Submitted:
20 September 2024
Posted:
20 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Acetylcholinesterase as a Neurotoxicity Biomarker
3. The effects of Toxic Agents on Acetylcholinesterase Activity
| GCS | Fish species | Toxic agent | Concentration [mg/L] | Exp. dur. [d] | AChE activity |
Author |
|---|---|---|---|---|---|---|
| M | Oreochromis niloticus | microplastic | 100 | 21 | ↓ | [47] |
| M | Danio rerio embryos | microplastic | 0.1-10 | 4 | ↓ | [48] |
| M | Oreochromis mossambicus | microplastic | 100*** 500 *** 1000*** |
14 | - ↓ ↓ |
[49] |
| M | Danio rerio embryos | microplastic | 0.1-3 | 5 | ↓ | [50] |
| M | Danio rerio | microplastic | 10000@ | 5 | ↓ | [51] |
| M | Oryzias javanicus | microplastic | 0.5-5 | 21 | ↑ | [25] |
| M E |
Danio rerio | microplastic | 2 | 30 | ↑ | [26] |
| Cu (as CuSO4•5H2O) | 25* | ↑ | ||||
| M E |
Dicentrarchus labrax | microplastic | 0.26 or 0.69 | 4 | ↓ | [52] |
| Hg (as HgCl2) | 0.010 or 0.016 | ↓ | ||||
| E | Cnesterodon decemmaculatus | As (as NaAsO2) | 0.5-5 | 4 | - | [53] |
| E | Anabas testudineus | Cr VI (as CrO3) | 2.75 or 5.5 | 72 | ↓ | [54] |
| E E |
Danio rerio | Cr III (as CrCl3•6H2O) Cr VI (as (K2Cr2O7) |
1 | 5 | ↓ ↓ |
[55] |
| E | Hypopthalmichthys molitrix larvae | Hg (as HgCl2) | 1-10* | 14 | ↓ | [56] |
| E | Danio rerio embryos | Hg (as HgCl2) | 10 100 |
1 2-4 1 2-4 |
- - - ↓ |
[57] |
| E | Danio rerio | Al | 5.5 | 15 | ↓ | [58] |
| E | Oreochromis niloticus | Al (as Al2(SO4)3 | 1 or 3* | 14 | ↑ | [59] |
| E | Danio rerio embryos + larvae | Sb (as K2Sb2C8H4O12•3 H2O) | 200-800 | 2 | ↓ | [60] |
| N E |
Oreochromis niloticus | Ti (as TiO2 NPs) Ti (as TiO2) |
0.05 or 0.1 | 7-14 | - - |
[34] |
| N N N N |
Oncorhynchus mykiss | graphene nanoflakes graphene oxide reduced graphene oxide silicon carbide nanofibers |
4 | 36 | - | [61] |
| N | Danio rerio | Se NPs | 0.5 or 10 | 4 | ↓ | [62] |
| N | Danio rerio | Ag NPs | 1 3-5* |
4 | - ↓ |
[43] |
| F | Danio rerio | paclobutrazol | 10 | 4-14 | ↓ | [63] |
| F | Danio rerio | thifuzamide | 0.19 1.9 or 2.85 |
6 | ↓ | [64] |
| F | Danio rerio embryos | mancozeb | 0.5* 5* 50* |
4 | ↓ - ↓ |
[65] |
| H | Prochilodus lineatus | Roundup® | 1 or 5 | 4 | ↓ | [38] |
| H | Danio rerio larvae | Roundup® | 4.8* | 5 | ↑ | [30] |
| H | Danio rerio embryos | Roundup® glyphosate |
0.25 | 2 | ↓ | [66] |
| H | Danio rerio larvae | haloxyfop-p-methyl | 0.2-0.4 | 4 | ↑ | [67] |
| H | Oreochromis niloticus | pendimethalin | 0.52 | 28 | ↓ | [68] |
| I H |
Cyprinus carpio | chlorpyrifos glyphosate |
25* 3.5 |
21 | ↓ ↓ |
[69] |
| I I H |
Tilapia nilotica | Nemacur® malathion diuron |
0.1-2 0.1-2 1 |
1 | ↓ ↓ ↓ |
[70] |
| H I |
Danio rerio | DMA® 806 BR (Fipronil) Regent® 800 WG (2,4-D) |
63.5* 447* |
4 | ↑ ↑ |
[71] |
| I | Danio rerio embryos | chlorphoxim | 2.5-7.5 | 4 | ↓ | [72] |
| I | Gambusia affinis | chlorpyrifos | 0. 297 | 4 | ↓ | [73] |
| I | Oncorhynchus mykiss | chlorpyrifos | 2.25 or 4.5 7.25* 7.25* |
1-4 1-2 3-4 |
- - ↓ |
[74] |
| I | Oreochromis niloticus | chlorpyrifos | 5-15* | 30 | ↓ | [75] |
| I |
Cyprinus carpio Ctenopharyngodon idella Aristychthysnobilis |
diafuran | 1-3 | 4 | ↓ | [36] |
| I I |
Jenynsia multidentata | cypermethrin chlorpyrifos |
0.04 or 0.4* 0.4 or 4* |
4 | - - |
[35] |
| I | Gambusia affinis | cypermethrin | 0.2 or 6.25** | 7 | ↓ | [76] |
| I | Heteropneustes fossilis | chlorpyrifos | 0.09 or 0.192 | 7-30 | ↓ | [77] |
| I | Capoeta umbla | chlorpyrifos | 55 110 |
1 4 1 4 |
- ↓ ↓ ↓ |
[4] |
| I | Cyprinus carpio | chlorpyrifos | 23 or 46* | 14 | ↓ | [78] |
| I I I |
Oreochromis niloticus | malathion chlorpyrifos λ-cyhalothrin |
1.425 0.125 0.0039 |
1 2 1 2 1 2 |
↑ ↓ ↑ ↑ - ↓ |
[29] |
| I | Colossoma macropomum | malathion | 7.3 | 4 | - | [79] |
| I | Cyprinus carpio | λ cyhalothrin | 0.14 or 0.28* | 15-45 | ↓ | [80] |
| I I |
Danio rerio | chlorpyrifos cyfluthrin |
1.16* 7.06 or 14.12* |
5 | ↓ | [81] |
| I | Oncorhynchus mykiss larvae | chlorpyrifos | 0.3* 3* |
21 | - ↓ |
[82] |
| I | Oncorhynchus mykiss | chlorpyrifos | 2* 4* 6* |
7 14-21 7-21 7-21 |
- ↓ ↓ ↓ |
[83] |
| I | Danio rerio | dinotefuran | 0.2 1 |
28 | ↓ ↓ |
[84] |
| I | Danio rerio | imidacloprid | 0.15* 15 or 45* |
4 | - ↓ |
[85] |
| I I |
