Preprint
Article

Note for the P Versus NP Problem (II)

Altmetrics

Downloads

199

Views

197

Comments

0

This version is not peer-reviewed

Submitted:

17 November 2024

Posted:

19 November 2024

You are already at the latest version

Alerts
Abstract
The P versus NP problem is a cornerstone of theoretical computer science, asking whether problems that are easy to check are also easy to solve. "Easy" here means solvable in polynomial time, where the computation time grows proportionally to the input size. While this problem's origins can be traced to John Nash's 1955 letter, its formalization is credited to Stephen Cook and Leonid Levin. Despite decades of research, a definitive answer remains elusive. Central to this question is the concept of NP-completeness. If even one NP-complete problem could be solved efficiently, it would imply that all problems in NP could be solved efficiently, proving P equals NP. This research proposes that a notoriously difficult NP-complete problem can be solved efficiently, thereby potentially establishing the equivalence of P and NP. This work is an expansion and refinement of the article "Note for the P versus NP problem", published in IPI Letters.
Keywords: 
Subject: Computer Science and Mathematics  -   Data Structures, Algorithms and Complexity
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated