Submitted:
22 September 2024
Posted:
24 September 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. QC-HEMT Design and Key Properties
2.1. Energy States and Band Diagram
- A.
- Breakdown field in QC-HEMT
- B.
- Electron mobility in QC-HEMT
2. Experimental Validation of QC HEMT Breakdown Field Enhancement
2.1. Device Fabrication
2.2. Electrical Characterizatio
3. Discussion of the Experimental Results
2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- M. A. Khan, J. N. Kuznia, D. T. Olson, W. Schaff, J. Burm, M. S. Shur, Microwave Performance of 0.25-micron Doped Channel GaN/AlGaN Heterostructure Field Effect Transistor, Appl. Phys. Lett, Vol. 65 (9), pp. 1121-1123 (1994).
- M. S. Shur and M. Asif Khan, AlGaN/GaN Doped Channel Heterostructure Field Effect Transistors, Physica Scripta, T69, 103-107 (1997). [CrossRef]
- W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura, and H. Ohashi, “High breakdown voltage AlGaN–GaN power-HEMT design and high current density switching behavior,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2528–2531, Dec. 2003. [CrossRef]
- N. Tipirneni, V. Adivarahan, G. Simin and A. Khan, Silicon Dioxide Encapsulated High Voltage AlGaN/GaN HFETs for Power Switching Applications, IEEE El. Dev. Lett. V. 28, 784-786 (2007). [CrossRef]
- P.-C. Chao, Chu, K. Creamer, C. Diaz, J. Yurovchak, T. Shur, M. Kallaher, R. McGray, C. Via, G.D. Blevins, J.D. Low-Temperature Bonded GaN-on-Diamond HEMTs with 11 W/mm Output Power at 10 GHz, IEEE Transactions on Electron Devices, Volume: 62, Issue: 11, Pages: 3658-3664 (2015). [CrossRef]
- Mishra U, Shen L, Kazior T, Wu Y. GaN-based RF power devices and amplifiers. Proc IEEE 2008;96:287–305.
- Y.-F. Wu, B.P. Keller, P. Fini, J. Pusl, M. Le, N. X. Nguyen, C. Nguyen, D. Widman, S. Keller, S. P. Denbaars, and U. K. Mishra, Short-channel Al0.5Ga0.5N/GaN MODFETs with power density > 3 W/mm at 18 GHz Electron. Lett. 33 p. 1742 (1997).
- Mishra U, Shen L, Kazior T, Wu Y. GaN-based RF power devices and amplifiers. Proc IEEE 2008;96:287–305.
- S. J. Pearton et al, Review—Ionizing Radiation Damage Effects on GaN Devices 2016 ECS J. Solid State Sci. Technol. 5 Q35 DOI 10.1149/2.0251602jss. [CrossRef]
- Sequeira, M. C., Mattei, J., Vazquez, H., Djurabekova, F., Nordlund, K., Monnet, I., Kluth, P., Grygiel, C., Zhang, S., Alves, E., & Lorenz, K. (2021). Unravelling the secrets of the resistance of GaN to strongly ionising radiation. Communications Physics, 4(1), 1-8. [CrossRef]
- A. Bykhovski, B. Gelmont, and M. S. Shur, The Influence of the Strain-Induced Electric Field on the Charge Distribution in GaN-AlN-GaN SIS Structure, J. Appl. Phys. Dec. Vol. 74 (11), p. 6734-6739 (1993).
- O. Ambacher; B. Foutz; J. Smart; J. R. Shealy; N. G. Weimann; K. Chu; M. Murphy; A. J. Sierakowski; W. J. Schaff; L. F. Eastman; R. Dimitrov; A. Mitchell; M. Stutzmann, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 87, 334–344 (2000), . [CrossRef]
- M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Editors, “Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, and SiGe“, J. Wiley and Sons, ISBN 0-471-35827-4, New York (2001).
- M. E. Levinshtein, S. Rumyantsev, and M. S. Shur, Editors, Handbook of Semiconductor Material Parameters, Si, Ge, C (diamond), GaAs, GaP, GaSb, InAs, InP, InSb, Vol. 1, World Scientific, 1996, ISBN981-02-2934-8517.
