich Apple Peel Extract. Food Chem. 2012, 135 (4), 2320–2325. [CrossRef]
  407. He, X.; Liu, R. H. Phytochemicals of Apple Peels: Isolation, Structure Elucidation, and Their Antiproliferative and Antioxidant Activities. J. Agric. Food Chem. 2008, 56 (21), 9905–9910. [CrossRef]
  408. Vasile, M.; Bunea, A.; Ioan, C. R.; Ioan, B. C.; Socaci, S.; Viorel, M. Phytochemical Content and Antioxidant Activity of Malus domestica Borkh Peel Extracts. Molecules 2021, 26 (24), 7636. [CrossRef]
  409. Wolfe, K.; Wu, X.; Liu, R. H. Antioxidant Activity of Apple Peels. J. Agric. Food Chem. 2003, 51(3), 609–614. [CrossRef]
  410. Garrido, G.; González, D.; Delporte, C.; Backhouse, N.; Quintero, G.; Núñez-Sellés, A. J.; Morales, M. A. Analgesic and Anti-inflammatory Effects of Mangifera indica L. Extract (Vimang). Phytother. Res. 2001, 15 (1), 18–21. [CrossRef]
  411. Gondi, M.; Prasada Rao, U. J. Ethanol Extract of Mango (Mangifera indica L.) Peel Inhibits α-Amylase and α-Glucosidase Activities, and Ameliorates Diabetes Related Biochemical Parameters in Streptozotocin (STZ)-Induced Diabetic Rats. J. Food Sci. Technol. 2015, 52 (12), 7883–7893. [CrossRef]
  412. Evans, S. F.; Meister, M.; Mahmood, M.; Eldoumi, H.; Peterson, S.; Perkins-Veazie, P.; Clarke, S. L.; Payton, M.; Smith, B. J.; Lucas, E. A. Mango Supplementation Improves Blood Glucose in Obese Individuals. Nutr. Metab. Insights 2014, 7, 77–84. [CrossRef]
  413. Roongpisuthipong, C.; Banphotkasem, S.; Komindr, S.; Tanphaichitr, V. Postprandial Glucose and Insulin Responses to Various Tropical Fruits of Equivalent Carbohydrate Content in Non-Insulin-Dependent Diabetes Mellitus. Diabetes Res. Clin. Pract. 1991, 14 (2), 123–131. [CrossRef]
  414. Khan, J.T.; Richi, A.E.; Riju, S.A.; Jalal, T.; Orchi, R.J.; Singh, S.; Bhagat, P.; Abdel-Wahab, Y.H.A.; Ansari, P. Evaluation of Antidiabetic Potential of Mangifera indica Leaf in Streptozotocin-Induced Type 2 Diabetic Rats: Focus on Glycemic Control and Cholesterol Regulation. Endocrines 2024, 5, 137-152. [CrossRef]
  415. Aderibigbe, A. O.; Emudianughe, T. S.; Lawal, B. A. Evaluation of the Antidiabetic Action of Mangifera indica in Mice. Phytother. Res. 2001, 15 (5), 456–458. [CrossRef]
  416. Ali-Shtayeh, M. S.; Jamous, R. M.; Abu-Zaitoun, S. Y.; Khasati, A. I.; Kalbouneh, S. R. Biological Properties and Bioactive Components of Mentha spicata L. Essential Oil: Focus on Potential Benefits in the Treatment of Obesity, Alzheimer's Disease, Dermatophytosis, and Drug-Resistant Infections. Evid. Based Complement. Alternat. Med. 2019, 2019, 3834265. [CrossRef]
  417. Mahboubi, M. Mentha spicata L. Essential Oil, Phytochemistry and Its Effectiveness in Flatulence. J. Tradit. Complement. Med. 2018, 11 (2), 75–81. [CrossRef]
  418. El Hassani, F. Z. Characterization, Activities, and Ethnobotanical Uses of Mentha Species in Morocco. Heliyon 2020, 6 (11), e05480. [CrossRef]
  419. Stohs, S. J.; Hartman, M. J. Review of the Safety and Efficacy of Moringa oleifera. Phytother. Res. 2015, 29 (6), 796–804. [CrossRef]
  420. Vergara-Jimenez, M.; Almatrafi, M. M.; Fernandez, M. L. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease. Antioxidants 2017, 6 (4), 91. [CrossRef]
  421. Vargas-Sánchez, K.; Garay-Jaramillo, E.; González-Reyes, R. E. Effects of Moringa oleifera on Glycaemia and Insulin Levels: A Review of Animal and Human Studies. Nutrients 2019, 11 (12), 2907. [CrossRef]
  422. Ahmad, J.; Khan, I.; Blundell, R. Moringa oleifera and glycemic control: A review of current evidence and possible mechanisms. Phytother. Res. 2019, 33 (11), 2841–2848. [CrossRef]
  423. Azad, S. B.; Ansari, P.; Azam, S.; Hossain, S. M.; Shahid, M. I.; Hasan, M.; Hannan, J. Anti-hyperglycaemic activity of Moringa oleifera is partly mediated by carbohydrase inhibition and glucose-fibre binding. Biosci. Rep. 2017, 37 (3), BSR20170059. [CrossRef]
  424. Ansari, P.; Khan, J. T.; Soultana, M.; Hunter, L.; Chowdhury, S.; Priyanka, S. K.; Paul, S. R.; Flatt, P. R.; Abdel-Wahab, Y. H. A. Insulin Secretory Actions of Polyphenols of Momordica Charantia Regulate Glucose Homeostasis in Alloxan-Induced Type 2 Diabetic Rats. RPS Pharmacy and Pharmacology Reports 2024, 3 (1), rqae005. [CrossRef]
  425. Bortolotti, M.; Mercatelli, D.; Polito, L. Momordica charantia, a Nutraceutical Approach for Inflammatory Related Diseases. Front. Pharmacol. 2019, 10, 486. [CrossRef]
  426. Grover, J. K.; Yadav, S. P. Pharmacological actions and potential uses of Momordica charantia: a review. J. Ethnopharmacol. 2004, 93 (1), 123–132. [CrossRef]
  427. Polito, L.; Bortolotti, M.; Maiello, S.; Battelli, M. G.; Bolognesi, A. Plants Producing Ribosome-Inactivating Proteins in Traditional Medicine. Molecules 2016, 21 (11), 1560. [CrossRef]
  428. Chuang, C.; Hsu, C.; Chao, C.; Wein, Y.; Kuo, Y.; Huang, C. Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.). J. Biomed. Sci. 2006, 13 (6), 763-772. [CrossRef]
  429. Mahmoud, M. F.; El Ashry, F. E.; El Maraghy, N. N.; Fahmy, A. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats. Pharm. Biol. 2017, 55 (1), 758–765. [CrossRef]
  430. Chandru, S.; Vishwanath, P.; Devegowda, D.; Ramasamudra, S. N.; Prashant, A.; Hathur, B. Evaluation of Protein Kinase Cβ and PPARγ Activity in Diabetic Rats Supplemented with Momordica charantia. J. Clin. Diagn. Res. 2016, 10 (4), BF01–BF4. [CrossRef]
  431. Shibib, B. A.; Khan, L. A.; Rahman, R. Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem. J. 1993, 292 (Pt 1), 267–270. [CrossRef]
  432. Gadang, V.; Gilbert, W.; Hettiararchchy, N.; Horax, R.; Katwa, L.; Devareddy, L. Dietary bitter melon seed increases peroxisome proliferator-activated receptor-γ gene expression in adipose tissue, down-regulates the nuclear factor-κB expression, and alleviates the symptoms associated with metabolic syndrome. J. Med. Food 2011, 14 (1-2), 86–93. [CrossRef]
  433. Jiao, Y.; Wang, X.; Jiang, X.; Kong, F.; Wang, S.; Yan, C. Antidiabetic Effects of Morus alba Fruit Polysaccharides on High-Fat Diet- and Streptozotocin-Induced Type 2 Diabetes in Rats. J. Ethnopharmacol. 2017, 199, 119–127. [CrossRef]
  434. Morales Ramos, J. G.; Esteves Pairazamán, A. T.; Mocarro Willis, M.; Collantes Santisteban, S.; Caldas Herrera, E. Medicinal Properties of Morus alba for the Control of Type 2 Diabetes Mellitus: A Systematic Review. F1000Research 2021, 10, 1022. [CrossRef]
  435. Chan, E. W.; Lye, P. Y.; Wong, S. K. Phytochemistry, Pharmacology, and Clinical Trials of Morus alba. Chin. J. Nat. Med. 2016, 14 (1), 17–30. [CrossRef]
  436. Zhong, X.; Yang, H.; Ke, X. X.; Cui, H. J. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica 2022, 47 (9), 2373–2391. [CrossRef]
  437. Yang, Y.; Yang, X.; Xu, B.; Zeng, G.; Tan, J.; He, X.; Hu, C.; Zhou, Y. Chemical Constituents of Morus alba L. and Their Inhibitory Effect on 3T3-L1 Preadipocyte Proliferation and Differentiation. Fitoterapia 2014, 98, 222–227. [CrossRef]
  438. Husna, F.; Suyatna, F. D.; Arozal, W.; Poerwaningsih, E. H. Anti-Diabetic Potential of Murraya Koenigii (L.) and its Antioxidant Capacity in Nicotinamide-Streptozotocin Induced Diabetic Rats. Drug Res. 2018, 68 (11), 631–636. [CrossRef]
  439. Balakrishnan, R.; Vijayraja, D.; Jo, S. H.; Ganesan, P.; Su-Kim, I.; Choi, D. K. Medicinal Profile, Phytochemistry, and Pharmacological Activities of Murraya koenigii and its Primary Bioactive Compounds. Antioxidants (Basel, Switz.) 2020, 9 (2), 101. [CrossRef]
  440. Arulselvan, P.; Subramanian, S. P. Beneficial Effects of Murraya koenigii Leaves on Antioxidant Defense System and Ultrastructural Changes of Pancreatic Beta-Cells in Experimental Diabetes in Rats. Chem.-Biol. Interact. 2007, 165 (2), 155–164. [CrossRef]
  441. Abeysinghe, D. T.; Alwis, D.; Kumara, K.; Chandrika, U. G. Nutritive Importance and Therapeutics Uses of Three Different Varieties (Murraya koenigii, Micromelum minutum, and Clausena indica) of Curry Leaves: An Updated Review. Evid. Based Complement. Alternat. Med. 2021, 2021, 5523252. [CrossRef]
  442. Barman, R.; Bora, P. K.; Saikia, J.; Kemprai, P.; Saikia, S. P.; Haldar, S.; Banik, D. Nutmegs and Wild Nutmegs: An Update on Ethnomedicines, Phytochemicals, Pharmacology, and Toxicity of the Myristicaceae Species. Phytother. Res. 2021, 35 (9), 4632–4659. [CrossRef]
  443. Nguyen, P. H.; Le, T. V.; Kang, H. W.; Chae, J.; Kim, S. K.; Kwon, K. I.; Seo, D. B.; Lee, S. J.; Oh, W. K. AMP-activated protein kinase (AMPK) activators from Myristica fragrans (nutmeg) and their anti-obesity effect. Bioorg. Med. Chem. Lett. 2010, 20 (14), 4128–4131. [CrossRef]
  444. Zhao, W.; Song, F.; Hu, D.; Chen, H.; Zhai, Q.; Lu, W.; Zhao, J.; Zhang, H.; Chen, W.; Gu, Z.; Wang, G. The Protective Effect of Myristica fragrans Houtt. Extracts Against Obesity and Inflammation by Regulating Free Fatty Acids Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients 2020, 12 (9), 2507. [CrossRef]