Danio rerio | imidacloprid thiamethoxam |
0.05-20* | 14-35 | - ↓ |
[86] |
| I | Danio rerio | sulfoxaflor | 0.87-3.51 | 4 | ↑ | [39] |
| I | Gambusia affinis | carbofuran | 0.191 or 0.255 | 15-40 | ↓ | [87] |
| I | Oreochromis niloticus | carbofuran | 0.246 | 30 | ↓ | [88] |
| I | Danio rerio larvae | fenpropathrin | 0.016-0.064 | 4 | ↑ | [89] |
| I | Danio rerio larvae | isoprocarb | 1-2.5 | 6 | ↓ | [90] |
| I | Clarias batrachus | thiamethoxam | 6.93 or 13.86 | 45 | ↓ | [91] |
| I | Danio rerio | methomyl | 0.5-23.3 | 6 | ↓ | [92] |
| I | Oncorhynchus mykiss | phosmet | 5* 5* 25 or 50* |
1-2 3-4 1-4 |
- ↓ ↓ |
[93] |
| I | Prochilodus lineatus | fipronil | 5.5 82^ |
15 | - ↓ |
[94] |
| I | Rhamdia quelen | trichlorfon | 11 | 21 | ↓ | [95] |
| I | Colossoma macropomum | trichlorfon | 0.26 or 0.43 | 1-4 | ↓ | [96] |
| I | Carassius auratus gibelio | trichlorfon | 0.5-2**** | 0.5-4 | ↓ | [97] |
| I | Oryzias latipes | diazinon | 10 or 20* | 122 | ↓ | [98] |
| I I |
Channa punctatus | triazophos deltamethrin |
3.4 or 6.8* 0.36 or 0.72* |
4 | ↓ ↓ |
[99] |
| Pd | Danio rerio embryos + larvae | cloramine T | 16 32 64 128 |
4 | - - ↓ ↓ |
[100] |
| Pd | Danio rerio embryos + larvae | 2, 5-dichloro-1, 4-benuinone | 0.2 0.4 or 0.6 |
4 | - ↓ |
[101] |
| Pd | Danio rerio | fluoxetine | 5-16** | 4 | ↓ | [102] |
| Pd | Danio rerio | fluoxetine | 0.1-10* | 21 | - | [103] |
| Pd | Rhamdia quelen | ciprofloxacin | 1* 10 or 100* |
28 | - ↓ |
[3] |
| Pd | Oreochromis mossambicus | triclosan | 0.131-1.046 | 4 | ↓ | [104] |
| Pd | Corydoras paleatus | triclosan | 189* | 2 | ↓ | [105] |
| Pd | Gambusia affinis | gestodene | 4.4** 378.7** |
60 | ↓ ↑ |
[106] |
| Pd | Oreochromis niloticus | synthetic progesterone | 0.2-0.8 | 4 | ↓ | [107] |
| Pd | Danio rerio | metformin | 1, 20 or 40* | 120 | ↓ | [108] |
| Pd | Danio rerio | sertraline | 1 10 or 100 |
28 | - ↑ |
[109] |
| Pd | Danio rerio embryos + larvae | sertraline | 1-100 | 10 | - | [64] |
| Pd | Danio rerio | nortriptyline | 0.88-500* | 7 | ↓ | [110] |
| Pd | Danio rerio embryos | moxidectin | 1.5-5* | 4 | - | [111] |
| O | Danio rerio | tributylin | 10** 100-300** |
42 | - ↓ |
[112] |
| O | Danio rerio embryos | bisphenol A | 11.4 | 1 | ↓ | [113] |
| O | Danio rerio | bisphenol A | 0.22-1.5* | 4 | ↑ | [31] |
| O | Danio rerio | bisphenol AF | 0.05 or 0.5 | 4 | ↓ | [114] |
| O | Gambusia affinis | bisphenol A | 4.74 or 7.74 | 15-60 | ↓ | [115] |
| O | Oreochromis niloticus | benzylparaben | 0.005-5* | 56 | ↓ | [116] |
| O | Danio rerio embryos | methylparaben | 0.1 or 1* | 6 | ↓ | [117] |
| O | Danio rerio | methylparaben | 1 or 11* | 30 | ↓ | [118] |
| O | Danio rerio embryos | octocrylene | 5* 50 or 500* |
4 | - ↓ |
[119] |
| O | Gambusia affinis | decabromodiphenyl ether | 25 or 50* | 2 | ↑ | [120] |
| O | Danio rerio embryos | benzophenone-3 | 1 or 10* | 3 | ↓ | [121] |
| O O |
Danio rerio larvae | hexabromobenzene pentabromobenzene |
30* 100-300* 30-100* 300* |
6 | - ↓ - ↓ |
[122] |
| O O O |
Clarias gariepinus | benzene toluene xylene |
0.762** 26.614** 89.403** |
30 | ↓ - - |
[123] |
| O | Anabas testudineus | naphthalene | 4.2-5.0 | 3 | ↓ | [40] |
| O O |
Cyprinus carpio | ammonia NH3 nitrite NO2- |
30.7 153.7 |
4 | ↓ | [124] |
| O | Danio rerio embryos + larvae | ammonia NH3 | 0.06-0.85 | 7 | ↓ | [125] |
| O | Oreochromis mossambicus | ammonia NH3 | 1 | 28-56 | ↓ | [126] |
| O | Oreochroms niloticus | guanitoxin | 125 or 250# | 4 | ↓ | [127] |
| O | Danio rerio | ethanol | 5 | 7-28 | - | [46] |
| O | Oreochromis mossambicus | dichloromethane | 730-790 | 4 | ↓ | [128] |
| O | Cirrhinus mrigala | phenol | 2.32 or 6.96 | 7-28 | ↓ | [129] |
| O | Clarias gariepinus | burnt tyre ash | 0.56-2.24 | 28 | ↓ | [130] |
4. Transgenerational Effects of Toxic Agents on Acetylcholinesterase Activity
5. Other neurotoxicity Biochemical Biomarkers
6. Conclusions
References
- Stengel, D.; Wahby, S.; Braunbeck, T. In search of a comprehensible set of endpoints for the routine monitoring of neurotoxicity in vertebrates: Sensory perception and nerve transmission in zebrafish (Danio rerio) embryos. Environ. Sci. Pollut. Res. 2018, 25, 4066–4084. [Google Scholar] [CrossRef] [PubMed]
- https://www.who.int/europe/initiatives/one-health.
