Submitted:
09 September 2024
Posted:
10 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
2.1. Database Selection
2.2. Bibliometric Indicators and Tools Used
3. Findings of Bibliometric Analysis
3.1. Analysis of The Publication Volume
3.2. Analysis of The Leading Countries
3.3. Analysis of The Leading Institutions
3.4. Analysis of The Dominant Journals
3.5. Analysis of Research Hotspots and Trends Based on Keyword Clustering
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ajo-Franklin, J.B.; Geller, J.T.; Harris, J.M. A survey of the geophysical properties of chlorinated DNAPLs. Journal of Applied Geophysics 2006, 59, 177–189. [Google Scholar] [CrossRef]
- Wu, W.J.; Delshad, M.; Oolman, T.; Pope, G.A. Remedial Options for Creosote- Contaminated Sites. Groundwater Monitoring & Remediation 2000, 20, 78–86. [Google Scholar] [CrossRef]
- Okuda, N.; Shimizu, T.; Muratani, M.; Terada, A.; Hosomi, M. Study of penetration behavior of PCB-DNAPL in a sand layer by a column experiment. Chemosphere 2014, 114, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.L.; Chapman, S.W.; Guilbeault, M.A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. Journal of Contaminant Hydrology 2008, 102, 86–104. [Google Scholar] [CrossRef]
- Pan, Y.; Zeng, X.; Xu, H.; Sun, Y.; Wang, D.; Wu, J. Assessing human health risk of groundwater DNAPL contamination by quantifying the model structure uncertainty. Journal of Hydrology 2020, 584. [Google Scholar] [CrossRef]
- Schaerlaekens, J.; Carmeliet, J.; Feyen, J. Multi-objective optimization of the setup of a surfactant-enhanced DNAPL remediation. Environ. Sci. Technol. 2005, 39, 2327–2333. [Google Scholar] [CrossRef]
- Schaerlaekens, J.; Mertens, J.; Van Linden, J.; Vermeiren, G.; Carmeliet, J.; Feyen, J. A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations. Journal of Contaminant Hydrology 2006, 86, 176–194. [Google Scholar] [CrossRef]
- West, M.R.; Kueper, B.H. Numerical simulation of DNAPL source zone remediation with in situ chemical oxidation (ISCO). Advances in Water Resources 2012, 44, 126–139. [Google Scholar] [CrossRef]
- Kim, U.; Parker, J.C.; Borden, R.C. Stochastic cost-optimization and risk assessment of in situ chemical oxidation for dense non-aqueous phase liquid (DNAPL) source remediation. Stochastic Environmental Research and Risk Assessment 2019, 33, 73–89. [Google Scholar] [CrossRef]
- Liu, Y.; Barbara, S. Minsker, M.A. Full Multiscale Approach for Optimal Control of In Situ Bioremediation. Journal of Water Resources Planning and Management 2004, 130, 26–32. [Google Scholar] [CrossRef]
- Zare, F.; Elsawah, S.; Iwanaga, T.; Jakeman, A.J.; Pierce, S.A. Integrated water assessment and modelling: A bibliometric analysis of trends in the water resource sector. Journal of Hydrology 2017, 552, 765–778. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology 2005, 57, 359–377. [Google Scholar] [CrossRef]
- Guleria, A.; Gupta, P.K.; Chakma, S.; Yadav, B.K. Unraveling the Fate and Transport of DNAPLs in Heterogeneous Aquifer Systems—A Critical Review and Bibliometric Analysis. Sustainability 2023, 15. [Google Scholar] [CrossRef]
- Erning, K.; Grandel, S.; Dahmke, A.; Schäfer, D. Simulation of DNAPL infiltration and spreading behaviour in the saturated zone at varying flow velocities and alternating subsurface geometries. Environmental Earth Sciences 2012, 65, 1119–1131. [Google Scholar] [CrossRef]
- Dekker, T.J.; Abriola, L.M. The influence of field-scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formations. Contaminant Hydrology 2000, 42, 187–218. [Google Scholar] [CrossRef]