  445. Arulmozhi, D.; Kurian, R.; Veeranjaneyulu, A.; Bodhankar, S. Antidiabetic and Antihyperlipidemic Effects of Myristica fragrans in Animal Models. Pharmaceutical Biol. 2007, 45 (1), 64-68. [CrossRef]
  446. Ali, B. H.; Blunden, G. Pharmacological and Toxicological Properties of Nigella sativa. Phytother. Res. 2003, 17 (4), 299–305. [CrossRef]
  447. Tiji, S.; Bouhrim, M.; Addi, M.; Drouet, S.; Lorenzo, J. M.; Hano, C.; Bnouham, M.; Mimouni, M. Linking the Phytochemicals and the α-Glucosidase and α-Amylase Enzyme Inhibitory Effects of Nigella sativa Seed Extracts. Foods 2021, 10 (8), 1818. [CrossRef]
  448. Hannan, J. M. A.; Ansari, P.; Haque, A.; Sanju, A.; Huzaifa, A.; Rahman, A.; Ghosh, A.; Azam, S. Nigella Sativa Stimulates Insulin Secretion from Isolated Rat Islets and Inhibits the Digestion and Absorption of (CH2O)n in the Gut. Bioscience Reports 2019, 39 (8), BSR20190723. [CrossRef]
  449. Kooti, W.; Hasanzadeh-Noohi, Z.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Phytochemistry, Pharmacology, and Therapeutic Uses of Black Seed (Nigella sativa). Chin. J. Nat. Med. 2016, 14 (10), 732–745. [CrossRef]
  450. Mohebbati, R.; Abbasnezhad, A. Effects of Nigella sativa on Endothelial Dysfunction in Diabetes Mellitus: A Review. J. Ethnopharmacol. 2020, 252, 112585. [CrossRef]
  451. Baliga, M. S.; Jimmy, R.; Thilakchand, K. R.; Sunitha, V.; Bhat, N. R.; Saldanha, E.; Rao, S.; Rao, P.; Arora, R.; Palatty, P. L. Ocimum sanctum L (Holy Basil or Tulsi) and Its Phytochemicals in the Prevention and Treatment of Cancer. Nutrition and Cancer 2013, 65 (Suppl 1), 26–35. [CrossRef]
  452. Cohen, M. M. Tulsi - Ocimum sanctum: A Herb for All Reasons. Journal of Ayurveda and Integrative Medicine 2014, 5 (4), 251–259. [CrossRef]
  453. Pattanayak, P.; Behera, P.; Das, D.; Panda, S. K. Ocimum sanctum Linn. A Reservoir Plant for Therapeutic Applications: An Overview. Pharmacognosy Reviews 2010, 4 (7), 95–105. [CrossRef]
  454. P, S.; Zinjarde, S. S.; Bhargava, S. Y.; Kumar, A. R. Potent α-Amylase Inhibitory Activity of Indian Ayurvedic Medicinal Plants. BMC Complementary and Alternative Medicine 2011, 11, 5. [CrossRef]
  455. Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A. M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade. Molecules 2007, 12 (8), 1679–1719. [CrossRef]
  456. Guex, C. G.; Reginato, F. Z.; de Jesus, P. R.; Brondani, J. C.; Lopes, G.; Bauermann, L. F. Antidiabetic Effects of Olea europaea L. Leaves in Diabetic Rats Induced by High-Fat Diet and Low-Dose Streptozotocin. J. Ethnopharmacol. 2019, 235, 1–7. [CrossRef]
  457. Hashmi, M. A.; Khan, A.; Hanif, M.; Farooq, U.; Perveen, S. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive). Evid.-Based Complement. Altern. Med. 2015, 541591. [CrossRef]
  458. Gouvinhas, I.; Machado, N.; Sobreira, C.; Domínguez-Perles, R.; Gomes, S.; Rosa, E.; Barros, A. Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules 2017, 22 (11), 1986. [CrossRef]
  459. Samarji, R.; Balbaa, M. Anti-diabetic Activity of Different Oils through Their Effect on Arylsulfatases. J. Diabetes Metab. Disord. 2014, 13 (1), 116. [CrossRef]
  460. Schwingshackl, L.; Lampousi, A. M.; Portillo, M. P.; Romaguera, D.; Hoffmann, G.; Boeing, H. Olive Oil in the Prevention and Management of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Cohort Studies and Intervention Trials. Nutr. Diabetes 2017, 7 (4), e262. [CrossRef]
  461. Taleb, M. H.; Abdeltawab, N. F.; Shamma, R. N.; Abdelgayed, S. S.; Mohamed, S. S.; Farag, M. A.; Ramadan, M. A. Origanum vulgare L. Essential Oil as a Potential Anti-Acne Topical Nanoemulsion-In Vitro and In Vivo Study. Molecules (Basel, Switz.) 2018, 23 (9), 2164. [CrossRef]
  462. Pesavento, G.; Maggini, V.; Maida, I.; Lo Nostro, A.; Calonico, C.; Sassoli, C.; Perrin, E.; Fondi, M.; Mengoni, A.; Chiellini, C.; Vannacci, A.; Gallo, E.; Gori, L.; Bogani, P.; Bilia, A. R.; Campana, S.; Ravenni, N.; Dolce, D.; Firenzuoli, F.; Fani, R. Essential Oil from Origanum vulgare Completely Inhibits the Growth of Multidrug-Resistant Cystic Fibrosis Pathogens. Nat. Prod. Commun. 2016, 11 (6), 861–864.
  463. Yu, H.; Zhang, P.; Liu, H.; Sun, X.; Liang, J.; Sun, L.; Chen, Y. Hypoglycemic Activity of Origanum vulgare L. and Its Main Chemical Constituents Identified with HPLC-ESI-QTOF-MS. Food Funct. 2021, 12 (6), 2580–2590. [CrossRef]
  464. Tripathy, B.; Sahoo, N.; Sahoo, S. K. Trends in Diabetes Care with Special Emphasis to Medicinal Plants: Advancement and Treatment. Biocatal. Agric. Biotechnol. 2021, 33, 102014. [CrossRef]
  465. Rodriguez-Garcia, I.; Silva-Espinoza, B. A.; Ortega-Ramirez, L. A.; Leyva, J. M.; Siddiqui, M. W.; Cruz-Valenzuela, M. R.; Gonzalez-Aguilar, G. A.; Ayala-Zavala, J. F. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products. Crit. Rev. Food Sci. Nutr. 2016, 56 (10), 1717–1727. [CrossRef]
  466. De Faveri, A.; De Faveri, R.; Broering, M. F.; Bousfield, I. T.; Goss, M. J.; Muller, S. P.; Pereira, R. O.; de Oliveira E Silva, A. M.; Machado, I. D.; Quintão, N.; Santin, J. R. Effects of Passion Fruit Peel Flour (Passiflora edulis f. flavicarpa O. Deg.) in Cafeteria Diet-Induced Metabolic Disorders. J. Ethnopharmacol. 2020, 250, 112482. [CrossRef]
  467. He, X.; Luan, F.; Yang, Y.; Wang, Z.; Zhao, Z.; Fang, J.; Wang, M.; Zuo, M.; Li, Y. Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front. Pharmacol. 2020, 11, 617. [CrossRef]
  468. De Faveri, A.; De Faveri, R.; Broering, M. F.; Bousfield, I. T.; Goss, M. J.; Muller, S. P.; Pereira, R. O.; de Oliveira E Silva, A. M.; Machado, I. D.; Quintão, N.; Santin, J. R. Effects of Passion Fruit Peel Flour (Passiflora edulis f. flavicarpa O. Deg.) in Cafeteria Diet-Induced Metabolic Disorders. J. Ethnopharmacol. 2020, 250, 112482. [CrossRef]
  469. Kitada, M.; Ogura, Y.; Maruki-Uchida, H.; Sai, M.; Suzuki, T.; Kanasaki, K.; Hara, Y.; Seto, H.; Kuroshima, Y.; Monno, I.; Koya, D. The Effect of Piceatannol from Passion Fruit (Passiflora edulis) Seeds on Metabolic Health in Humans. Nutrients 2017, 9 (10), 1142. [CrossRef]
  470. Uchida-Maruki, H.; Inagaki, H.; Ito, R.; Kurita, I.; Sai, M.; Ito, T. Piceatannol lowers the blood glucose level in diabetic mice. Biol. Pharm. Bull. 2015, 38 (4), 629–633. [CrossRef]
  471. Silva, R. O.; Damasceno, S. R.; Brito, T. V.; Dias, J. M.; Fontenele, A. M.; Braúna, I. S.; Júnior, J. S.; Maciel, J. S.; de Paula, R. C.; Ribeiro, R. A.; Souza, M. H.; Freitas, A. L.; Medeiros, J. V.; Silva, D. C.; Barbosa, A. L. Polysaccharide fraction isolated from Passiflora edulis inhibits the inflammatory response and the oxidative stress in mice. J. Pharm. Pharmacol. 2015, 67 (7), 1017–1027. [CrossRef]
  472. Dzotam, J. K.; Touani, F. K.; Kuete, V. Antibacterial and antibiotic-modifying activities of three food plants (Xanthosoma mafaffa Lam., Moringa oleifera (L.) Schott and Passiflora edulis Sims) against multidrug-resistant (MDR) Gram-negative bacteria. BMC Complement. Altern. Med. 2016, 16, 9. [CrossRef]
  473. Zhang, Y. J.; Zhou, T.; Wang, F.; Zhou, Y.; Li, Y.; Zhang, J. J.; Zheng, J.; Xu, D. P.; Li, H. B. The Effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on Alcohol-Induced Liver Injury. Int. J. Mol. Sci. 2016, 17 (10), 1616. [CrossRef]
  474. Panelli, M. F.; Pierine, D. T.; de Souza, S.; Ferron, A.; Garcia, J. L.; Santos, K.; Belin, M.; Lima, G.; Borguini, M. G.; Minatel, I. O.; Cicogna, A. C.; Francisqueti, F. V.; Corrêa, C. R. Bark of Passiflora edulis Treatment Stimulates Antioxidant Capacity, and Reduces Dyslipidemia and Body Fat in db/db Mice. Antioxidants (Basel, Switz.) 2018, 7 (9), 120. [CrossRef]
  475. Dreher, M. L.; Davenport, A. J. Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr. 2013, 53 (7), 738–750. [CrossRef]
  476. Lima, C. R.; Vasconcelos, C. F.; Costa-Silva, J. H.; Maranhão, C. A.; Costa, J.; Batista, T. M.; Carneiro, E. M.; Soares, L. A.; Ferreira, F.; Wanderley, A. G. Anti-Diabetic Activity of Extract from Persea americana Mill. Leaf via the Activation of Protein Kinase B (PKB/Akt) in Streptozotocin-Induced Diabetic Rats. J. Ethnopharmacol. 2012, 141 (1), 517–525. [CrossRef]
  477. Ojo, O. A.; Amanze, J. C.; Oni, A. I.; Grant, S.; Iyobhebhe, M.; Elebiyo, T. C.; Rotimi, D.; Asogwa, N. T.; Oyinloye, B. E.; Ajiboye, B. O.; Ojo, A. B. Antidiabetic Activity of Avocado Seeds (Persea americana Mill.) in Diabetic Rats via Activation of PI3K/AKT Signaling Pathway. Sci. Rep. 2022, 12 (1), 2919. [CrossRef]
  478. Ezejiofor, A. N.; Okorie, A.; Orisakwe, O. E. Hypoglycaemic and Tissue-Protective Effects of the Aqueous Extract of Persea americana Seeds on Alloxan-Induced Albino Rats. Malays. J. Med. Sci. 2013, 20 (5), 31–39. https://pubmed.ncbi.nlm.nih.gov/24643349/.