- Carvalho, P.S.; Fonseca-Rodrigues, D.; Pacheco, M.; Almeida, A.; Pinto-Ribeiro, F.; Pereira, P. Comparative neurotoxicity of dietary methylmercury and waterborne inorganic mercury in fish: Evidence of optic tectum vulnerability through morphometric and histopathological assessments. Aquat. Toxicol. 2023, 261, 106557. [Google Scholar] [CrossRef] [PubMed]
- Kirici, M. Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos. Int. J. Ocean. Hydrobiol. 2022, 51, 167–177. [Google Scholar] [CrossRef]
- Puga, S.; Pereira, P.; Pinto-Ribeiro, F.; O’Driscoll, N.J.; Mann, E.; Barata, M.; Pousão-Ferreira, P.; Canário, J.; Almeida, A.; Mário Pacheco. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment. Aquat. Toxicol. 2016, 180, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Aceves, L.M.; Pérez-Alvarez, I.; Belén Onofre-Camarena, D.; Gutiérrez-Noya, V.M.; Rosales-Pérez, K.E.; Orozco-Hernández, J.M.; Hernández-Navarro, M.D.; Islas Flores, H.; Gómez-Olivan, L.M. Prolonged exposure to the synthetic glucocorticoid dexamethasone induces brain damage via oxidative stress and apoptotic response in adult Danio rerio. Chemosphere 2024, 364. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Shen, Y.; Yang M; Yun L. ; Liu Z.; Feng S.; Yang G.; Meng X.; Su X. Antipsychotic drug-induced behavioral abnormalities in common carp: The potential involvement of the gut microbiota-brain axis. J. Hazard. Mat. 2024, 472, 134444. [Google Scholar] [CrossRef]
- Oger, M.J.L.; Vermeulen, O.; Lambert, J.; Madanu, T.L.; Kestemont, P.; Cornet, V. Down to size: Exploring the influence of plastic particle Dimensions on physiological and nervous responses in early-stage zebrafish. Environ. Pollut. 2024, 351, 124094. [Google Scholar] [CrossRef]
- Wan, T.; Au, D. W-T.; Mo J.; Chen L.; Cheung K-M.; Kong R.Y-C.; Seemann F. Assessment of parental benzo[a]pyrene exposure induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. Environ. Epigen. 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Morsy, G.M. Bioaccumulation and neurotoxicity of dithiopyridine herbicide in the brain of freshwater fish, Cyprinus carpio. Toxicol. Indust. Health 2013, 31. [Google Scholar] [CrossRef]
- Bedrossiantz, J.; Bellot, M.; Dominguez-García, P.; Faria, M.; Prats, E.; Gómez-Canela, C.; López-Arnau, R.; Escubedo, E.; Raldúa, D. A zebrafish model of neurotoxicity by binge-like methamphetamine exposure. Front. Pharmacol. 2021, 12, 770319. [Google Scholar] [CrossRef]
- Vieira, M.; Nunes, B. Cholinesterases of marine fish: Characterization and sensitivity towards specific chemicals. Environ. Sci. Pollut. Res. 2021, 28, 48595–48609. [Google Scholar] [CrossRef]
- Bigbee, J.W.; Sharma, K.W.; Gupta, J.J.; Dupree, J.L. Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development. Environ. Health Perspect. 1999, 107, Suppl. 1. 81–87. [Google Scholar]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, F.R.; Ferrari, L.; Salibian, A. Freshwater pollution biomarker: Response of brain acetylcholinesterase activity in two fish species. Comp. Biochem. Physiol. C 2002, 131, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Helman, R.J.; Ferreyroa, G.V.; dos Santos Afonso, M.; Salibián, A. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus. Ecotoxicol. Environ. Saf. 2015, 111, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Rey, D.L.; Cantera, C.G.; dos Santos Afonso, M.; Menéndez-Helman, R.J. Seasonal variations in the dose-response relationship of acetylcholinesterase activity in freshwater fish exposed to chlorpyrifos and glyphosate. Ecotoxicol. Environ. Saf. 2020, 187, 109673. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres V., J.R.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinestarase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Fulton, M.H.; Key, P.B. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ. Toxicol. Chem. 2001, 20, 37–45. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, G.; Rubio-Escalante, F.J.; Noreña-Barroso, E.; Escalante-Herrera, K.S.; Schlenk, D. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure. Comp. Biochem. Physiol. C 2015, 172–173, 19–25. [Google Scholar] [CrossRef]
- Arora, S.; Kumar, A. Mixture toxicity assessment of selected insecticides to silver perch fingerling, Bidyanus bidyanus. Ecotoxicol. Environ. Saf. 2021, 226, 112790. [Google Scholar] [CrossRef]
- Patisaul, H.B.; Behl, M.; Birnbaum, L.S.; Blum, A.; Diamond, M.L.; Fernández, S.R.; Hogberg, H.T.; Kwiatkowski, C.F.; Page, J.D.; Soehl, A.; Stapleton, H.M. Beyond cholinesterase inhibition: Developmental neurotoxicity of organophosphate ester flame retardants and plasticizers. Environ. Health Perspect. 2021, 129, 105001. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Mitani, K.; Matsumoto, T.; Takahashi, S.; Yamada R-H. ; Kera Y. Effects of insecticides in vitro on acetylcholinesterase purified from body muscle of Koi carp (Cyprinus carpio). Jap. J. Environ. Toxicol. 2007, 10, 1–38. [Google Scholar]
- Nordin, N.; Abdulla, R. ; S.A.; Sabullah M.K. Acetylcholinesterase (AChE) of Diodon hystrix brain as an alternative biomolecule in heavy metals biosensing. J. App. Sci. Engin, 2021; 25, 573–580. [Google Scholar] [CrossRef]
- Usman, S.; Razis, A.F.A.; Shaari, K.; Amal, M.N.A.; Saad, M.Z.; Isa, N.M.; Nazarudin, M.F. Polystyrene microplastics exposure: An insight into multiple organ histological alterations, oxidative stress and neurotoxicity in Javanese medaka fish (Oryzias javanicus Bleeker, 1854). Int. J. Environ. Res. Pub. Health 2021, 18, 9449. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Luzio, A.; Felix, L.; Cabecinha, E.; Bellas, J.; Monteiro, S.M. Microplastics and copper induce apoptosis, alter neurocircuits, and cause behavioral changes in zebrafish (Danio rerio) brain. Ecotoxicol. Environ. Saf. 2022, 242, 113926. [Google Scholar] [CrossRef]
- Muller, T.C.; Rocha, J.B.T.; Morsch, V.M.; Neis, R.T.; Schetinger, M.R.C. Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity. Biochim. Biophys. Acta 2002, 1587, 92–98. [Google Scholar] [CrossRef]