- Lemke, L.D.; Abriola, L.M.; Goovaerts, P. Dense nonaqueous phase liquid (DNAPL) source zone characterization: Influence of hydraulic property correlation on predictions of DNAPL infiltration and entrapment. Water Resources Research 2004, 40. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, G.; Wu, M.; Hao, Y.; Mo, C.; Li, Q.; Wu, J.; Wu, J.; Hu, B.X. The Effects of Spill Pressure on the Migration and Remediation of Dense Non-Aqueous Phase Liquids in Homogeneous and Heterogeneous Aquifers. Sustainability 2023, 15. [Google Scholar] [CrossRef]
- Kueper, B.H.; Redman, D.; Starr, R.C.; Reitsma, S.; Mah, M. A Field Experiment to Study the Behavior of Tetrachloroethylene Below the Water Table: Spatial Distribution of Residual and Pooled DNAPL. Groundwater 1993, 31, 756–766. [Google Scholar] [CrossRef]
- Bradford, S.A.; Abriola, L.M.; Rathfelder, K.M. Flow and entrapment of dense nonaqueous phase liquids in physically and chemically heterogeneous aquifer formations. Advances in Water Resources 1998, 22, 117–132. [Google Scholar] [CrossRef]
- Wu, M.; Yang, Y.; Lin, J.; Wu, J.; Wu, J.; Hu, B.X. The co-effect of heterogeneity and solute concentration on representative elementary volume of DNAPL in groundwater. Journal of Hydrology 2020, 585. [Google Scholar] [CrossRef]
- Gerhard, J.I.; Kueper, B.H. Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media. Water Resources Research 2003, 39. [Google Scholar] [CrossRef]
- Gerhard, J.I.; Kueper, B.H. Influence of constitutive model parameters on the predicted migration of DNAPL in heterogeneous porous media. Water Resources Research 2003, 39. [Google Scholar] [CrossRef]
- Gerhard, J.I.; Kueper, B.H. Capillary pressure characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media. Water Resources Research 2003, 39. [Google Scholar] [CrossRef]
- Zheng, F.; Gao, Y.; Sun, Y.; Shi, X.; Xu, H.; Wu, J. Influence of flow velocity and spatial heterogeneity on DNAPL migration in porous media: insights from laboratory experiments and numerical modelling. Hydrogeology Journal 2015, 23, 1703–1718. [Google Scholar] [CrossRef]
- Fagerlund, F.; Illangasekare, T.H.; Phenrat, T.; Kim, H.J.; Lowry, G.V. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology 2012, 131, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Pierce, A.A.; Chapman, S.W.; Zimmerman, L.K.; Hurley, J.C.; Aravena, R.; Cherry, J.A.; Parker, B.L. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation. Journal of Contaminant Hydrology 2018, 212, 96–114. [Google Scholar] [CrossRef]
- Yang, J.H.; Lee, K.K.; Clement, T.P. Impact of seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume at an industrial complex in Wonju, Korea. Hydrological Processes 2012, 26, 317–325. [Google Scholar] [CrossRef]
- Feo, A.; Pinardi, R.; Artoni, A.; Celico, F. Three-Dimensional High-Precision Numerical Simulations of Free-Product DNAPL Extraction in Potential Emergency Scenarios: A Test Study in a PCE-Contaminated Alluvial Aquifer (Parma, Northern Italy). Sustainability 2023, 15. [Google Scholar] [CrossRef]
- Zhu, J.; Sykes, J.F. The influence of NAPL dissolution characteristics on field-scale contaminant transport in subsurface. Journal of Contaminant Hydrology 2000, 41, 133–154. [Google Scholar] [CrossRef]
- Nambi, I.M.; Powers, S.E. Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resources Research 2003, 39. [Google Scholar] [CrossRef]
- Maji, R.; Sudicky, E.A. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. Journal of Contaminant Hydrology 2008, 102, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Luciano, A.; Mancini, G.; Torretta, V.; Viotti, P. An empirical model for the evaluation of the dissolution rate from a DNAPL-contaminated area. Environmental Science and Pollution Research 2018, 25, 33992–34004. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.C.; Park, E. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. Water Resources Research 2004, 40. [Google Scholar] [CrossRef]