  479. Kouamé, N. M.; Koffi, C.; N'Zoué, K. S.; Yao, N.; Doukouré, B.; Kamagaté, M. Comparative Antidiabetic Activity of Aqueous, Ethanol, and Methanol Leaf Extracts of Persea americana and Their Effectiveness in Type 2 Diabetic Rats. Evid.-Based Complement. Altern. Med. 2019, 5984570. [CrossRef]
  480. Farzaei, M. H.; Abbasabadi, Z.; Ardekani, M. R.; Rahimi, R.; Farzaei, F. Parsley: A Review of Ethnopharmacology, Phytochemistry and Biological Activities. J. Tradit. Chin. Med. 2013, 33 (6), 815–826. [CrossRef]
  481. Ozsoy-Sacan, O.; Yanardag, R.; Orak, H.; Ozgey, Y.; Yarat, A.; Tunali, T. Effects of Parsley (Petroselinum crispum) Extract versus Glibornuride on the Liver of Streptozotocin-Induced Diabetic Rats. J. Ethnopharmacol. 2006, 104 (1-2), 175–181. [CrossRef]
  482. Abou Khalil, N. S.; Abou-Elhamd, A. S.; Wasfy, S. I.; El Mileegy, I. M.; Hamed, M. Y.; Ageely, H. M. Antidiabetic and Antioxidant Impacts of Desert Date (Balanites aegyptiaca) and Parsley (Petroselinum sativum) Aqueous Extracts: Lessons from Experimental Rats. J. Diabetes Res. 2016, 2016, 8408326. [CrossRef]
  483. Mahmood, S.; Hussain, S.; Malik, F. Critique of Medicinal Conspicuousness of Parsley (Petroselinum crispum): A Culinary Herb of Mediterranean Region. Pak. J. Pharm. Sci. 2014, 27 (1), 193–202.
  484. Almuaigel, M. F.; Seif, M. A.; Albuali, H. W.; Alharbi, O.; Alhawash, A. Hypoglycemic and hypolipidemic effects of aqueous extract of Phaseolus vulgaris pods in streptozotocin-diabetic rats. Biomed. Pharmacother. 2017, 94, 742–746. [CrossRef]
  485. Sutedja, A. M.; Yanase, E.; Batubara, I.; Fardiaz, D.; Lioe, H. N. Antidiabetic components from the hexane extract of red kidney beans (Phaseolus vulgaris L.): isolation and structure determination. Biosci. Biotechnol. Biochem. 2020, 84 (3), 598–605. [CrossRef]
  486. Wang, P.; Leng, X.; Duan, J.; Zhu, Y.; Wang, J.; Yan, Z.; Min, S.; Wei, D.; Wang, X. Functional component isolated from Phaseolus vulgaris lectin exerts in vitro and in vivo anti-tumor activity through potentiation of apoptosis and immunomodulation. Molecules 2021, 26 (2), 498. [CrossRef]
  487. Shi, Z.; Zhu, Y.; Teng, C.; Yao, Y.; Ren, G.; Richel, A. Anti-obesity effects of α-amylase inhibitor enriched-extract from white common beans (Phaseolus vulgaris L.) associated with the modulation of gut microbiota composition in high-fat diet-induced obese rats. Food Funct. 2020, 11 (2), 1624–1634. [CrossRef]
  488. Alhaider, I. A.; Mohamed, M. E.; Ahmed, K.; Kumar, A. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells. Front. Pharmacol. 2017, 8, 592. [CrossRef]
  489. Mia, M. A.; Mosaib, M. G.; Khalil, M. I.; Islam, M. A.; Gan, S. H. Potentials and Safety of Date Palm Fruit against Diabetes: A Critical Review. Foods 2020, 9 (11), 1557. [CrossRef]
  490. El Abed, H.; Chakroun, M.; Fendri, I.; Makni, M.; Bouaziz, M.; Drira, N.; Mejdoub, H.; Khemakhem, B. Extraction Optimization and In Vitro and In Vivo Anti-Postprandial Hyperglycemia Effects of Inhibitor from Phoenix dactylifera L. Parthenocarpic Fruit. Biomed. Pharmacother. 2017, 88, 835–843. [CrossRef]
  491. Tang, Z. X.; Shi, L. E.; Aleid, S. M. Date Fruit: Chemical Composition, Nutritional and Medicinal Values, Products. J. Sci. Food Agric. 2013, 93 (10), 2351–2361. [CrossRef]
  492. Saini, R.; Sharma, N.; Oladeji, O. S.; Sourirajan, A.; Dev, K.; Zengin, G.; El-Shazly, M.; Kumar, V. Traditional Uses, Bioactive Composition, Pharmacology, and Toxicology of Phyllanthus emblica Fruits: A Comprehensive Review. J. Ethnopharmacol. 2022, 282, 114570. [CrossRef]
  493. Gaire, B.; Subedi, L. Phytochemistry, Pharmacology and Medicinal Properties of Phyllanthus emblica Linn. Chin. J. Integr. Med. 2014. [CrossRef]
  494. Krishnaveni, M.; Mirunalini, S. Therapeutic Potential of Phyllanthus emblica (Amla): The Ayurvedic Wonder. J. Basic Clin. Physiol. Pharmacol. 2010, 21 (1), 93–105. [CrossRef]
  495. Huang, H. Z.; Qiu, M.; Lin, J. Z.; Li, M. Q.; Ma, X. T.; Ran, F.; Luo, C. H.; Wei, X. C.; Xu, R. C.; Tan, P.; Fan, S. H.; Yang, M.; Han, L.; Zhang, D. K. Potential Effect of Tropical Fruits Phyllanthus emblica L. for the Prevention and Management of Type 2 Diabetic Complications: A Systematic Review of Recent Advances. Eur. J. Nutr. 2021, 60 (7), 3525–3542. [CrossRef]
  496. Fazal, F.; Mane, P. P.; Rai, M. P.; Thilakchand, K. R.; Bhat, H. P.; Kamble, P. S.; Palatty, P. L.; Baliga, M. S. The Phytochemistry, Traditional Uses and Pharmacology of Piper Betel Linn (Betel Leaf): A Pan-Asiatic Medicinal Plant. Chinese Journal of Integrative Medicine 2014, Advance online publication. [CrossRef]
  497. Santhakumari, P.; Prakasam, A.; Pugalendi, K. V. Antihyperglycemic Activity of Piper betle Leaf on Streptozotocin-Induced Diabetic Rats. Journal of Medicinal Food 2006, 9 (1), 108–112. [CrossRef]
  498. Nayaka, N.; Sasadara, M.; Sanjaya, D. A.; Yuda, P.; Dewi, N.; Cahyaningsih, E.; Hartati, R. Piper betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications. Molecules 2021, 26(8), 2321. [CrossRef]
  499. Arambewela, L. S.; Arawwawala, L. D.; Ratnasooriya, W. D. Antidiabetic Activities of Aqueous and Ethanolic Extracts of Piper betle Leaves in Rats. J. Ethnopharmacol. 2005, 102(2), 239–245. [CrossRef]
  500. Zilani, M. N.; Sultana, T.; Asabur Rahman, S. M.; Anisuzzman, M.; Islam, M. A.; Shilpi, J. A.; Hossain, M. G. Chemical composition and pharmacological activities of Pisum sativum. BMC Complement. Altern. Med. 2017, 17 (1), 171. [CrossRef]
  501. Gupta, R.; Sharma, A. K.; Dobhal, M. P.; Sharma, M. C.; Gupta, R. S. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J. Diabetes 2011, 3 (1), 29–37. [CrossRef]
  502. Fatima, N.; Hafizur, R. M.; Hameed, A.; Ahmed, S.; Nisar, M.; Kabir, N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur. J. Nutr. 2016, 56 (2), 591–601. [CrossRef]
  503. Liu, J. P.; Qian, Y. F.; Qin, G. Y.; Zhao, L. Y.; Chen, G. T. Antidiabetic activities of glycoprotein from pea (Pisum sativum L.) in STZ-induced diabetic mice. Food Funct. 2021, 12 (11), 5087–5095. [CrossRef]
  504. Gupta, S.; Chhajed, M.; Arora, S.; Thakur, G.; Gupta, R. Medicinal Value of Apricot: A Review. Indian J. Pharm. Sci. 2018, 80 (5). [CrossRef]
  505. Al-Soufi, M.; Alshwyeh, H.; Alqahtani, H.; Al-Zuwaid, S.; Al-Ahmed, F.; Al-Abdulaziz, F. et al. A Review with Updated Perspectives on Nutritional and Therapeutic Benefits of Apricot and the Industrial Application of Its Underutilized Parts. Molecules 2022, 27 (15), 5016. [CrossRef]
  506. Raafat, K.; El-Darra, N.; Saleh, F. A.; Rajha, H. N.; Maroun, R. G.; Louka, N. Infrared-Assisted Extraction and HPLC-Analysis of Prunus armeniaca L. Pomace and Detoxified-Kernel and Their Antidiabetic Effects. Phytochem. Anal. 2018, 29 (2), 156–167. [CrossRef]
  507. Egbekun, M. K.; Akowe, J. I.; Ede, R. J. Physico-Chemical and Sensory Properties of Formulated Syrup from Black Plum (Vitex doniana) Fruit. Plant Foods Hum. Nutr. 1996, 49 (4), 301–306. [CrossRef]
  508. Lombardi-Boccia, G.; Lucarini, M.; Lanzi, S.; Aguzzi, A.; Cappelloni, M. Nutrients and Antioxidant Molecules in Yellow Plums (Prunus domestica L.) from Conventional and Organic Productions: A Comparative Study. J. Agric. Food Chem. 2004, 52 (1), 90–94. [CrossRef]