- Mladenovic, M.B.; Arsic, B.B.; Ragno, R.; Stankovic, N.; Mihovic, N.; Regan, A.; Milicevic, J.S.; Micic, R. The targeted pesticides as acetylcholinesterase inhibitors: Comprehensive cross-organism molecular modelling studies performed to anticipate the pharmacology of harmfulness to humans in vitro. Molecules 2018, 23, 2192. [Google Scholar] [CrossRef]
- Amin, M.; Yousuf, M.; Attaullah, M.; Ahmad, N.; Nor Azra, M.; Lateef, M.; Dad Buneri, I.; Zekker, I.; El-Saber Batiha, G.; Aboelenin, S.M.; Zahoor, M.; Ikram, M.; Naeem, M. Cholinesterase activity as a potential biomarker for neurotoxicity induced by pesticides in vivo exposed Oreochromis niloticus (Nile tilapia): Assessment tool for organophosphates and synthetic pyrethroids. Environ. Technol. 2023, 44, 2148–2156. [Google Scholar] [CrossRef]
- Pompermaier, A.; Tamagno, W.A.; Alves, C.; Barcellos, L.J.G. Persistent and transgenerational effects of pesticide residues in zebrafish. Comp. Biochem. Physiol. C 2022, 262, 109461. [Google Scholar] [CrossRef]
- Heredia-García, G.; Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M.; Islas-Flores, H.; García-Medina, S.; Galar-Martínez, M.; Dublán-García, O. Realistic concentrations of Bisphenol-A trigger a neurotoxic response in the brain of zebrafish: Oxidative stress, behavioral impairment, acetylcholinesterase inhibition, and gene expression disruption. Chemosphere 2023, 330, 138729. [Google Scholar] [CrossRef]
- Olivares-Rubio, H.F.; Espinosa-Aguirre, J.J. Acetylcholinesterase activity in fish species exposed to crude oil hydrocarbons: A review and new perspectives. Chemosphere 2021, 264, 128401. [Google Scholar] [CrossRef]
- Fakhereddin, T.; Doğan, D. Pro-oxidant potency of clothianidin in rainbow trout. Arch. Indust. Hyg. Toxicol. 2021, 72, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Abegoda-Liyanage, C.S.; Pathiratne, A. Comparison of toxicity of nano and bulk titanium dioxide on Nile tilapia (Oreochromis niloticus): Acetylcholinesterase activity modulation and DNA damage. Bull. Environ. Contam. Toxicol. 2023, 110, 101. [Google Scholar] [CrossRef] [PubMed]
- Bonansea, R.I.; Wunderlin, D.A.; Amé, M.V. Behavioral swimming effects and acetylcholinesterase activity changes in Jenynsia multidentata exposed to chlorpyrifos and cypermethrin individually and in mixtures. Ecotoxicol. Environ. Saf. 2016, 129, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Golombieski, J.I.; MarchesanE. ; Rabaioli Camargo E.; Salbego J.; Schmitt Baumart J.; Loro V.L.; de Oliveira Machado S.L.; Zanella R.; Baldisserotto B. Acetylcholinesterase enzyme activity in carp brain and muscle after acute exposure to diafuran. Sci. Agric. (Piracicaba, Brazil) 2008, 65, 340–345. [Google Scholar] [CrossRef]
- Guimaraes, A.T.B.; Silva de Assisb, H.C.; Boeger, W. The effect of trichlorfon on acetylcholinesterase activity and histopathology of cultivated fish Oreochromis niloticus. Ecotoxicol. Environ. Saf. 2007, 68, 57–62. [Google Scholar] [CrossRef]
- Modesto, K.A.; Martinez, C.B.R. Effects of RoundupTransorb on fish: Hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 2010, 81, 781–787. [Google Scholar] [CrossRef]
- Benli, P.P.; Çelik, M. In vivo effects of neonicotinoid-sulfoximine insecticide sulfoxaflor on acetylcholinesterase activity in the tissues of zebrafish (Danio rerio). Toxics 2021, 9, 73. [Google Scholar] [CrossRef]
- Nayak, S.; Patnaik, L. Acetylcholinesterase, as a potential biomarker of naphtalene toxicity in different tissues of a freshwater teleost, Anabas testudineus. J. Environ. Engin. Landsc. Manag. 2021, 29, 403–409. [Google Scholar] [CrossRef]
- Tilton, F.A.; Bammler, T.K.; Gallagher, E.P. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp. Biochem. Physiol. C 2011, 153, 9–16. [Google Scholar] [CrossRef]
- Ullah, S.; Li, Z.; Hassan, S.; Ahmad, S.; Guo, X.; Wanghe, K.; Nabi, G. Heavy metals bioaccumulation and subsequent multiple biomarkers based appraisal of toxicity in the critically endangered Tor putitora. Ecotoxicol. Environ. Saf. 2021, 228, 113032. [Google Scholar] [CrossRef]
- Marinho, C.S.; Matias, M.V.F.; Toledo, E.K.M.; Smaniotto, S.; Ximenes-da-Silva, A.; Tonholo, J.; Santos, E.L.; Machado, S.S.; Zanta, C.L.P.S. Toxicity of silver nanoparticles on different tissues in adult Danio rerio. Fish Physiol. Biochem. 2021, 47, 239–249. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Teixeira, J.M.; da Silva Lima, V.; de Moura, F.R.; da Costa Marisco, P.; Sinhorin, A.P.; Gindri Sinhorin, V.D. Acute toxicity and effects of Roundup Original® on pintado da Amazônia. Environ. Sci. Pollut. Res. 2018, 2018 25, 25383–25389. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, M.; Pan, H.; Li, S.; Ren, B.; Ren, Z.; Xing, N.; Qi, L.; Ren, Q.; Xu, S.; Song, J.; Ma, J. Does time difference of the acetylcholinesterase (AChE) inhibition in different tissues exist? A case study of zebra fish (Danio rerio) exposed to cadmium chloride and deltamethrin. Chemosphere 2017, 168, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Agostini, J.F.; Zuehl Dal Toé, H.C.; Medeiros Vieira, K.; Baldin, S.L.; Fernandes Costa, N.L.; Uribe Cruz, C.; Longo, L.; Machado, M.M.; da Silveira, T.R.; Schuck, P.F.; Pacheco Rico, E. Cholinergic system and oxidative stress changes in the brain of a zebrafish model chronically exposed to ethanol. Neurotoxicol. Res. 2018, 33, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Karbalaei, S.; Hussein, S.M.; Ahmad, A.F.; Walker, T.R.; Salimi, K. Biochemical effects of polypropylene microplastics on red tilapia (Oreochromis niloticus) after individual and combined exposure with boron. Environ. Sci. Eur. 2023, 35, 71. [Google Scholar] [CrossRef]
- Suman, A.; Mahapatra, A.; Gupta, P.; Ray, S.S.; Singh, R.K. Polystyrene microplastics modulated bdnf expression triggering neurotoxicity via apoptotic pathway in zebrafish embryos. Comp. Biochem. Physiol. C 2023, 271, 109699. [Google Scholar] [CrossRef]
- Jeyavani, J.; Sibiya, A.; Stalin, T.; Vigneshkumar, G.; Al-Ghanim, K.A.; Riaz, M.N.; Govindarajan, M.; Vaseeharan, B. Biochemical, genotoxic and histological implications of polypropylene microplastics on freshwater fish Oreochromis mossambicus: An aquatic eco-toxicological assessment. Toxics 2023, 11, 282. [Google Scholar] [CrossRef]