- Christ, J.A.; Ramsburg, C.A.; Pennell, K.D.; Abriola, L.M. Estimating mass discharge from dense nonaqueous phase liquid source zones using upscaled mass transfer coefficients: An evaluation using multiphase numerical simulations. Water Resources Research 2006, 42. [Google Scholar] [CrossRef]
- Saenton, S.; Illangasekare, T.H. Upscaling of mass transfer rate coefficient for the numerical simulation of dense nonaqueous phase liquid dissolution in heterogeneous aquifers. Water Resources Research 2007, 43. [Google Scholar] [CrossRef]
- Christ, J.A.; Ramsburg, C.A.; Pennell, K.D.; Abriola, L.M. Predicting DNAPL mass discharge from pool-dominated source zones. Journal of Contaminant Hydrology 2010, 114, 18–34. [Google Scholar] [CrossRef]
- Kokkinaki, A.; Werth, C.J.; Sleep, B.E. Comparison of upscaled models for multistage mass discharge from DNAPL source zones. Water Resources Research 2014, 50, 3187–3205. [Google Scholar] [CrossRef]
- Boroumand, A.; Abriola, L.M. On the upscaling of mass transfer rate expressions for interpretation of source zone partitioning tracer tests. Water Resources Research 2015, 51, 832–847. [Google Scholar] [CrossRef]
- Power, C.; Gerhard, J.I.; Tsourlos, P.; Giannopoulos, A. A new coupled model for simulating the mapping of dense nonaqueous phase liquids using electrical resistivity tomography. Geophysics 2013, 78, EN1–EN15. [Google Scholar] [CrossRef]
- Kang, X.; Kokkinaki, A.; Kitanidis, P.K.; Shi, X.; Lee, J.; Mo, S.; Wu, J. Hydrogeophysical Characterization of Nonstationary DNAPL Source Zones by Integrating a Convolutional Variational Autoencoder and Ensemble Smoother. Water Resources Research 2021, 57. [Google Scholar] [CrossRef]
- Kang, X.; Kokkinaki, A.; Power, C.; Kitanidis, P.K.; Shi, X.; Duan, L.; Liu, T.; Wu, J. Integrating deep learning-based data assimilation and hydrogeophysical data for improved monitoring of DNAPL source zones during remediation. Journal of Hydrology 2021, 601. [Google Scholar] [CrossRef]
- Kang, X.; Power, C.; Kokkinaki, A.; Revil, A.; Wu, J.; Shi, X.; Deng, Y. Characterization of DNAPL source zones in clay-sand media via joint inversion of DC resistivity, induced polarization and borehole data. Journal of Contaminant Hydrology 2023, 258. [Google Scholar] [CrossRef]
- Falta, R.W.; Suresh Rao, P.; Basu, N. Assessing the impacts of partial mass depletion in DNAPL source zones I. Analytical modeling of source strength functions and plume response. Journal of Contaminant Hydrology 2005, 78, 259–280. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, W.; Chang, Z.; Luo, J. A combined search method based on a deep learning combined surrogate model for groundwater DNAPL contamination source identification. Journal of Hydrology 2023, 616. [Google Scholar] [CrossRef]
- Hou, Z.; Lao, W.; Wang, Y.; Lu, W. Cyclic Feedback Updating Approach and Uncertainty Analysis for the Source Identification of DNAPL-Contaminated Aquifers. Journal of Water Resources Planning and Management 2021, 147. [Google Scholar] [CrossRef]
- Du, J.; Shi, X.; Mo, S.; Kang, X.; Wu, J. Deep learning based optimization under uncertainty for surfactant-enhanced DNAPL remediation in highly heterogeneous aquifers. Journal of Hydrology 2022, 608. [Google Scholar] [CrossRef]
- Trantham, H.; Durnford, D. Stochastic aggregation model (SAM) for DNAPL–water displacement in porous media. Journal of Contaminant Hydrology 1999, 36, 377–400. [Google Scholar] [CrossRef]
- Nsir, K.; Schäfer, G.; di Chiara Roupert, R.; Mercury, L. Pore scale modelling of DNAPL migration in a water–saturated porous medium. Journal of Contaminant Hydrology 2018, 215, 39–50. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Mendoza-Sanchez, I.; Abriola, L.M. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones. J Contam Hydrol 2018, 211, 1–14. [Google Scholar] [CrossRef]