  509. Bouayed, J.; Rammal, H.; Dicko, A.; Younos, C.; Soulimani, R. Chlorogenic Acid, a Polyphenol from Prunus domestica (Mirabelle), with Coupled Anxiolytic and Antioxidant Effects. J. Neurol. Sci. 2007, 262 (1-2), 77–84. [CrossRef]
  510. Tinker, L. F.; Schneeman, B. O.; Davis, P. A.; Gallaher, D. D.; Waggoner, C. R. Consumption of Prunes as a Source of Dietary Fiber in Men with Mild Hypercholesterolemia. Am. J. Clin. Nutr. 1991, 53 (5), 1259–1265. [CrossRef]
  511. Birari, R. B.; Bhutani, K. K. Pancreatic Lipase Inhibitors from Natural Sources: Unexplored Potential. Drug Discov. Today 2007, 12 (19-20), 879–889. [CrossRef]
  512. Youssef, F. S.; Ashour, M. L.; El-Beshbishy, H. A.; Ahmed Hamza, A.; Singab, A.; Wink, M. Pinoresinol-4-O-β-D-Glucopyranoside: A Lignan from Prunes (Prunus domestica) Attenuates Oxidative Stress, Hyperglycemia and Hepatic Toxicity In Vitro and In Vivo. J. Pharm. Pharmacol. 2020, 72 (12), 1830–1839. [CrossRef]
  513. Lin, S. H.; Huang, K. J.; Weng, C. F.; Shiuan, D. Exploration of Natural Product Ingredients as Inhibitors of Human HMG-CoA Reductase through Structure-Based Virtual Screening. Drug Des. Devel. Ther. 2015, 9, 3313–3324. [CrossRef]
  514. Ullah, H.; Sommella, E.; Santarcangelo’, C.; D'Avino, D.; Rossi, A.; Dacrema, M.; Minno, A. D.; Di Matteo, G.; Mannina, L.; Campiglia, P.; Magni, P.; Daglia, M. Hydroethanolic Extract of Prunus domestica L.: Metabolite Profiling and In Vitro Modulation of Molecular Mechanisms Associated to Cardiometabolic Diseases. Nutrients 2022, 14 (2), 340. [CrossRef]
  515. Karimi, Z.; Firouzi, M.; Dadmehr, M.; Javad-Mousavi, S. A.; Bagheriani, N.; Sadeghpour, O. Almond as a nutraceutical and therapeutic agent in Persian medicine and modern phytotherapy: A narrative review. Phytotherapy Research 2021, 35 (6), 2997–3012. [CrossRef]
  516. Kato, K.; Vo, P.; Furuyashiki, T.; Kamasaka, H.; Kuriki, T. Co-ingestion of whole almonds and almond oil with carbohydrate suppresses postprandial glycaemia in mice in an insulin-dependent and insulin-independent manner. J. Nutr. Sci. 2019, 8, e25. [CrossRef]
  517. Kim, B.; Kim, K. W.; Lee, S.; Jo, C.; Lee, K.; Ham, I.; Choi, H. Y. Endothelium-Dependent Vasorelaxant Effect of Prunus persica Branch on Isolated Rat Thoracic Aorta. Nutrients 2019, 11 (8), 1816. [CrossRef]
  518. Lee, D.; Qi, Y.; Kim, R.; Song, J.; Kim, H.; Kim, H. Y.; Jang, D. S.; Kang, K. S. Methyl Caffeate Isolated from the Flowers of Prunus persica (L.) Batsch Enhances Glucose-Stimulated Insulin Secretion. Biomolecules 2021, 11 (2), 279. [CrossRef]
  519. Nowicka, P.; Wojdyło, A.; Laskowski, P. Inhibitory Potential against Digestive Enzymes Linked to Obesity and Type 2 Diabetes and Content of Bioactive Compounds in 20 Cultivars of the Peach Fruit Grown in Poland. Plant Foods Hum. Nutr. 2018, 73 (4), 314–320. [CrossRef]
  520. Zhang, X.; Su, M.; Du, J.; Zhou, H.; Li, X.; Li, X.; Ye, Z. Comparison of Phytochemical Differences of the Pulp of Different Peach [Prunus persica (L.) Batsch] Cultivars with Alpha-Glucosidase Inhibitory Activity Variations in China Using UPLC-Q-TOF/MS. Molecules 2019, 24 (10), 1968. [CrossRef]
  521. Bagri, P.; Ali, M.; Aeri, V.; Bhowmik, M.; Sultana, S. Antidiabetic effect of Punica granatum flowers: effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Food Chem. Toxicol. 2009, 47 (1), 50–54. [CrossRef]
  522. Das, S.; Barman, S. Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non-insulin-dependent diabetes mellitus albino rats. Indian J. Pharmacol. 2012, 44 (2), 219–224. [CrossRef]
  523. Fourati, M.; Smaoui, S.; Hlima, H. B.; Elhadef, K.; Braïek, O. B.; Ennouri, K.; Mtibaa, A. C.; Mellouli, L. Bioactive Compounds and Pharmacological Potential of Pomegranate (Punica granatum)–Seeds - A Review. Plant Foods Hum. Nutr. 2020, 75 (4), 477–486. [CrossRef]
  524. Nguyen Thanh, H.; Thi Huyen, N.; Van Khanh, N.; Kim Thu, D.; Thanh Tung, B. Phytochemicals and antidiabetic activity of the aqueous extract of the Punica granatum fruit in streptozotocin-induced diabetic mice. J. Basic Clin. Physiol. Pharmacol. 2019, 30 (4), 10.1515/jbcpp-2019-0061. [CrossRef]
  525. Gutiérrez, R. M.; Mitchell, S.; Solis, R. V. Psidium guajava: A Review of Its Traditional Uses, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2008, 117 (1), 1–27. [CrossRef]
  526. Paoli, P.; Cirri, P.; Caselli, A.; Ranaldi, F.; Bruschi, G.; Santi, A.; Camici, G. The Insulin-Mimetic Effect of Morin: A Promising Molecule in Diabetes Treatment. Biochim. Biophys. Acta 2013, 1830 (4), 3102–3111. [CrossRef]
  527. Rodríguez-Rodríguez, C.; Torres, N.; Gutiérrez-Uribe, J. A.; Noriega, L. G.; Torre-Villalvazo, I.; Leal-Díaz, A. M.; Antunes-Ricardo, M.; Márquez-Mota, C.; Ordaz, G.; Chavez-Santoscoy, R. A.; Serna-Saldivar, S. O.; Tovar, A. R. The Effect of Isorhamnetin Glycosides Extracted from Opuntia ficus-indica in a Mouse Model of Diet-Induced Obesity. Food Funct. 2015, 6 (3), 805–815. [CrossRef]
  528. Deguchi, Y.; Miyazaki, K. Anti-Hyperglycemic and Anti-Hyperlipidemic Effects of Guava Leaf Extract. Nutr. Metab. 2010, 7, 9. [CrossRef]
  529. Chu, S.; Zhang, F.; Wang, H.; Xie, L.; Chen, Z.; Zeng, W.; Zhou, Z.; Hu, F. Aqueous Extract of Guava (Psidium guajava L.) Leaf Ameliorates Hyperglycemia by Promoting Hepatic Glycogen Synthesis and Modulating Gut Microbiota. Front. Pharmacol. 2022, 13, 907702. [CrossRef]
  530. Luo, Y.; Peng, B.; Wei, W.; Tian, X.; Wu, Z. Antioxidant and Anti-Diabetic Activities of Polysaccharides from Guava Leaves. Molecules 2019, 24 (7), 1343. [CrossRef]
  531. Morais-Braga, M. F.; Carneiro, J. N.; Machado, A. J.; Dos Santos, A. T.; Sales, D. L.; Lima, L. F.; Figueredo, F. G.; Coutinho, H. D. Psidium guajava L., from Ethnobiology to Scientific Evaluation: Elucidating Bioactivity against Pathogenic Microorganisms. J. Ethnopharmacol. 2016, 194, 1140–1152. [CrossRef]
  532. Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A. M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Health Effects of Psidium guajava L. Leaves: An Overview of the Last Decade. Int. J. Mol. Sci. 2017, 18 (4), 897. [CrossRef]
  533. Rojas-Garbanzo, C.; Zimmermann, B. F.; Schulze-Kaysers, N.; Schieber, A. Characterization of Phenolic and Other Polar Compounds in Peel and Flesh of Pink Guava (Psidium guajava ‘Criolla’) by Ultra-High Performance Liquid Chromatography with Diode Array and Mass Spectrometric Detection. Food Res. Int. 2017, 100 (Pt 3), 445–453. [CrossRef]
  534. Shukla, S.; Chatterji, S.; Mehta, S.; Rai, P. K.; Singh, R. K.; Yadav, D. K.; Watal, G. Antidiabetic Effect of Raphanus sativus Root Juice. Pharm. Biol. 2011, 49 (1), 32–37. [CrossRef]
  535. Banihani, S. A. Radish (Raphanus sativus) and Diabetes. Nutrients 2017, 9 (9), 1014. [CrossRef]
  536. Gamba, M.; Asllanaj, E.; Raguindin, P.; Glisic, M.; Franco, O.; Minder, B.; et al. Nutritional and Phytochemical Characterization of Radish (Raphanus sativus): A Systematic Review. Trends Food Sci. Technol. 2021, 113, 205–218. [CrossRef]
  537. Hanlon, P. R.; Barnes, D. M. Phytochemical Composition and Biological Activity of 8 Varieties of Radish (Raphanus sativus L.) Sprouts and Mature Taproots. J. Food Sci. 2011, 76 (1), C185–C192. [CrossRef]
  538. Veenstra, J. P.; Johnson, J. J. Rosemary (Salvia rosmarinus): Health-Promoting Benefits and Food Preservative Properties. Int. J. Nutr. 2021, 6 (4), 1–10.