- Martin-Folgar, R.; Torres-Ruiz, M.; de Alba, M.; Cañas-Portilla, A.I.; González, M.C.; Morales, M. Molecular effects of polystyrene nanoplastics toxicity in zebrafish embryos (Danio rerio). Chemosphere 2023, 312, 137077. [Google Scholar] [CrossRef]
- Xue Y-H. ; Jia T.; Yang N.; Sun Z-X.; Xu Z-Y.; Wen X-L.; Feng L-S. Transcriptome alterations in zebrafish gill after exposure to different sizes of microplastics. J. Environ. Sci. Health A 2022, 57, 347–356. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Vieira, L.R.; BrancoV. ; Figueiredo N.; Carvalho F.; Carvalho C.; Guilhermino L. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat. Toxicol. 2018, 195, 49–57. [Google Scholar] [CrossRef]
- González Núñez, A.A.; Ferro, J.P.; Campos, L.B.; Eissa, B.L.; Mastrángelo, M.M.; Ferrari, L.; Ossana, N.A. Evaluation of the acute effects of arsenic on adults of the neotropical native fish Cnesterodon decemmaculatus using a set of biomarkers. Environ. Toxicol. Chem. 2022, 41, 1246–1259. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Bhushan, S.; Patole, P.B.; Gite, A. Multi-biomarker approach to assess chromium, pH and temperature toxicity in fish. Comp. Biochem. Physiol. C 2022, 254, 109264. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, L.; Zhu, J.; Jiang, P.; Zhang, Z.; Li, L.; Wu, Q. Chromium induced neurotoxicity by altering metabolism in zebrafish larvae. Ecotoxicol. Environ. Saf. 2021, 228, 112983. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Han, X.; Yu, T.; Liu, Y.; Zhang, H.; Mao, H.; Hu, C.; Xu, X. Isoprocarb causes neurotoxicity of zebrafish embryos through oxidative stress-induced apoptosis. Ecotoxicol. Environ. Saf. 2022, 242, 113870. [Google Scholar] [CrossRef]
- Henriques, M.C.; Carvalho, I.; Santos, C.; Herdeiro, M.T.; Fardilha, M.; Pavlaki, M.D.; Loureiro, S. Unveiling the molecular mechanisms and developmental consequences of mercury (Hg) toxicity in zebrafish embryo-larvae: A comprehensive approach. Neurotoxicol. Teratol. 2023, 100, 107302. [Google Scholar] [CrossRef]
- Alves, C.; Tamagno, W.A.; Vanin, A.P. , Pompermaier A.; Gil Barcellos L.J. Cannabis sativa-based oils against aluminum-induced neurotoxicity. Sci. Rep. 2023, 13, 813. [Google Scholar] [CrossRef]
- Oliveira, V.M.; Assis, C.R.D.; Silva Costa, C.M.; Silva, R.P.F.; Santos, J.F.; Carvalho Jr, L.B.; Bezerra, R.S. Aluminium sulfate exposure: A set of effects on hydrolases from brain, muscle and digestive tract of juvenile Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C 2017, 191, 101–108. [Google Scholar] [CrossRef]
- Xia, S.; Zhu, X.; Yan, Y.; Zhang, Y.; Chen, G.; Lei, D.; Wang, G. Developmental neurotoxicity of antimony (Sb) in the early life stages of zebrafish. Ecotoxicol. Environ. Saf. 2021, 218, 112308. [Google Scholar] [CrossRef]
- Jakubowska-Lehrmann, M.; Dąbrowska, A.; Białowąs, M.; Makaras, T.; Hallmann, A.; Urban-Malinga, B. The impact of various carbon nanomaterials on the morphological, behavioural, and biochemical parameters of rainbow trout in the early life stages. Aquat. Toxicol. 2023, 259, 106550. [Google Scholar] [CrossRef]
- Fan, S.; Yang, Y.; Sun, L.; Yu, B.; Dai, C.; Yuanyuan, Q. Different toxicity to liver and gill of zebrafish by selenium nanoparticles derived from bio/chemical methods. Environ. Sci. Pollut. Res. 2022, 29, 61512–61521. [Google Scholar] [CrossRef]
- Guo, D.; Luo, L.; Kong, Y.; Kuang, Z.; Wen, S.; Zhao, M.; Zhang, W.; Fan, J. Enantioselective neurotoxicity and oxidative stress effects of paclobutrazol in zebrafish (Danio rerio). Pest. Biochem. Physiol. 2022, 185, 105136. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, H.; Liang, X.; Zhao, Y.; Martyniuk, C.J. Molecular and behavioral responses of zebrafish embryos/larvae after sertraline exposure. Ecotoxicol. Environ. Saf. 2021, 208, 111700. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.; Venâncio, C.A.S.; Félix, L.M. Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development. Environ. Sci. Pollut. Res. 2020, 27, 21174–21187. [Google Scholar] [CrossRef] [PubMed]
- Ames, J.; Stringini Severo, E.; Guilherme da Costa-Silva, D.; Rosso Storck, T.; Blank do Amaral, A.M.; Azambuja Miragem, A.; Broock Rosemberg, D.; Loro, V.L. Glyphosate-based herbicide (GBH) causes damage in embryo-larval stages of zebrafish (Danio rerio). Neurotoxicol. Teratol. 2023, 95, 107147. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Liu, W.; Yang, F.; Deng, Y.; Meng, Y.; Cheng, B.; Fu, J.; Zhang, J.; Liao, X.; Wei, L.; Lu, H. Effects of haloxyfop-p-methyl on the developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish. Fish Shellfish Immunol. 2023, 132, 108466. [Google Scholar] [CrossRef]
- Hamed, H.S.; El-Sayed, Y.S. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin-induced oxidative stress and genotoxicity in Nile tilapia, Oreochromis niloticus (L.). Fish Physiol. Biochem. A 2019, 45, 71–82. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, W.; Liu, W.; Li, L.; Zhu. ; Ma J. Single and combined effects of chlorpyrifos and glyphosate on the brain of common carp: Based on biochemical and molecular perspective. Int. J. Mol. Sci. 2023, 24, 12934. [Google Scholar] [CrossRef]
- El-Nahhal, Y. Toxicity of some aquatic pollutants to fish. Environ. Monitor. Ass. 2018, 190, 449. [Google Scholar] [CrossRef]
- Viana, N.P.; Menezes da Silva, L.C.; Portruneli, N.; Soares, M.P.; Cardoso, I.L.; Bonansea, R.I.; Goulart, B.V.; Montagner, C.C.; Espíndola, E.L.G.; Wunderlin, D.A.; Fernandes, M.N. Bioconcentration and toxicological impacts of fipronil and 2,4-D commercial formulations (single and in mixture) in the tropical fish, Danio rerio. Environ. Sci. Pollut. Res. 2022, 29, 11685–11698. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, C.; Dong, M.; Li, M.; Hu, C.; Xu, X. Chlorphoxim induces neurotoxicity in zebrafish embryo through activation of oxidative stress. Environ. Toxicol. 2022, 38, 566–578. [Google Scholar] [CrossRef]