- Ding, X.-H.; Feng, S.-J.; Zheng, Q.-T. Forward and back diffusion of reactive contaminants through multi-layer low permeability sediments. Water Research 2022, 222. [Google Scholar] [CrossRef]
- Feng, C.; Liu, F.; Huang, F.; Chen, L.; Bi, E. Dense nonaqueous phase liquids back diffusion controlled by biodegradation and heterogeneous sorption-desorption. Journal of Cleaner Production 2023, 382. [Google Scholar] [CrossRef]
- Chapman, S.W.; Parker, B.L. Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resources Research 2005, 41. [Google Scholar] [CrossRef]
- Chapman, S.W.; Parker, B.L.; Sale, T.C.; Doner, L.A. Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones. Journal of Contaminant Hydrology 2012, 136-137, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Adamson, D.T.; de Blanc, P.C.; Farhat, S.K.; Newell, C.J. Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites. Science of The Total Environment 2016, 562, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Maghrebi, M.; Jankovic, I.; Allen-King, R.M.; Rabideau, A.J.; Kalinovich, I.; Weissmann, G.S. Impacts of transport mechanisms and plume history on tailing of sorbing plumes in heterogeneous porous formations. Advances in Water Resources 2014, 73, 123–133. [Google Scholar] [CrossRef]
- Maghrebi, M.; Jankovic, I.; Weissmann, G.S.; Matott, L.S.; Allen-King, R.M.; Rabideau, A.J. Contaminant tailing in highly heterogeneous porous formations: Sensitivity on model selection and material properties. Journal of Hydrology 2015, 531, 149–160. [Google Scholar] [CrossRef]
- Adamson, D.T.; Chapman, S.W.; Farhat, S.K.; Parker, B.L.; deBlanc, P.; Newell, C.J. Characterization and Source History Modeling Using Low-k Zone Profiles at Two Source Areas. Groundwater Monitoring & Remediation 2015, 35, 52–69. [Google Scholar] [CrossRef]
- Wanner, P.; Parker, B.L.; Hunkeler, D. Assessing the effect of chlorinated hydrocarbon degradation in aquitards on plume persistence due to back-diffusion. Science of The Total Environment 2018, 633, 1602–1612. [Google Scholar] [CrossRef]
- Thouement, H.A.A.; Kuder, T.; Heimovaara, T.J.; van Breukelen, B.M. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards? Journal of Contaminant Hydrology 2019, 226. [Google Scholar] [CrossRef]
- Halloran, L.J.S.; Hunkeler, D. Controls on the persistence of aqueous-phase groundwater contaminants in the presence of reactive back-diffusion. Science of The Total Environment 2020, 722. [Google Scholar] [CrossRef]
- Carey, G.R.; Chapman, S.W.; Parker, B.L.; McGregor, R. Application of an Adapted Version of MT3DMS for Modeling Back-Diffusion Remediation Timeframes. Remediation Journal 2015, 25, 55–79. [Google Scholar] [CrossRef]






| Country | Number of Papers | Centrality |
|---|---|---|
| USA | 307 | 0.95 |
| CANADA | 112 | 0.09 |
| PEOPLES R CHINA | 82 | 0.18 |
| FRANCE | 33 | 0.16 |
| ITALY | 22 | 0.04 |
| SOUTH KOREA | 21 | 0.02 |
| ENGLAND | 20 | 0.23 |
| GERMANY | 20 | 0.05 |
| SCOTLAND | 16 | 0.11 |
| NETHERLANDS | 14 | 0.03 |
| AUSTRALIA | 13 | 0.01 |
| TURKEY | 11 | 0.16 |
| GREECE | 10 | 0.15 |
| Journal | Number of Citations | Number of Papers | Proportion /% |
IF (2024) |
|---|---|---|---|---|
| Journal Of Contaminant Hydrology | 514 | 165 | 26.87 | 3.5 |
| Water Resources Research | 512 | 57 | 9.28 | 4.6 |
| Environmental Science & Technology | 444 | 38 | 6.19 | 10.8 |
| Groundwater | 349 | 17 | 2.77 | 2 |
| Advances In Water Resources | 312 | 30 | 4.89 | 4 |
| Ground Water Monitoring And Remediation | 232 | 16 | 2.61 | 1.8 |
| Journal Of Hydrology | 186 | 20 | 3.26 | 5.9 |
| Journal Of Hazardous Materials | 183 | 13 | 2.12 | 12.2 |
| Transport In Porous Media | 158 | 12 | 1.95 | 2.7 |
| Chemosphere | 120 | 10 | 1.63 | 8.1 |
![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