  539. de Macedo, L. M.; Santos, É.; Militão, L.; Tundisi, L. L.; Ataide, J. A.; Souto, E. B.; Mazzola, P. G. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and Its Topical Applications: A Review. Plants (Basel, Switz.) 2020, 9 (5), 651. [CrossRef]
  540. Bao, T. Q.; Li, Y.; Qu, C.; Zheng, Z. G.; Yang, H.; Li, P. Antidiabetic Effects and Mechanisms of Rosemary (Rosmarinus officinalis L.) and Its Phenolic Components. Am. J. Chin. Med. 2020, 48 (6), 1353–1368. [CrossRef]
  541. Jayanthy, G.; Roshana Devi, V.; Ilango, K.; Subramanian, S. P. Rosmarinic Acid Mediates Mitochondrial Biogenesis in Insulin Resistant Skeletal Muscle Through Activation of AMPK. J. Cell. Biochem. 2017, 118 (7), 1839–1848. [CrossRef]
  542. Naimi, M.; Vlavcheski, F.; Shamshoum, H.; Tsiani, E. Rosemary Extract as a Potential Anti-Hyperglycemic Agent: Current Evidence and Future Perspectives. Nutrients 2017, 9 (9), 968. [CrossRef]
  543. Veenstra, J. P.; Johnson, J. J. Rosemary (Salvia rosmarinus): Health-promoting benefits and food preservative properties. Int. J. Nutr. 2021, 6 (4), 1–10.
  544. Altinier, G.; Sosa, S.; Aquino, R. P.; Mencherini, T.; Della Loggia, R.; Tubaro, A. Characterization of Topical Antiinflammatory Compounds in Rosmarinus officinalis L. J. Agric. Food Chem. 2007, 55 (5), 1718–1723. [CrossRef]
  545. Kaume, L.; Howard, L. R.; Devareddy, L. The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits. J. Agric. Food Chem. 2012, 60 (23), 5716–5727. [CrossRef]
  546. Gowd, V.; Bao, T.; Wang, L.; Huang, Y.; Chen, S.; Zheng, X.; Cui, S.; Chen, W. Antioxidant and Antidiabetic Activity of Blackberry after Gastrointestinal Digestion and Human Gut Microbiota Fermentation. Food Chem. 2018, 269, 618–627. [CrossRef]
  547. Rambaran, T. F.; Nembhard, N.; Bowen-Forbes, C. S.; Alexander-Lindo, R. L. Hypoglycemic Effect of the Fruit Extracts of Two Varieties of Rubus rosifolius. J. Food Biochem. 2020, 44 (9), e13365. [CrossRef]
  548. Stefănuţ, M. N.; Căta, A.; Pop, R.; Tănasie, C.; Boc, D.; Ienaşcu, I.; Ordodi, V. Anti-Hyperglycemic Effect of Bilberry, Blackberry and Mulberry Ultrasonic Extracts on Diabetic Rats. Plant Foods Hum. Nutr. 2013, 68 (4), 378–384. [CrossRef]
  549. Knez Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia hispanica L.): An Overview-Phytochemical Profile, Isolation Methods, and Application. Molecules 2019, 25 (1), 11. [CrossRef]
  550. Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and Therapeutic Perspectives of Chia (Salvia hispanica L.): A Review. J. Food Sci. Technol. 2016, 53 (4), 1750–1758. [CrossRef]
  551. Alwosais, E.; Al-Ozairi, E.; Zafar, T. A.; Alkandari, S. Chia Seed (Salvia hispanica L.) Supplementation to the Diet of Adults with Type 2 Diabetes Improved Systolic Blood Pressure: A Randomized Controlled Trial. Nutr. Health 2021, 27 (2), 181–189. [CrossRef]
  552. Sosa Crespo, I.; Laviada Molina, H.; Chel Guerrero, L.; Ortiz Andrade, R.; Betancur Ancona, D. Efecto Inhibitorio de Fracciones Peptídicas Derivadas de la Hidrólisis de Semillas de Chía (Salvia hispanica) sobre las Enzimas α-Amilasa y α-Glucosidasa [Inhibitory Effect of Peptide Fractions Derivatives from Chia (Salvia hispanica) Hydrolysis Against α-Amylase and α-Glucosidase Enzymes]. Nutr. Hosp. 2018, 35 (4), 928–935. [CrossRef]
  553. Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and Therapeutic Perspectives of Chia (Salvia hispanica L.): A Review. J. Food Sci. Technol. 2016, 53 (4), 1750–1758. [CrossRef]
  554. Mili, A.; Das, S.; Nandakumar, K.; Lobo, R. A Comprehensive Review on Sesamum indicum L.: Botanical, Ethnopharmacological, Phytochemical, and Pharmacological Aspects. J. Ethnopharmacol. 2021, 281, 114503. [CrossRef]
  555. Sankar, D.; Ali, A.; Sambandam, G.; Rao, R. Sesame Oil Exhibits Synergistic Effect with Anti-diabetic Medication in Patients with Type 2 Diabetes Mellitus. Clin. Nutr. 2011, 30 (3), 351–358. [CrossRef]
  556. Jeng, K.; Hou, R. Sesamin and Sesamolin: Natures Therapeutic Lignans. Curr. Enzyme Inhib. 2005, 1 (1), 11-20. [CrossRef]
  557. Yargholi, A.; Najafi, M. H.; Zareian, M. A.; Hawkins, J.; Shirbeigi, L.; Ayati, M. H. The Effects of Sesame Consumption on Glycemic Control in Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trial. Evid. Based Complement. Alternat. Med. 2021, 2021, 2873534. [CrossRef]
  558. Aslam, F.; Iqbal, S.; Nasir, M.; Anjum, A. A. White Sesame Seed Oil Mitigates Blood Glucose Level, Reduces Oxidative Stress, and Improves Biomarkers of Hepatic and Renal Function in Participants with Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2019, 38 (3), 235–246. [CrossRef]
  559. Lin, Y. C.; Thùy, T. D.; Wang, S. Y.; Huang, P. L. Type 1 diabetes, cardiovascular complications and sesame (zhī má). J. Tradit. Complement. Med. 2014, 4 (1), 36–41. [CrossRef]
  560. Blum, A.; Monir, M.; Wirsansky, I.; Ben-Arzi, S. The Beneficial Effects of Tomatoes. Eur. J. Intern. Med. 2005, 16 (6), 402–404. [CrossRef]
  561. Fukushi, Y.; Mariya, Y.; Yamada, K.; Yoshida, K.; Sasa, A.; Saito, H.; Hirai, A.; Suzuki, S.; Aizawa, K.; Suganuma, H.; Itaki, C. Tomato Juice Consumption Could Improve Breast Skin Adverse Effects of Radiotherapy in Breast Cancer Patients. In Vivo 2020, 34 (5), 3013–3021. [CrossRef]
  562. Zhu, R.; Chen, B.; Bai, Y.; Miao, T.; Rui, L.; Zhang, H.; Xia, B.; Li, Y.; Gao, S.; Wang, X. D.; Zhang, D. Lycopene in Protection Against Obesity and Diabetes: A Mechanistic Review. Pharmacol. Res. 2020, 159, 104966. [CrossRef]
  563. Ali, M. Y.; Sina, A. A.; Khandker, S. S.; Neesa, L.; Tanvir, E. M.; Kabir, A.; Khalil, M. I.; Gan, S. H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2020, 10 (1), 45. [CrossRef]
  564. Ford, E. S.; Will, J. C.; Bowman, B. A.; Narayan, K. M. Diabetes Mellitus and Serum Carotenoids: Findings from the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 1999, 149 (2), 168–176. [CrossRef]
  565. Toor, R. K.; Lister, C. E.; Savage, G. P. Antioxidant Activities of New Zealand-Grown Tomatoes. Int. J. Food Sci. Nutr. 2005, 56 (8), 597–605. [CrossRef]
  566. Collins, E. J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology 2022, 11 (2), 239. [CrossRef]
  567. Guimarães, P. R.; Galvão, A. M.; Batista, C. M.; Azevedo, G. S.; Oliveira, R. D.; Lamounier, R. P.; Freire, N.; Barros, A. M.; Sakurai, E.; Oliveira, J. P.; Vieira, E. C.; Alvarez-Leite, J. I. Eggplant (Solanum melongena) Infusion Has a Modest and Transitory Effect on Hypercholesterolemic Subjects. Braz. J. Med. Biol. Res. 2000, 33 (9), 1027–1036. [CrossRef]
  568. Yarmohammadi, F.; Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Effect of Eggplant (Solanum melongena) on the Metabolic Syndrome: A Review. Iran. J. Basic Med. Sci. 2021, 24 (4), 420–427. [CrossRef]
  569. Gürbüz, N.; Uluişik, S.; Frary, A.; Frary, A.; Doğanlar, S. Health Benefits and Bioactive Compounds of Eggplant. Food Chem. 2018, 268, 602–610. [CrossRef]
  570. Yamaguchi, S.; Matsumoto, K.; Koyama, M.; Tian, S.; Watanabe, M.; Takahashi, A.; Miyatake, K.; Nakamura, K. Antihypertensive Effects of Orally Administered Eggplant (Solanum melongena) Rich in Acetylcholine on Spontaneously Hypertensive Rats. Food Chem. 2019, 276, 376–382. [CrossRef]
  571. Das, J.; Lahan, J. P.; Srivastava, R. B. Solanum melongena: A Potential Source of Antifungal Agent. Indian J. Microbiol. 2010, 50 (Suppl 1), 62–69. [CrossRef]
  572. Otari, K. V.; Gaikwad, P. S.; Shete, R. V.; Upasani, C. D. Protective Effect of Aqueous Extract of Spinacia oleracea Leaves in Experimental Paradigms of Inflammatory Bowel Disease. Inflammopharmacology 2012, 20 (5), 277–287. [CrossRef]
  573. Bautista-Pérez, R.; Cano-Martínez, A.; Gutiérrez-Velázquez, E.; Martínez-Rosas, M.; Pérez-Gutiérrez, R. M.; Jiménez-Gómez, F.; Flores-Estrada, J. Spinach Methanolic Extract Attenuates the Retinal Degeneration in Diabetic Rats. Antioxidants 2021, 10 (5), 717. [CrossRef]
  574. Li, T.; Lu, X.; Sun, Y.; Yang, X. Effects of Spinach Nitrate on Insulin Resistance, Endothelial Dysfunction Markers and Inflammation in Mice with High-Fat and High-Fructose Consumption. Food Nutr. Res. 2016, 60, 32010. [CrossRef]