- Kavitha, P.; Rao, J.V. Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environ. Toxicol. Pharmacol. 2008, 26, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Topal, A.; Şişecioğlu, M.; Atamanalp, M.; Işık, A.; Yılmaz, B. The in vitro and in vivo effects of chlorpyrifos on acetylcholinesterase activity of rainbow trout brain. J. Appl. Anim. Res. 2016, 44, 243–247. [Google Scholar] [CrossRef]
- Oruç, E.Ö. Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pest. Biochem. Physiol. 2010, 96, 160–166. [Google Scholar] [CrossRef]
- Touaylia, S.; Khazri, A.; Mezni, A.; Mezni, A. Assessment of biochemical biomarkers of mosquitofish (Gambusia affinis (Baird et Girard, 1853)) on exposure to the insecticide cypermethrin. Int. J. Environ. Stud. 2022. [Google Scholar] [CrossRef]
- Mishra, A.K.; Gopesh, A.; Singh, K.P. Effects of chlorpyrifos toxicity on brain, pseudobranchial neurosecretory system and swimming performance of a catfish, Heteropneustes fossilis. Drug Chem. Toxicol. 2023, 47, 67–80. [Google Scholar] [CrossRef]
- Pala, A.; Serdar, O.; Yonar, S.M.; Yonar, M.E. Ameliorative effect of Fennel (Foeniculum vulgare) essential oil on chlorpyrifos toxicity in Cyprinus carpio. Environ. Sci. Pollut. Res. 2021, 28, 890–897. [Google Scholar] [CrossRef]
- Silva de Souza, S.; Campos, D.F.; Machado, R.N.; Custodio da Costa, J.; Sebrenski da Silva, G.; Fonseca de Almeida-Val, V.M. Severe damages caused by Malathion exposure in Colossoma macropomum. Ecotoxicol. Environ. Saf. 2020, 205, 111340. [Google Scholar] [CrossRef]
- Chatterjee, A.; Bhattacharya, R.; Chatterjee, S.; Saha, N.C. λ cyhalothrin induced toxicity and potential attenuation of hematological, biochemical, enzymological and stress biomarkers in Cyprinus carpio L. at environmentally relevant concentrations: A multiple biomarker approach. Comp. Biochem. Physiol. C 2021, 250, 109164. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, R.; Luo, S.; Liu, Y.; Jin, Y.; Li, Y.; Li, B.; Chen, Y.; Jia, L.; Yuan, X. Combined effects of chlorpyrifos and cyfluthrin on neurobehavior and neurotransmitter levels in larval zebrafish. J. Appl. Toxicol. 2022, 42, 1662–1670. [Google Scholar] [CrossRef]
- Weeks Santos, W.; Gonzalez, P.; Cormier, B.; Mazzella, N.; Moreira, A.; Clérandeau, C.; Morin, B.; Cachot, J. Subchronic exposure to environmental concentrations of chlorpyrifos affects swimming activity of rainbow trout larvae. Environ. Toxicol. Chem. 2021, 40, 3092–3102. [Google Scholar] [CrossRef]
- Mehtabidah, A.; Majid, M.; Hussain, I.; Kali, S.; Naz, T.; Niazi, M.B.K.; Khan, M.R.A.; Zafar, M.I. Chlorpyrifos mediated oxidative damage and histopathological alterations in freshwater fish Oncorhynchus mykiss in Northern Pakistan. Aquacult. Res. 2020, 51, 4583–4594. [Google Scholar] [CrossRef]
- Ran, L.; Yang, Y.; Zhou, X.; Jiang, X.; Hu, D.; Lu, P. The enantioselective toxicity and oxidative stress of dinotefuran on zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2021, 226, 112809. [Google Scholar] [CrossRef] [PubMed]
- Guerra, L.J.; Blank do Amaral, A.M.; de Quadros, V.A.; da Luz Fiuza, T.; Rosemberg, D.B.; Prestes, O.D.; Zanella, R.; Clasen, B.; Loro, V.L. Biochemical and behavioral responses in zebrafish exposed to imidacloprid oxidative damage and antioxidant responses. Arch. Environ. Contam. Toxicol. 2021, 81, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang J-G. ; Ma D-D.; Xiong Q.; Qiu S-Q.; Huang G-Y.; Shi W-J.; Ying G.G. Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish. Ecotoxicol. Environ. Saf. 2021, 227, 112917. [Google Scholar] [CrossRef] [PubMed]
- Rouachdia, R.; Trea, F.; Tichati, L.; Ouali, K. Assessment of biochemical markers and behavior response of non-target freshwater teleost Gambusia affinis to carbofuran toxicity. Appl. Ecol. Environ. Res. 2023, 21, 545–559. [Google Scholar] [CrossRef]
- Hamed, H.S.; Ismal, S.M.; Faggio, C. Effect of allicin on antioxidant defense system, and immune response after carbofuran exposure in Nile tilapia, Oreochromis niloticus. Comp. Biochem. Physiol. C 2021, 240, 108919. [Google Scholar] [CrossRef]
- Yu, T.; Xu, X.; Mao, H.; Han, X.; Liu, Y.; Zhang, H.; Lai, J.; Gu, J.; Xia, M.; Hu, C.; Li, D. Fenpropathrin exposure induces neurotoxicity in zebrafish embryos. Fish Physiol. Biochem. 2022, 48, 1539–1554. [Google Scholar] [CrossRef]
- Wang Y-J.; Chen C-Z.; Li P.; Liu L.; Chai Y.; Li Z-H. Chronic toxic effects of waterborne mercury on silver carp (Hypophthalmichthys molitrix) larvae. Water 2022, 14, 1774. [Google Scholar] [CrossRef]
- Mukherjee, D.; Saha, S.; Chukwuka, A.V.; Ghosh, B.; Dhara, K.; Saha, N.C.; Pal, P.; Faggio, C. Antioxidant enzyme activity and pathophysiological responses in the freshwater walking catfish, Clarias batrachus Linn under sub-chronic and chronic exposures to the neonicotinoid, Thiamethoxam®. Sci. Total Environ. 2022, 836, 155716. [Google Scholar] [CrossRef]
- Jablonski, C.A.; Brandão Pereira, T.C.; De Souza Teodoro, L.; Altenhofen, S.; Rübensam, G.; Bonan, C.D.; Bogo, M.R. Acute toxicity of methomyl commercial formulation induces morphological and behavioral changes in larval zebrafish (Danio rerio). Neurotoxicol. Teratol. 2022, 89, 107058. [Google Scholar] [CrossRef]
- Muhammed, M.; Dogan, D. Toxicity and biochemical responses induced by phosmet in rainbow trout (Oncorhynchus mykiss). Toxicol. Res. 2021, 10, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Santillan Deiú, A.; de la Torre, F.R.; Ondarza, P.M.; Miglioranza, K.S.B. Multibiomarker responses and bioaccumulation of fipronil in Prochilodus lineatus exposed to spiked sediments: Oxidative stress and antioxidant defenses. Pest. Biochem. Physiol. 2021, 177, 104876. [Google Scholar] [CrossRef] [PubMed]
- Baldissera, M.D.; Souza, C.F.; Zanell, R.; Prestes, O.D.; Meinhart, A.D.; Da Silva, A.S.; Baldisserotto, B. Behavioral impairment and neurotoxic responses of silver catfish Rhamdia quelen exposed to organophosphate pesticide trichlorfon: Protective effects of diet containing rutin. Com. Biochem. Physiol. C 2021, 239, 108871. [Google Scholar] [CrossRef] [PubMed]
- Duncan, W.P.; Silva Idalino, J.J.; da SilvaA. G.; Moda R.F.; Menezes da Silva H.C.; Matoso D.A.; Silva Gomes A.L. Acute toxicity of the pesticide trichlorfon and inhibition of acetylcholinesterase in Colossoma macropomum (Characiformes: Serrasalmidae). Aquacult. Int. 2020, 28, 815–830. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, M.; Lu, L. Tissue metabolism, hematotoxicity, and hepatotoxicity of trichlorfon in Carassius auratus gibelio after a single oral administration. Front. Physiol. 2018, 9, 551. [Google Scholar] [CrossRef]
- Flynn, K.; Johnson, R.; Lothenbach, D.; Swintek, J.; Whiteman, F.; Etterson, M. The effects of combinations of limited ration and diazinon exposure on acetylcholinesterase activity,growth and reproduction in Oryzias latipes, the Japanese medaka. J. Appl. Toxicol. 2020, 40, 535–547. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, R.K.; Pandey, R.S. Evaluation of acute toxicity of triazophos and deltamethrin and their inhibitory effect on AChE activity in Channa punctatus. Toxicol. Rep. 2018, 5, 85–89. [Google Scholar] [CrossRef]
- Rivero-Wendt, C.L.G.; Fernandes, L.G.; dos Santos, A.N.; Brito, I.L.; dos Santos Jaques, J.A.; dos Santos dos Anjos, E.; Fernandes, C.E. Effects of Chloramine T on zebrafish embryos malformations associated with cardiotoxicity and neurotoxicity. J. Toxicol. Environ. Health A 2023, 86, 372–381. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Xiao, L.; Gao, G.; He, L.; Zhao, K.; Shang, X. 2, 5-dichloro-1, 4-benuinone exposure to zebrafish embryos/larvae causes neurodevelopmental toxicity. Ecotoxicol. Environ. Saf. 2022, 243, 114007. [Google Scholar] [CrossRef]
- Orozco-Hernández, J.M.; Gómez-Oliván, L.M.; Elizalde-Velázquez, G.A.; Rosales-Pérez, K.E.; Cardoso-Vera, J.D.; Heredia-García, G.; Islas-Flores, H.; García-Medina, S.; Galar-Martínez, M. Fluoxetine-induced neurotoxicity at environmentally relevant concentrations in adult zebrafish Danio rerio. Neurotoxicol. 2022, 90, 121–129. [Google Scholar] [CrossRef]
- Correia, D.; Domingues, I.; Faria, M.; Oliveira, M. Chronic effects of fluoxetine on Danio rerio: A biochemical and behavioral perspective. Appl. Sci. 2022, 12, 2256. [Google Scholar] [CrossRef]
- Deepika, D.; Padmavathy, P.; Srinivasan, A.; Sugumar, G.; Jawahar, P. Short term effects of antimicrobial agent triclosan on Oreochromis mossambicus (Peters, 1852): Biochemical and genetic alterations. Ind. J. Anim. Res. 2023, 57, 788–794. [Google Scholar] [CrossRef]
- Sager, E.; Scarcia, P.; Marino, D.; Mac Loughlin, T.; Rossi, A.; de La Torre, F. Oxidative stress responses after exposure to triclosan sublethal concentrations: An integrated biomarker approach with a native (Corydoras paleatus) and a model fish species (Danio rerio). J. Toxicol. Environ. Health A 2022, 85, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Liang, C.; Guo, Y.; Zou, H.; Guo, Y.; Ye, J.; Hou, L.; Wang, X. Thyroid endocrine disruption and neurotoxicity of gestodene in adult female mosquitofish (Gambusia affinis). Chemosphere, 2023, 313, 37594. [Google Scholar] [CrossRef] [PubMed]
- Rocha, C.S.; Puchale, R.Z.; Barcarolli, I.F. Avaliação toxicológica da progesterona em biomarcadores de tilápia do Nilo (Oreochromis niloticus). Rev. Bras. Meio Amb. 2022, 10, 26–40. [Google Scholar]
- Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M.; García-Medina, S.; Rosales-Pérez, K.E.; Orozco-Hernández, J.M.; Islas-Flores, H.; Galar-Martínez, M.; Hernández-Navarro, M.D. Chronic exposure to realistic concentrations of metformin prompts a neurotoxic response in Danio rerio adults. Sci. Total Environ. 2022, 849, 157888. [Google Scholar] [CrossRef]
- Yang, H.; Gu, X.; Chen, H.; Zeng, Q.; Mao, Z.; Jin, M.; Li, H.; Ge, Y.; Zha, Y.; Martyniuk, C.J. Transcriptome profiling reveals toxicity mechanisms following sertraline exposure in the brain of juvenile zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2022, 242, 113936. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Fascineli, M.L.; Andrade, T.S.; Sousa-Moura, D.; Domingues, I.; Camargo, N.S.; Oliveira, R.; Grisolia, C.K.; Villacis, R.A.R. Exposure to tricyclic antidepressant nortriptyline affects early-life stages of zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2021, 210, 111868. [Google Scholar] [CrossRef]
- Muniz, M.S.; Halbach, K.; Araruna, I.C.A.; Martins, R.X.; Seiwert, B.; Lechtenfeld, O.; Reemtsma, T.; Farias, D. Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses. Environ. Pollut. 2021, 283, 117096. [Google Scholar] [CrossRef]
- Li, P.; Li Z-H. Neurotoxicity and physiological stress in brain of zebrafish chronically exposed to tributyltin. J. Toxicol. Environ. Health A 2021, 84, 20–30. [Google Scholar] [CrossRef]
- Murugan, R.; Arokiyaraj, B.H.S.; Arockiaraj, J. Deacetyl epoxyazadiradione ameliorates BPA-induced neurotoxicity by mitigating ROS and inflammatory markers in N9 cells and zebrafish larvae. Comp. Biochem. Physiol. C 2023, 271, 109692. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.V.; Begum, G.; Pallela, R.; Usman, P.K.; Rao, R.N. Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos. Int. J. Environ. Res. Pub. Health 2023, 2, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Belhamra, R.; Tichati, L.; Trea, F.; Ouali, K. Effect of subacute treatment with bisphenol A on oxidative stress biomarkers and lipid peroxidation in Gambusia affinis mosquitofish. Toxicol. Environ. Health Sci. 2023, 15, 61–72. [Google Scholar] [CrossRef]
- Lin, H.; Jia, Y.; Han, F.; Xia, C.; Zhao, Q.; Zhang, J.; Li, E. Toxic effects of waterborne benzylparaben on the growth, antioxidant capacity and lipid metabolism of Nile tilapia (Oreochromis niloticus). Aquat. Toxicol. 2022, 248, 106197. [Google Scholar] [CrossRef] [PubMed]
- Raja, G.L.; Subhashree, K.D.; Lite, C.; Santosh, W.; Barathi, S. Transient exposure of methylparaben to zebrafish (Danio rerio) embryos altered cortisol level, acetylcholinesterase activity and induced anxiety-like behaviour. Gen. Comp. Endocrinol. 2019, 279, 53–59. [Google Scholar] [CrossRef]