- P.A. Ivanov, M.E. Levinshtein, G. Simin, X. Hu, J. Yang, M. A. Khan, S. L. Rumyantsev, M. S. Shur and R. Gaska, Drift mobility of electrons in AlGaN/GaN MOSHFET, Electronics Letters, vol. 37 (24), pp. 1479-1481 (2001). [CrossRef]
- E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean and J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. A. Khan, M. Shur, R. Gaska, and D. Maude, High electron mobility in AlGaN/GaN heterostructures grown on bulk GaN substrates, Appl. Phys. Lett, Vol. 77, No. 16, pp. 2551-2553, October (2000). [CrossRef]
- R. Gaska, M. S. Shur, A. D. Bykhovski, A. O. Orlov, and G. L. Snider, Electron Mobility in Modulation Doped AlGaN-GaN Heterostructures, Appl. Phys. Lett. 74, No. 2, January 11, pp. 287-289 (1999).
- A. Azimi, M. Azimi, M. S. Shur, and S. K. O’Leary. The impact of device length on the electron's effective mobility, J. App. Phys., 134, 125701 (2023), . [CrossRef]
- Hussain, Kamal, et al. "High figure of merit extreme bandgap Al0. 87Ga0. 13N-Al0. 64Ga0. 36N heterostructures over bulk AlN substrates." Applied Physics Express 16.1 (2023): 014005.
- Mamun, Abdullah, et al. "Al0. 64 Ga0. 36N channel MOSHFET on single crystal bulk AlN substrate." Applied Physics Express 16.6 (2023): 061001.
- R. Gaska, C. Chen, J. Yang, E. Kuokstis, A. Khan, G. Tamulaitis, I. Yilmaz, M. S. Shur, J. C. Rojo, L. Schowalter, Deep-ultraviolet emission of AlGaN/AlN quantum wells on bulk AlN, Appl. Phys. Lett. Vol. 81, No 24, pp. 4658-4660, (2002). [CrossRef]
- X. Hu, J. Deng, N. Pala, R. Gaska, M. S. Shur, C. Q. Chen, J. Yang, S. Simin, and A. Khan, C. Rojo, L. Schowalter, AlGaN/GaN Heterostructure Field Effect Transistor on Single Crystal Bulk AlN, Appl. Phys. Lett, 82, No 8, pp. 1299-1302, 24 Feb (2003). [CrossRef]
- G. Tamulaitis, I. Yilmaz, M. S. Shur, R. Gaska, C. Chen, J. Yang, E. Kuokstis, A. Khan, S.B. Schujman, L. J. Schowalter, Photoluminescence of GaN Deposited on Single Crystal Bulk AlN with Different Polarities, Appl. Phys. Lett. 83, No 17, pp. 3507-3509 (2003). [CrossRef]
- M. S. Shur, Introduction to Electronic Devices, J. Wiley and Sons, New York, 1996, ISBN 0-471-10348-9, ISBN 981-02-2325.
- K. Lee, M. S. Shur, T. A. Fjeldly, and T. Ytterdal, Semiconductor Device Modeling for VLSI, Prentice Hall, Englewood Cliffs, NJ (1993).
- G. Snider, 1D Poisson - a program for calculating energy band diagrams for semiconductor structures. https://www3.nd.edu/~gsnider/, accessed October 10, 2023.
- J. L. Hudgins, G.S. Simin, E. Santi, M. Asif Khan, An Assessment of Wide bandgap Semiconductors for Power Devices, IEEE Trans. on Power Electronics, V.18, 907-914 (2003). [CrossRef]
- W. A. Hadi, M. S. Shur, and S. K. O’Leary Review: Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: An updated and critical review, Journal of Materials Science: Materials in Electronics, J Mater Sci: Mater Electron (2014) 25:4675–4713 . [CrossRef]
- M. Dyakonov and M. S. Shur, Consequences of space dependence of effective mass in heterostructures, J. Appl. Phys, V 84, N7, p. 3726 (1998). [CrossRef]
- P.A. Ivanov, M.E. Levinshtein, G. Simin, X. Hu, J. Yang, M. A. Khan, S. L. Rumyantsev, M. S. Shur and R. Gaska, Drift mobility of electrons in AlGaN/GaN MOSHFET, Electronics Letters, vol. 37 (24), pp. 1479-1481 (2001). [CrossRef]
- C. Chen, J. Zhang, V. Adivarahan, A. Koudymov, H. Fatima, G. Simin, J. Yang, and M. Asif Khan, AlGaN/GaN/AlGaN Double Heterostructure for high power III-N FETs, Appl. Phys. Lett. 82, 4593 (2003).
- F. Yun et. al. Energy band bowing parameter in AlxGa1− xN alloys Appl. Phys. 92, 4837 (2002).
- J. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998).













Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