  575. Roberts, J. L.; Moreau, R. Functional Properties of Spinach (Spinacia oleracea L.) Phytochemicals and Bioactives. Food Funct. 2016, 7 (8), 3337–3353. [CrossRef]
  576. Gutierrez, R.; Velazquez, E. G.; Carrera, S. Spinacia oleracea Linn Considered as One of the Most Perfect Foods: A Pharmacological and Phytochemical Review. Mini Rev. Med. Chem. 2019, 19 (20), 1666–1680. [CrossRef]
  577. Nemzer, B.; Al-Taher, F.; Abshiru, N. Extraction and Natural Bioactive Molecules Characterization in Spinach, Kale and Purslane: A Comparative Study. Molecules 2021, 26 (9), 2515. [CrossRef]
  578. Batiha, G. E.; Alkazmi, L. M.; Wasef, L. G.; Beshbishy, A. M.; Nadwa, E. H.; Rashwan, E. K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10 (2), 202. [CrossRef]
  579. Cortés-Rojas, D. F.; de Souza, C. R.; Oliveira, W. P. Clove (Syzygium aromaticum): A Precious Spice. Asian Pac. J. Trop. Biomed. 2014, 4 (2), 90–96. [CrossRef]
  580. Irahal, I. N.; Guenaou, I.; Lahlou, F. A.; Hmimid, F.; Bourhim, N. Syzygium aromaticum Bud (Clove) Essential Oil is a Novel and Safe Aldose Reductase Inhibitor: In Silico, In Vitro, and In Vivo Evidence. Hormones 2022, 21 (2), 229–240. [CrossRef]
  581. Tu, Z.; Moss-Pierce, T.; Ford, P.; Jiang, T. A. Syzygium aromaticum L. (Clove) Extract Regulates Energy Metabolism in Myocytes. J. Med. Food 2014, 17 (9), 1003–1010. [CrossRef]
  582. Ayyanar, M.; Subash-Babu, P. Syzygium cumini (L.) Skeels: A Review of Its Phytochemical Constituents and Traditional Uses. Asian Pac. J. Trop. Biomed. 2012, 2 (3), 240–246. [CrossRef]
  583. Ayyanar, M.; Subash-Babu, P.; Ignacimuthu, S. Syzygium cumini (L.) Skeels., a Novel Therapeutic Agent for Diabetes: Folk Medicinal and Pharmacological Evidences. Complement. Ther. Med. 2013, 21 (3), 232–243. [CrossRef]
  584. Sharma, S. B.; Nasir, A.; Prabhu, K. M.; Murthy, P. S.; Dev, G. Hypoglycaemic and Hypolipidemic Effect of Ethanolic Extract of Seeds of Eugenia jambolana in Alloxan-Induced Diabetic Rabbits. J. Ethnopharmacol. 2003, 85 (2-3), 201–206. [CrossRef]
  585. Komakech, R.; Kim, Y. G.; Matsabisa, G. M.; Kang, Y. Anti-inflammatory and analgesic potential of Tamarindus indica Linn. (Fabaceae): a narrative review. Integr. Med. Res. 2019, 8 (3), 181–186. [CrossRef]
  586. Maiti, R.; Jana, D.; Das, U. K.; Ghosh, D. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2004, 92 (1), 85–91. [CrossRef]
  587. Krishna, R. N.; Anitha, R.; Ezhilarasan, D. Aqueous extract of Tamarindus indica fruit pulp exhibits antihyperglycaemic activity. Avicenna J. Phytomed. 2020, 10 (5), 440–447.
  588. Bhadoriya, S. S.; Ganeshpurkar, A.; Bhadoriya, R.; Sahu, S. K.; Patel, J. R. Antidiabetic potential of polyphenolic-rich fraction of Tamarindus indica seed coat in alloxan-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2018, 29 (1), 37–45. [CrossRef]
  589. Sasidharan, S. R.; Joseph, J. A.; Anandakumar, S.; Venkatesan, V.; Madhavan, C. N.; Agarwal, A. Ameliorative potential of Tamarindus indica on high fat diet induced nonalcoholic fatty liver disease in rats. Sci. World J. 2014, 507197. [CrossRef]
  590. Rusconi, M.; Conti, A. Theobroma cacao L., the Food of the Gods: a scientific approach beyond myths and claims. Pharmacol. Res. 2010, 61 (1), 5–13. [CrossRef]
  591. Ramos, S.; Martín, M. A.; Goya, L. Effects of Cocoa Antioxidants in Type 2 Diabetes Mellitus. Antioxidants 2017, 6 (4), 84. [CrossRef]
  592. Yamashita, Y.; Okabe, M.; Natsume, M.; Ashida, H. Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle. J. Nutr. Sci. 2012, 1, e2. [CrossRef]
  593. Rowley, T. J., 4th; Bitner, B. F.; Ray, J. D.; Lathen, D. R.; Smithson, A. T.; Dallon, B. W.; Plowman, C. J.; Bikman, B. T.; Hansen, J. M.; Dorenkott, M. R.; Goodrich, K. M.; Ye’, L.; O'Keefe, S. F.; Neilson, A. P.; Tessem, J. S. Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration. J. Nutr. Biochem. 2017, 49, 30–41. [CrossRef]
  594. Martín, M. Á.; Fernández-Millán, E.; Ramos, S.; Bravo, L.; Goya, L. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol. Nutr. Food Res. 2014, 58 (3), 447–456. [CrossRef]
  595. Martín, M. A.; Ramos, S.; Cordero-Herrero, I.; Bravo, L.; Goya, L. Cocoa phenolic extract protects pancreatic beta cells against oxidative stress. Nutrients 2013, 5 (8), 2955–2968. [CrossRef]
  596. Arawwawala, M.; Thabrew, I.; Arambewela, L. Antidiabetic activity of Trichosanthes cucumerina in normal and streptozotocin-induced diabetic rats. Int. J. Biol. Chem. Sci. 2009, 3 (2). [CrossRef]
  597. Karunakaran, R.; Thabrew, M. I.; Thammitiyagodage, G. M.; Galhena, B. P.; Arawwawala, L. M. The gastroprotective effect of ethyl acetate fraction of hot water extract of Trichosanthes cucumerina Linn and its underlying mechanisms. BMC Complement. Altern. Med. 2017, 17 (1), 312. [CrossRef]
  598. Busuioc, A. C.; Botezatu, A. D.; Furdui, B.; Vinatoru, C.; Maggi, F.; Caprioli, G.; Dinica, R. M. Comparative Study of the Chemical Compositions and Antioxidant Activities of Fresh Juices from Romanian Cucurbitaceae Varieties. Molecules 2020, 25 (22), 5468. [CrossRef]
  599. Goyal, S.; Gupta, N.; Chatterjee, S. Investigating Therapeutic Potential of Trigonella foenum-graecum L. as Our Defense Mechanism against Several Human Diseases. J. Toxicol. 2016, 2016, 1250387. [CrossRef]
  600. Hannan, J. M.; Ali, L.; Rokeya, B.; Khaleque, J.; Akhter, M.; Flatt, P. R.; Abdel-Wahab, Y. H. Soluble Dietary Fibre Fraction of Trigonella foenum-graecum (Fenugreek) Seed Improves Glucose Homeostasis in Animal Models of Type 1 and Type 2 Diabetes by Delaying Carbohydrate Digestion and Absorption, and Enhancing Insulin Action. Br. J. Nutr. 2007, 97 (3), 514–521. [CrossRef]
  601. Neelakantan, N.; Narayanan, M.; de Souza, R. J.; van Dam, R. M. Effect of Fenugreek (Trigonella foenum-graecum L.) Intake on Glycemia: A Meta-Analysis of Clinical Trials. Nutr. J. 2014, 13, 7. [CrossRef]
  602. Nagulapalli Venkata, K. C.; Swaroop, A.; Bagchi, D.; Bishayee, A. A Small Plant with Big Benefits: Fenugreek (Trigonella foenum-graecum Linn.) for Disease Prevention and Health Promotion. Mol. Nutr. Food Res. 2017, 61 (6), 10.1002/mnfr.201600950. [CrossRef]
  603. Ma, L.; Sun, Z.; Zeng, Y.; Luo, M.; Yang, J. Molecular Mechanism and Health Role of Functional Ingredients in Blueberry for Chronic Disease in Human Beings. Int. J. Mol. Sci. 2018, 19 (9), 2785. [CrossRef]
  604. Zhong, H.; Abdullah; Zhao, M.; Tang, J.; Deng, L.; Feng, F. Probiotics-Fermented Blueberry Juices as Potential Antidiabetic Product: Antioxidant, Antimicrobial and Antidiabetic Potentials. J. Sci. Food Agric. 2021, 101 (10), 4420–4427. [CrossRef]
  605. Ferlemi, A.; Lamari, F. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value. Antioxidants 2016, 5 (2), 17. [CrossRef]
  606. Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 2014, 8 (1), 4. [CrossRef]
  607. Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019, 11 (6), 1238. [CrossRef]
  608. Yao, Y.; Yang, X.; Tian, J.; Liu, C.; Cheng, X.; Ren, G. Antioxidant and antidiabetic activities of black mung bean (Vigna radiata L.). J. Agric. Food Chem. 2013, 61 (34), 8104–8109. [CrossRef]
  609. Luo, J.; Cai, W.; Wu, T.; Xu, B. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem. 2016, 201, 350–360. [CrossRef]
  610. Singh, B.; Singh, J. P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54 (4), 858–870. [CrossRef]
  611. Ali, N. M.; Mohd Yusof, H.; Yeap, S. K.; Ho, W. Y.; Beh, B. K.; Long, K.; Koh, S. P.; Abdullah, M. P.; Alitheen, N. B. Anti-inflammatory and antinociceptive activities of untreated, germinated, and fermented mung bean aqueous extract. Evid.-Based Complement. Altern. Med. 2014, 2014, 350507. [CrossRef]
  612. Gupta, N.; Srivastava, N.; Bhagyawant, S. S. Vicilin-A major storage protein of mungbean exhibits antioxidative potential, antiproliferative effects and ACE inhibitory activity. PLoS One 2018, 13 (2), e0191265. [CrossRef]
  613. Mansour, R.; Haouas, N.; Ben Kahla-Nakbi, A.; Hammami, S.; Mighri, Z.; Mhenni, F.; Babba, H. The Effect of Vitis vinifera L. Leaves Extract on Leishmania infantum. Iran. J. Pharm. Res. 2013, 12 (3), 349–355.