- Thakkar, S.; Seetharaman, B.; Ramasamy, V. Impact of chronic sub-lethal methylparaben exposure on cardiac hypoxia and alterations in neuroendocrine factors in zebrafish model. Mol. Biol. Rep. 2022, 49, 331–340. [Google Scholar] [CrossRef]
- Gayathri, M.; Sutha, J.; Mohanthi, S.; Ramesh, M.; Poopal R-K. Ecotoxicological evaluation of the UV-filter octocrylene (OC) in embryonic zebrafish (Danio rerio): Developmental, biochemical and cellular biomarkers. Comp. Biochem. Physiol. C 2023, 271, 109688. [Google Scholar] [CrossRef]
- Pérez-Iglesias, J.M.; González, P.; Calderón, M.R.; Natale, G.S.; Almeida, C.S. Comprehensive evaluation of the toxicity of the flame retardant (decabromodiphenyl ether) in a bioindicator fish (Gambusia affinis). Environ. Sci. Pollut. Res. 2022, 29, 50845–50855. [Google Scholar] [CrossRef]
- Sandoval-Gío, J.J.; Noreña-Barroso, E.; Escalante-Herrera, K.; Rodríguez-Fuentes, G. Effect of benzophenone-3 to acetylcholinesterase and antioxidant system in zebrafish (Danio rerio) embryos. Bull. Environ. Contam. Toxicol. 2021, 107, 814–819. [Google Scholar] [CrossRef]
- Chen, X.; Guo, W.; Lei, L.; Guo, Y.; Yang, L.; Han, J.; Zhou, B. Bioconcentration and developmental neurotoxicity of novel brominated flame retardants, hexabromobenzene and pentabromobenzene in zebrafish. Environ. Pollut. 2021, 268, 115895. [Google Scholar] [CrossRef]
- Sayed, A. L-D.H.; Soliman H.A.M.; Idriss S.K.; Abdel-Ghaffar S.K.; Hussein A.A.A. Oxidative stress and immunopathological alterations of Clarias gariepinus exposed to monocyclic aromatic hydrocarbons (BTX). Water Air Soil Pollut. 2023, 234, 354. [Google Scholar] [CrossRef]
- Molayemraftar, T.; Peyghan, R.; Jalali, M.R.; Shahriari, A. Single and combined effects of ammonia and nitrite on common carp, Cyprinus carpio: Toxicity, hematological parameters, antioxidant defenses, acetylcholinesterase, and acid phosphatase activities. Aquaculture 2022, 548, 737676. [Google Scholar] [CrossRef]
- Mariz, C.F.; de Melo Alves, M.K.; Ventura Dos Santos, S.M.; Alves, R.N.; Carvalho, P.S.M. Lethal and sublethal toxicity of un-ionized ammonia to early life stages of Danio rerio. Zebrafish 2023, 20, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Gopi, N.; Iswarya, A.; Vijayakumar, S.; Jayanthi, S.; Nord, A.S.M.; Velusamye, P.; Vaseeharan, B. Protective effects of dietary supplementation of probiotic Bacillus licheniformis Dahb1 against ammonia induced immunotoxicity and oxidative stress in Oreochromis mossambicus. Comp. Biochem. Physiol. C 2022, 259, 109379. [Google Scholar] [CrossRef]
- Passos, L.S.; Gomes, L.C.; Pereira, T.M.; Sadauskas-Henrique, H.; Dal Pont, G.; Ostrensky, A.; Pinto, E. Response of Oreochromis niloticus (Teleostei: Cichlidae) exposed to a guanitoxin-producing cyanobacterial strain using multiple biomarkers. Sci. Total Environ. 2022, 835, 155471. [Google Scholar] [CrossRef]
- Nirmala, G.N.; Sharma, A.; Ragunathan, V. Antagonistic effect of dichloromethane on Oreochromis mossambicus and immune stimulation activity of Aloe vera. Front. Environ. Sci. 2022, 10, 913065. [Google Scholar] [CrossRef]
- Muthukumaravel, K.; Vasanthi, N.; Kanagavalli, V.; Santhanabharathi, B.; Pradhoshini, K.P.; Alam, L.; Faggio, C. Potential biomarker of phenol toxicity in freshwater fish C. mrigala: Serum cortisol, enzyme acetylcholine esterase and survival organ gill. Comp. Biochem. Physiol. C 2023, 263, 109492. [Google Scholar] [CrossRef]
- Iheanacho, S.C.; Ekpenyong, J.; Nwose, R.; Adeolu, A.I.; Offu, P.; Amadi-Eke, A.; Iheanacho, A.C.; Ogunji, J. Effects of burnt tire-ash on Na+/K+, Ca2+-ATPase, serum immunoglobulin and brain acetylcholinesterase activities in Clarias gariepinus (Burchell, 1822). Drug Chem. Toxicol. 2023, 46, 503–509. [Google Scholar] [CrossRef]
- Schmitt, C.; Peterson, E.; Willis, A.; Kumar, N.; McManus, M.; Subbiah, S.; Crago, J. Transgenerational effects of developmental exposure to chlorpyrifos-oxon in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 2020, 408, 115275. [Google Scholar] [CrossRef]
- Brander, S.M.; White, J.W.; DeCourten, B.M.; Major, K.; Hutton, S.J.; Connon, R.E.; Mehinto, A. Accounting for transgenerational effects of toxicant exposure in population models alters the predicted long-term population status. Environ. Epigen. 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Issac, P.K.; Guru, A.; Velayutham, M.; Pachaiappan, R.; Arasu, M.V.; Al-Dhabi, N.A.; Choi, K.C.; Harikrishnan, R.; Arockiaraj, J. Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sci. 2021, 283, 119864. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Rizvi, S.I. Age-dependent decline in erythrocyte acetylcholinesterase activity: Correlation with oxidative stress. Biomed. Pap. Med. Faculty University Palacky Olomouc Czech Republic 2009, 153, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, J.; Yao J-Y. ; Wang H.; Li S-T. The role of oxidative stress in decreased acetylcholinesterase activity at the neuromuscular junction of the diaphragm during sepsis. Oxidat. Med. Cell. Longevity 2017, 9718615. [Google Scholar] [CrossRef] [PubMed]
- Melo, J.B.; Agostinho, P.; Oliveira, C.R. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci. Res. 2003, 45, 117–127. [Google Scholar] [CrossRef]
- Nájera-Martínez, M.; Landon-Hernández, G.G.; Romero-López, J.P.; Domínguez-López, M.L.; Vega-López, A. Disruption of neurotransmission, membrane potential, and mitochondrial calcium in the brain and spinal cord of Nile tilapia elicited by Microcystis aeruginosa extract: An uncommon consequence of the eutrophication process. Water Air Soil Pollut. 2022, 233, 6. [Google Scholar] [CrossRef]
- Santana, M.S.; Sandrini-Neto, L.; Di Domenico, M.; Mela Prodocimo, M. Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review. Sci. Total Environ. 2021, 757, 143829. [Google Scholar] [CrossRef]
- Ortiz-Delgado, J.B.; Funes, V.; Albendín, G.; Scala, E.; Sarasquete, C. Toxicity of malathion during Senegalese sole, Solea senegalensis larval development and metamorphosis: Histopathological disorders and effects on type B esterases and CYP1A enzymatic systems. Environ. Toxicol. 2021, 36, 1894–1910. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