  614. Orhan, N.; Aslan, M.; Orhan, D. D.; Ergun, F.; Yeşilada, E. In-vivo Assessment of Antidiabetic and Antioxidant Activities of Grapevine Leaves (Vitis vinifera) in Diabetic Rats. J. Ethnopharmacol. 2006, 108 (2), 280–286. [CrossRef]
  615. Nassiri-Asl, M.; Hosseinzadeh, H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother. Res. 2016, 30 (9), 1392–1403. [CrossRef]
  616. Lao, F.; Sigurdson, G. T.; Giusti, M. M. Health Benefits of Purple Corn (Zea mays L.) Phenolic Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16 (2), 234–246. [CrossRef]
  617. Rahmatullah, M.; Ferdausi, D.; Mollik, A. H.; Jahan, R.; Chowdhury, M. H.; Haque, W. M. A survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh. Afr. J. Tradit. Complement. Altern. Med. 2009, 7 (2), 91–97. [CrossRef]
  618. Sheng, L.; Chen, Q.; Di, L.; Li, N. Evaluation of Anti-Diabetic Potential of Corn Silk in High-Fat Diet/ Streptozotocin-Induced Type 2 Diabetes Mice Model. Endocr. Metab. Immune Disord. Drug Targets 2021, 21 (1), 131–138. [CrossRef]
  619. Kim, T. H.; Kim, J. K.; Kang, Y. H.; Lee, J. Y.; Kang, I. J.; Lim, S. S. Aldose reductase inhibitory activity of compounds from Zea mays L. Biomed Res. Int. 2013, 2013, 727143. [CrossRef]
  620. Sabiu, S.; O'Neill, F. H.; Ashafa, A. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. J. Ethnopharmacol. 2016, 183, 1–8. [CrossRef]
  621. Wang, K. J.; Zhao, J. L. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed. Pharmacother. 2019, 110, 510–517. [CrossRef]
  622. Ali, B. H.; Blunden, G.; Tanira, M. O.; Nemmar, A. Some Phytochemical, Pharmacological and Toxicological Properties of Ginger (Zingiber officinale Roscoe): A Review of Recent Research. Food Chem. Toxicol. 2008, 46 (2), 409–420. [CrossRef]
  623. Zhu, J.; Chen, H.; Song, Z.; Wang, X.; Sun, Z. Effects of Ginger (Zingiber officinale Roscoe) on Type 2 Diabetes Mellitus and Components of the Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evid. Based Complement. Alternat. Med. 2018, 2018, 5692962. [CrossRef]
  624. Mao, Q. Q.; Xu, X. Y.; Cao, S. Y.; Gan, R. Y.; Corke, H.; Beta, T.; Li, H. B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8 (6), 185. [CrossRef]
  625. Liao, Z.; Zhang, J.; Liu, B.; Yan, T.; Xu, F.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Polysaccharide from Okra (Abelmoschus esculentus (L.) Moench) Improves Antioxidant Capacity via PI3K/AKT Pathways and Nrf2 Translocation in a Type 2 Diabetes Model. Molecules 2019, 24 (10), 1906. [CrossRef]
  626. Arora, M. K.; Sarup, Y.; Tomar, R.; Singh, M.; Kumar, P. Amelioration of Diabetes-Induced Diabetic Nephropathy by Aloe vera: Implication of Oxidative Stress and Hyperlipidemia. J. Diet. Suppl. 2019, 16 (2), 227–244. [CrossRef]
  627. Yusni, Y.; Zufry, H.; Meutia, F.; Sucipto, K. W. The effects of celery leaf (Apium graveolens L.) treatment on blood glucose and insulin levels in elderly pre-diabetics. Saudi Med. J. 2018, 39 (2), 154–160. [CrossRef]
  628. Lammert, A.; Kratzsch, J.; Selhorst, J.; Humpert, P. M.; Bierhaus, A.; Birck, R.; Kusterer, K.; Hammes, H. P. Clinical benefit of a short term dietary oatmeal intervention in patients with type 2 diabetes and severe insulin resistance: a pilot study. Exp. Clin. Endocrinol. Diabetes 2008, 116 (2), 132–134. [CrossRef]
  629. Xu, X.; Liang, T.; Wen, Q.; Lin, X.; Tang, J.; Zuo, Q.; Tao, L.; Xuan, F.; Huang, R. Protective effects of total extracts of Averrhoa carambola L. (Oxalidaceae) roots on streptozotocin-induced diabetic mice. Cell. Physiol. Biochem. 2014, 33 (5), 1272–1282. [CrossRef]
  630. Aliahmadi, M.; Amiri, F.; Bahrami, L. S.; Hosseini, A. F.; Abiri, B.; Vafa, M. Effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. J. Diabetes Metab. Disord. 2021, 20 (1), 673–682. [CrossRef]
  631. Gupta, S.; Burman, S.; Nair, A. B.; Chauhan, S.; Sircar, D.; Roy, P.; Dhanwat, M.; Lahiri, D.; Mehta, D.; Das, R.; Khalil, H. E. Brassica oleracea Extracts Prevent Hyperglycemia in Type 2 Diabetes Mellitus. Prev. Nutr. Food Sci. 2022, 27 (1), 50–62. [CrossRef]
  632. Haidari, F.; Omidian, K.; Rafiei, H.; Zarei, M.; Mohamad Shahi, M. Green Tea (Camellia sinensis) Supplementation to Diabetic Rats Improves Serum and Hepatic Oxidative Stress Markers. Iran. J. Pharm. Res. 2013, 12 (1), 109–114.
  633. Li, P.; Lu, B.; Gong, J.; Li, L.; Chen, G.; Zhang, J.; Chen, Y.; Tian, X.; Han, B.; Guo, Y.; Xie, Z.; Liao, Q. Chickpea Extract Ameliorates Metabolic Syndrome Symptoms via Restoring Intestinal Ecology and Metabolic Profile in Type 2 Diabetic Rats. Mol. Nutr. Food Res. 2021, 65 (13), e2100007. [CrossRef]
  634. Ani, P. N.; Ochu, K. E. Anti-diabetic, anti-hyperlipidemic and hepatoprotective potential of shaddock (Citrus maxima) peel extract. Acta Sci. Pol. Technol. Aliment. 2020, 19 (3), 271–278. [CrossRef]
  635. Boonphang, O.; Ontawong, A.; Pasachan, T.; Phatsara, M.; Duangjai, A.; Amornlerdpison, D.; Jinakote, M.; Srimaroeng, C. Antidiabetic and Renoprotective Effects of Coffea arabica Pulp Aqueous Extract through Preserving Organic Cation Transport System Mediated Oxidative Stress Pathway in Experimental Type 2 Diabetic Rats. Molecules 2021, 26 (7), 1907. [CrossRef]
  636. Mahesh, M.; Pandey, H.; Raja Gopal Reddy, M.; Prabhakaran Sobhana, P.; Korrapati, D.; Uday Kumar, P.; Vajreswari, A.; Jeyakumar, S. M. Carrot Juice Consumption Reduces High Fructose-Induced Adiposity in Rats and Body Weight and BMI in Type 2 Diabetic Subjects. Nutr. Metab. Insights 2021, 14, 11786388211014917. [CrossRef]
  637. Ibrahim, D. S.; Abd El-Maksoud, M. A. Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. Int. J. Exp. Pathol. 2015, 96 (2), 87–93. [CrossRef]
  638. Choi, M. S.; Ryu, R.; Seo, Y. R.; Jeong, T. S.; Shin, D. H.; Park, Y. B.; Kim, S. R.; Jung, U. J. The beneficial effect of soybean (Glycine max (L.) Merr.) leaf extracts in adults with prediabetes: a randomized placebo controlled trial. Food Funct. 2014, 5 (7), 1621–1630. [CrossRef]
  639. Anand Swarup, K. R.; Sattar, M. A.; Abdullah, N. A.; Abdulla, M. H.; Salman, I. M.; Rathore, H. A.; Johns, E. J. Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats. Pharmacogn. Res. 2010, 2 (1), 31–35. [CrossRef]
  640. Ludvik, B.; Waldhäusl, W.; Prager, R.; Kautzky-Willer, A.; Pacini, G. Mode of action of Ipomoea batatas (Caiapo) in type 2 diabetic patients. Metabolism 2003, 52 (7), 875–880. [CrossRef]
  641. Omokhua-Uyi, A.; Van Staden, J. Phytomedicinal relevance of South African Cucurbitaceae species and their safety assessment: A review. J. Ethnopharmacol. 2020, 259, 112967. [CrossRef]
  642. Tian, J.; Wu, X.; Zhang, M.; Zhou, Z.; Liu, Y. Comparative study on the effects of apple peel polyphenols and apple flesh polyphenols on cardiovascular risk factors in mice. Clin. Exp. Hypertens. 2018, 40 (1), 65–72. [CrossRef]
  643. Bayani, M.; Ahmadi-Hamedani, M.; Jebelli Javan, A. Study of Hypoglycemic, Hypocholesterolemic and Antioxidant Activities of Iranian Mentha spicata Leaves Aqueous Extract in Diabetic Rats. Iran. J. Pharm. Res. 2017, 16 (Suppl), 75–82.
  644. Gupta, S.; Mediratta, P. K.; Singh, S.; Sharma, K. K.; Shukla, R. Antidiabetic, antihypercholesterolaemic and antioxidant effect of Ocimum sanctum (Linn) seed oil. Indian J. Exp. Biol. 2006, 44 (4), 300–304.
  645. Lemhadri, A.; Zeggwagh, N. A.; Maghrani, M.; Jouad, H.; Eddouks, M. Anti-hyperglycaemic activity of the aqueous extract of Origanum vulgare growing wild in Tafilalet region. J. Ethnopharmacol. 2004, 92 (2-3), 251–256. [CrossRef]
  646. Saddi, A. A.; Mohamed, A. M.; Shaikh, A. M. Prophylactic mechanisms of Cucumis melo var. flexuosus and Phoenix dactylifera fruit extracts against diabetic cardiomyopathy in streptozotocin induced diabetic rats. Pak. J. Pharm. Sci. 2018, 31 (2, Suppl.), 699–707.
  647. Srinivasan, P.; Vijayakumar, S.; Kothandaraman, S.; Palani, M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J. Pharm. Anal. 2018, 8 (2), 109–118. [CrossRef]
  648. Song, J.; Kim, Y. S.; Kim, L.; Park, H. J.; Lee, D.; Kim, H. Anti-Obesity Effects of the Flower of Prunus persica in High-Fat Diet-Induced Obese Mice. Nutrients 2019, 11 (9), 2176. [CrossRef]
  649. Kermani, J.; Goodarzi, N.; Bakhtiari, M. An Experimental Study to Evaluate the Protective Effects of Solanum lycopersicum Seed Essential Oil on Diabetes-Induced Testicular Injuries. Medicina 2019, 55 (8), 499. [CrossRef]
  650. Kuroda, M.; Mimaki, Y.; Ohtomo, T.; Yamada, J.; Nishiyama, T.; Mae, T.; Kishida, H.; Kawada, T. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J. Nat. Med. 2012, 66 (2), 394–399. [CrossRef]
  651. Ștefănescu Braic, R.; Vari, C.; Imre, S.; Huțanu, A.; Fogarasi, E.; Todea, T.; Groșan, A.; Eșianu, S.; Laczkó-Zöld, E.; Dogaru, M. Vaccinium Extracts as Modulators in Experimental Type 1 Diabetes. J. Med. Food 2018, 21 (11), 1106–1112. [CrossRef]
  652. Yeap, S. K.; Mohd Ali, N.; Mohd Yusof, H.; Alitheen, N. B.; Beh, B. K.; Ho, W. Y.; Koh, S. P.; Long, K. Antihyperglycemic effects of fermented and nonfermented mung bean extracts on alloxan-induced-diabetic mice. J. Biomed. Biotechnol. 2012, 285430. [CrossRef]
  653. Al-Amin, Z. M.; Thomson, M.; Al-Qattan, K. K.; Peltonen-Shalaby, R.; Ali, M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br. J. Nutr. 2006, 96 (4), 660–666. [CrossRef]
  654. Ahmad, W.; Amir, M.; Ahmad, A.; Ali, A.; Ali, A.; Wahab, S.; Barkat, H. A.; Ansari, M. A.; Sarafroz, M.; Ahmad, A.; Barkat, M. A.; Alam, P. Aegle marmelos Leaf Extract Phytochemical Analysis, Cytotoxicity, In Vitro Antioxidant and Antidiabetic Activities. Plants 2021, 10 (12), 2573. [CrossRef]
  655. Méril-Mamert, V.; Ponce-Mora, A.; Sylvestre, M.; Lawrence, G.; Bejarano, E.; Cebrián-Torrejón, G. Antidiabetic Potential of Plants from the Caribbean Basin. Plants 2022, 11 (10), 1360. [CrossRef]
  656. Kim, I. S.; Hwang, C. W.; Yang, W. S.; Kim, C. H. Multiple Antioxidative and Bioactive Molecules of Oats (Avena sativa L.) in Human Health. Antioxidants 2021, 10 (9), 1454. [CrossRef]
  657. Chalk, C.; Benstead, T. J.; Moore, F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst. Rev. 2007, 2007 (4), CD004572. [CrossRef]
  658. Zhang, D. W.; Fu, M.; Gao, S. H.; Liu, J. L. Curcumin and diabetes: a systematic review. Evid. Based Complement. Alternat. Med. 2013, 636053. [CrossRef]
  659. Hosseini, S.; Huseini, H. F.; Larijani, B.; Mohammad, K.; Najmizadeh, A.; Nourijelyani, K.; Jamshidi, L. The hypoglycemic effect of Juglans regia leaves aqueous extract in diabetic patients: A first human trial. Daru J. Fac. Pharm., Tehran Univ. Med. Sci. 2014, 22 (1), 19. [CrossRef]
  660. Zainab, B.; Ayaz, Z.; Alwahibi, M. S.; Khan, S.; Rizwana, H.; Soliman, D. W.; Alawaad, A.; Mehmood Abbasi, A. In-silico elucidation of Moringa oleifera phytochemicals against diabetes mellitus. Saudi J. Biol. Sci. 2020, 27 (9), 2299–2307. [CrossRef]
  661. Parasuraman, S.; Balamurugan, S.; Christapher, P. V.; Petchi, R. R.; Yeng, W. Y.; Sujithra, J.; Vijaya, C. Evaluation of Antidiabetic and Antihyperlipidemic Effects of Hydroalcoholic Extract of Leaves of Ocimum tenuiflorum (Lamiaceae) and Prediction of Biological Activity of its Phytoconstituents. Pharmacognosy Res. 2015, 7 (2), 156–165. [CrossRef]
  662. Subramanian, S.; Banu, H.; Ramya Bai, R.; Shanmugavalli, R. Biochemical evaluation of antihyperglycemic and antioxidant nature of Psidium guajava leaves extract in streptozotocin-induced experimental diabetes in rats. Pharm. Biol. 2009, 47 (4), 298-303. [CrossRef]
  663. Gajera, H. P.; Gevariya, S. N.; Hirpara, D. G.; Patel, S. V.; Golakiya, B. A. Antidiabetic and antioxidant functionality associated with phenolic constituents from fruit parts of indigenous black jamun (Syzygium cumini L.) landraces. J. Food Sci. Technol. 2017, 54 (10), 3180–3191. [CrossRef]
  664. Pandey, K.; Rizvi, S. Role of red grape polyphenols as antidiabetic agents. Integr. Med. Res. 2014, 3 (3), 119-125. [CrossRef]
  665. Ansari, P.; Hannon-Fletcher, M. P.; Flatt, P. R.; Abdel-Wahab, Y. H. A. Effects of 22 Traditional Anti-Diabetic Medicinal Plants on DPP-IV Enzyme Activity and Glucose Homeostasis in High-Fat Fed Obese Diabetic Rats. Biosci Rep 2021, 41 (1), BSR20203824. [CrossRef]
  666. Life, 1: 12(8), 1146. [CrossRef]
  667. Vilas-Boas, A.A.; Pintado, M.; Oliveira, A.L.S. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021, 10, 1564. [CrossRef]
  668. Ioniță-Mîndrican, C.-B.; Ziani, K.; Mititelu, M.; Oprea, E.; Neacșu, S.M.; Moroșan, E.; Dumitrescu, D.-E.; Roșca, A.C.; Drăgănescu, D.; Negrei, C. Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review. Nutrients 2022, 14, 2641. [CrossRef]
  669. Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022, 11, 2683. [CrossRef]
  670. Hannan, J.; Nipa, N.; Toma, F. T.; Talukder, A.; Ansari, P. Acute Anti-Hyperglycaemic Activity of Five Traditional Medicinal Plants in High Fat Diet Induced Obese Rats. Front Biosci (Schol Ed) 2023, 15 (2), 5. [CrossRef]
Figure 1. Severity associated with the three subtypes of T1DM.
Figure 1. Severity associated with the three subtypes of T1DM.
Preprints 116049 g001
Figure 2. The role of inflammation, hyperlipidaemia, mitochondrial dysfunction, ROS production, and gut dysbiosis in the development of T2DM pathogenesis.
Figure 2. The role of inflammation, hyperlipidaemia, mitochondrial dysfunction, ROS production, and gut dysbiosis in the development of T2DM pathogenesis.
Preprints 116049 g002
Figure 3. Schematic representation of the link between obesity and insulin resistance in T2DM.
Figure 3. Schematic representation of the link between obesity and insulin resistance in T2DM.
Preprints 116049 g003
Figure 4. Flow chart of T2DM-associated vascular complications.
Figure 4. Flow chart of T2DM-associated vascular complications.
Preprints 116049 g004
Figure 5. Flow chart of the current oral and injectable antidiabetic drugs, their pharmacological actions and adverse side effects.
Figure 5. Flow chart of the current oral and injectable antidiabetic drugs, their pharmacological actions and adverse side effects.
Preprints 116049 g005
Figure 6. Antidiabetic effects of dietary fiber-rich plants and fruits on various organs and tissues. Dietary fiber-rich herbs and fruits exhibit antihyperglycemic properties by activating several molecular pathways. They may contribute in the regeneration of pancreatic β-cells; increase insulin secretion; enhance insulin sensitivity; increases glucose uptake in tissues; enhance GLUT-4 translocation; increase glycolysis in the liver; activate the AMPK, PPAR-γ, Akt/Pkb, or PI3K pathways in adipose tissue; improve glucokinase activity; reduce insulin resistance; delay intestinal glucose absorption; lower fasting blood and postprandial glucose; reduce glucagon secretion and oxidative stress; inhibit α-amylase, α-glucosidase and DPP-4, glucose-6-phosphatase enzymatic activity; decrease gluconeogenesis; suppress TNF-α and IL-6 release; block ATP-sensitive K+ channels in the pancreas and muscle to regulate blood glucose levels.
Figure 6. Antidiabetic effects of dietary fiber-rich plants and fruits on various organs and tissues. Dietary fiber-rich herbs and fruits exhibit antihyperglycemic properties by activating several molecular pathways. They may contribute in the regeneration of pancreatic β-cells; increase insulin secretion; enhance insulin sensitivity; increases glucose uptake in tissues; enhance GLUT-4 translocation; increase glycolysis in the liver; activate the AMPK, PPAR-γ, Akt/Pkb, or PI3K pathways in adipose tissue; improve glucokinase activity; reduce insulin resistance; delay intestinal glucose absorption; lower fasting blood and postprandial glucose; reduce glucagon secretion and oxidative stress; inhibit α-amylase, α-glucosidase and DPP-4, glucose-6-phosphatase enzymatic activity; decrease gluconeogenesis; suppress TNF-α and IL-6 release; block ATP-sensitive K+ channels in the pancreas and muscle to regulate blood glucose levels.
Preprints 116049 g006
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated