Preprint
Review

Progress of IL-12 in Tumor Immunotherapy

Altmetrics

Downloads

138

Views

48

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

26 September 2024

Posted:

26 September 2024

You are already at the latest version

Alerts
Abstract
Interleukin-12 (IL-12) is considered to be a promising cytokine for enhancing anti-tumor immune response. However, recombinant IL-12 had significant toxicity and limited efficacy in early clinical trials. Recently, many strategies for delivering IL-12 to tumor tissues have been developed, such as modifying IL-12, utilizing viral vectors, non-viral vectors and cellular vectors. Previous studies have found that IL-12 fusion with extracellular matrix proteins, collagen and immune factors is a way to enhance its therapeutic potential. In addition, studies have demonstrated that viral vectors are a good platform, and a variety of viruses such as oncolytic viruses, adenoviruses and poxviruses have been used to deliver IL-12, and testing has been conducted in various cancer models. Local expression of IL-12 in tumors based on viral delivery avoids systemic toxicity while inducing effective anti-tumor immunity and acting synergistically with other therapies without compromising safety. Also, lipid nanoparticles are currently considered to be the most mature drug delivery system. Moreover, cells are also considered to be drug carriers because they can effectively deliver therapeutic substances to tumors. In this article, we will systematically discuss the antitumor effects of IL-12 on its own or in combination with other therapies based on different delivery strategies.
Keywords: 
Subject: Medicine and Pharmacology  -   Medicine and Pharmacology

1. Instruction

Cytokine is an important factor that regulates immune cells to inhibit the growth of tumor cells, which can directly affect the activity of tumor cells or indirectly enhance the cytotoxic activity of tumor cells by stimulating immune cells [1]. Several cytokines have been extensively investigated for cancer immunotherapy and shown efficacy in multiple cancer models [1,2]. Among these, IL-12 is considered to be a potent cytokine in triggering anti-tumor immune responses due to its activation of both innate and adaptive immune responses [3,4,5]. The therapeutic potential of IL-12 has been extensively evaluated in various preclinical models with advanced solid tumors, both alone or in combination with others, producing encouraging therapeutic outcomes and even overcoming immune checkpoint inhibitors (ICI) resistance [6,7,8,9,10]. However, although IL-12 has strong anticancer effects and high in vitro activity, systemic administration of therapeutic doses is limited due to severe dose-limiting toxicity, short half-life of conventional IL-12 drugs in vivo, and lethal off-target and off-tumor side effects [8,10,11,12]. In most cases, clinical responses have been only modest [13], which may be associated with the short serum half-life of IL-12 and its limited T-cell activation. To avoid toxic effects associated with IL-12 administration and enhance therapeutic efficacy, a number of approaches have been proposed and explored [14,15,16].
Recently, the development of a new generation of IL-12 drugs focuses on reducing systemic leakage of IL-12 and increasing its safety, but achieving high concentrations locally in the tumor. The modification or delivery strategies of cancer immunotherapy drugs targeting IL-12 mainly include the following categories: fusion with molecules targeting specific tumor tissues to achieve targeted delivery, application of viruses to infect tumor tissues, direct delivery of genetic material to target tissues through physical or chemical means, delivery through cellular carriers, etc. In this article, we will focus on discussing the safety and anti-tumor effects of modified, virally delivered, non-viral and cell-delivered IL-12 drugs as single or combination therapies.

2. Progress of IL-12 in Cancer Therapy based on Different Delivery Strategies

2.1. Modified IL-12 for Cancer Therapy

In order to increase the possibility of IL-12 in tumor therapy, several strategies have been used to modify IL-12 to develop novel IL-12 drugs. For example, IL-12 drugs are developed by fusing with extracellular matrix proteins, collagen in the tumor microenvironment (TME), and immune factors (Table 1). Most solid tumors are encapsulated in the extracellular matrix, and targeting extracellular matrix proteins can promote the accumulation of immune cytokines in tumor tissues and reduce toxicity [17,18]. Therefore, an IL-12 drug based on this was designed, namely Pro-IL-12 [17]. In preclinical animal models, intraperitoneal (i.p.) injection of low-dose Pro-IL-12 can significantly inhibit tumor growth and prolong survival of MC38, B16F10 and 4T1 tumor-bearing mice with very low toxicity [17]. The mechanism stems from the production of tumor-specific CD8+ T cells and IFN-γ within the tumor [17]. In addition, the combination of Pro-IL-12 with TKI targeted therapy and ICI can further improve the therapeutic effect [17]. Similarly, IL-12-MSA-Lumican (fusion with Lumican, specific binding of type I and IV collagen) and CBD-IL-12(fusion collagen binding domain) were designed to be more effective and less toxic than unmodified IL-12 alone or in combination with PD-1 antibodies [19,20].
In addition, IL-12 binding to immune factors is also a strategy that has received much attention. For example, IL12-L19 (human IL-12 tandem L19 antibody) [21], IL12-scFv(L19)-FLAG (IL-12 derivatives fuse anti-EDB antibody fragment scFv(L19) [22], and NHS-muIL12 (fuses a DNA/ DNA-histone complex antibody (NHS76)) [23]. Taking NHS-muIL12 as an example, it subcutaneous (s.c.) injection has a longer half-life than recombinant IL-12, and whether used as a monotherapy or in combination with PD-L1 antibodies, it can stimulate anti-tumor activity, enhance cytotoxic function, and increase the production of IFN-γ and other cytokines by activating NK cells and CD8+ T cells [24,25].

2.2. Virus-Based Delivery of IL-12 for cancer therapy

Virus-mediated cytokine therapy has been proved effective against tumors inducing local and systemic immune responses [28]. Potential viral vectors for gene delivery include herpes simplex virus, adenovirus, alphavirus, and herpes virus, semliki forest viruses, poxviruses and other viral vectors. Next, we will focus on the progress of virus-mediated IL-12 in tumor therapy.

Herpes Simplex Virus (HSV)

HSV was the first virus to be recognized as a candidate oncolytic virus (OV), ranking highly on the list of clinical trials [29,30]. Talimogene laherparepvec (T-VEC), the first HSV drug, was approved by the U.S. FDA in 2015 for the treatment of advanced melanoma [31]. With the approval of T-ECV, much research has focused on developing drugs based on HSV strategies. In preclinical studies, Intratumoral (i.t.) injections of HSV encoding IL-12 have mediated regressions of colon cancer [32,33,34,35,36], breast cancer [34,37], glioma [38,39,40,41,42,43,44,45], lymphoma [33,46,47], melanoma [48] and other cancers (Table 2). Indeed, most HSV-encoded IL-12 has shown good antitumor effects and prolonged survival with reduced toxicity in preclinical animal models. The mechanism is usually to change the TME, increase CD8+ T cell infiltration, promote IFN-γ production, and inhibit Tregs function.
In addition, combination therapy is also of concern, with most studies in combination with ICI. For example, G47Δ-mIL12, G47Δ, G47Δ-mIL12 and R-123 have been explored for immunotherapy in combination with the anti-PD-1 or anti-CTLA-4 antibodies [38,40,41,46]. Excitingly, the G47Δ-mIL12, anti-CTLA-4 and anti-PD-1 triple therapy cured most mice in glioma models, and outperformed G47Δ-mIL12, anti-CTLA-4 and anti-PD-1 alone in prolonging survival [41].

Adenovirus or Adeno-associated virus (AV or AAV)

AV or AAV is an ideal candidate platform, with genome stability, relative ease of manipulation, easy access to high titers, strong immunogenicity, and wide host range [66,67,68,69,70]. Preclinical studies have tested the tumor inhibitory effect of AV or AAV vectors expressing IL-12 in various tumor models such as sarcoma [71], glioblastoma [72,73,74], prostate cancer [28], colorectal cancer [75], melanoma [76,77,78], hepatocellular carcinoma [79,80] and others (Table 3). To improve efficacy, one study designed an AV-mediated co-expression of IL-12 and 4-1BB ligand (4-1BBL) that showed stronger antitumor effects in B16 tumor-bearing mice [77]. Similarly, studies of AV-encoded IL-12 are also exploring combinations with other therapies. Previous studies have shown that the combination therapy of adenovirus-encoded IL-12 with radiotherapy, cell therapy or immunoblot inhibitors has a good anti-tumor effect in prostate cancer [81], melanoma [77,78], colon cancer [82] and Lung cancer [83].

Vaccinia virus or modified vaccinia virus (VV or MVA)

Currently, although OV is a promising new treatment option, they have shown limited efficacy for inaccessible and metastatic cancers that require systematic delivery of therapy. VV or MVA is a particularly strong OV candidate for the treatment of inaccessible and metastatic cancers because it has a number of intrinsic characteristics that make it superior to other viruses in clinical development, particularly the lack of need for specific surface receptors and the ability to replicate in an oxygen-deficient environment [101,102,103,104]. Moreover, most OV delivery is limited to intratumoral injection, whereas VV has been reported to reach tumors after intravenous delivery [105]. The progress of IL-12 in tumor therapy with VV or MVA delivery is listed in Table 4. In one study, i.t. injection of a tumor-selective VV encoding IL-7 and IL-12 (hIL-7/mIL-12-VV) had considerable antitumor effects in B16-F10, CT26, and LLC models, and even distant tumor suppression [106]. In addition, the combination of hIL-7/mIL-12-VV with anti-PD-L1 or CTLA4 antibodies showed a stronger anti-tumor effect in CT26 models, with complete regression in almost all mice without indications of cytokine storm despite the extent of tumor regression [106]. The combination of hIL-7/mIL-12-VV with anti-PD-L1 or CTLA4 antibodies, induced tumor regression via enhancing the CD8+ T cells, and reducing the Tregs [106].

Other viruses

In addition to HV, AV and VV, other different viral vectors, such as Measles vaccine strain viruses (MeV), Newcastle disease virus (NDV), Semliki Forest virus (SFV), Maraba Virus (MV), Vesicular stomatitis virus (VSV), Sindbis virus (SV), Canarypox virus and Varicella-zoster virus (VZV), have also been modified to express IL-12, and their related research progress is summarized in Table 5.

2.3. Non-Viral Delivery of IL-12 for Cancer Therapy

Many early studies used viruses as delivery vectors. However, serious clinical adverse events caused by the potential carcinogenicity and high immunogenicity of some viral vectors have affected their application in clinical trials. With the continuous development of materials and preparation technologies, non-viral vectors (such as bio-derived materials and chemical materials) with low cost, easy synthesis, easy purification, high transfection efficiency and low immunogenicity have become the main candidates for drug delivery. Among chemical-based delivery systems, polymer-based nanoparticles and lipid-based nanoparticles are most widely used due to their high potency and diversity [147]. Bioderived vectors, which mainly include exosomes (Exos) [148,149,150], bacterial outer membrane vesicles (Omv) [151,152], and virus-like particles (VLPs) [153,154], have been shown to be attractive in some applications. In this section, we will describe each delivery system and highlight its application in cancer therapy for delivering IL-12 (Table 6).

2.3.1. Chemical-Based Delivery Systems

Polymer-based nanoparticles

Polymers, which are generally spherical particles formed by electrostatic interactions of polymer molecules with negatively charged nucleic acids, have been extensively studied and reviewed as delivery systems for DNA and RNA-based drugs. Polymeric vectors mainly include: 1) Poly(ethyleneimine) (PEI); 2) Poly (amino acid)s, such as P(Lys), P(Orn), P(Asp); 3) Polyesters include PLGA (Poly(lactic-co-glycolic acid, PLGA), PBAEs (PBAE (poly(β-amino ester)s, PBAEs) and PACE (Polyplexes based on poly(amine-co-ester) , PACE); 4) Natural polymers are Chitosan and Protamine; 5) Other polymers and dendrimers include RAFT polymer (DMAEMA) and the dendrimer PAMAM, as well as other polymers [155,156,157,158,159]. Polymer-based approaches have shown capability for enhancing the delivery of different nucleic acids by protecting them from degradation and promoting cellular uptake and endosomal escape [159]. In this section, we will highlight the latest applications of polymers-delivered IL-12 in cancer therapy.
In preclinical models, polymer-based IL-12 has been used to treat melanoma, colon cancer, liver cancer, breast cancer, lung cancer, ovarian cancer, and other cancers (Table 6). Among them, PBAEs is considered a safe alternative to nucleic acid delivery due to its biodegradability. In one study, Neshat et al. engineered biodegradable lipophilic PBAE delivery co-stimulatory signaling molecules 4-1BB ligand (4-1BBL) and soluble IL-12 (4-1BBL +IL-12 NPs) which, in combination with PD-1 antibodies, effectively induced tumor regression and clearing and resistance to distant tumor reattack [160]. Besides, a study developed a co-delivery system that delivers cisplatin (CDDP) and plasmids encoding the IL-12 gene (HC/pIL-12/polyMET), acting synergistically through chemotherapy sensitization and microenvironment regulation [161]. HC/pIL-12/polyMET has ideal particle size, superior serum stability, effective intracellular CDDP release and IL-12 transfection efficiency [161]. More importantly, the long-circulating HC/pIL-12/polyMET micelle clusters promoted the accumulation of CDDP and IL-12 at the tumor site, thus significantly inhibiting the growth of tumor and prolonging the overall survival of LLC tumor-bearing mice [161]. Potential immune mechanisms suggest that HC/pIL-12/polyMET activated immune effector cells to release IFN-γ and induced M1-type differentiation of tumor-related macrophages, thereby generating synergistic chemoimmunotherapy effect [161]. In another study, a novel polymetformin (PMet)-based nanosystem that co-delivers doxorubicin (DOX) and a plasmid encoding the IL-12 gene (HA/pIL-12/DOX-PMET) was developed for the treatment of metastatic breast cancer [162]. HA/pIL-12/DOX-pmet extends its time in the blood circulation through tumor specific targeting mediated by CD44 receptors, effectively accumulates in tumors, and is internalized in tumor cells [162]. HA/pIL-12/DOX-PMet micelle clusters synergically enhance NK cells and tumor-infiltrating cytotoxic T lymphocytes, regulate the polarization of tumor M2 macrophages to activated anti-tumor M1 macrophages, and reduce Treg cells [162]. The results showed high antitumor and antimetastatic activity in 4T1 breast cancer lung metastasis mouse models [162]. In conclusion, co-delivery nanoparticles based on multiple molecules have the dual advantages of chemotherapy and gene therapy, and co-delivery combination therapy will have great prospects in cancer therapy.

Lipid nanoparticles (LNPs)

Lipid-based delivery tools, including lipid nanoparticles (LNPs) and lipoplexes, are the most clinically advanced platforms for mRNA delivery [163]. Currently, three RNA-LNPs are currently approved by the US Food and Drug Administration (FDA) and European Medicines Agency: patisiran, a small interfering RNA (siRNA)-LNP for the treatment of hereditary transthyretin-mediated (hATTR) amyloidosis, and BNT162b2 and mRNA-1273, two mRNA-LNP-based COVID-19 vaccines [164]. In order to improve the application of mRNA-LNPs technology in cancer therapy, many studies are devoted to exploring and developing more efficient delivery methods, such as designing and screening novel lipid molecules, adjusting the proportion of lipids in LNPs, modifying the surface of LNPs, and selecting different delivery routes [165,166,167].
Next, we summarize the application of LNP-based IL-12 in cancer therapy (Table 6). For example, a LNP delivers IL-12 mRNA (IL-12-LNP), which can significantly reduce HCC tumor growth, delay tumor progression, and prolong survival without animal toxicity after weekly i.v. injection [168]. The mechanism is attributed to the increased infiltration of CD3+CD4+CD44+ immune cells, but the TME has not been thoroughly explored and elaborated [168]. Compared with i.v. injection, i.t. injection of IL-12 mRNA can effectively promote the localization and sustained production of IL-12 in the TME, and reduce the systemic effect [169]. mIL-12 mRNA, an LNP formulation containing mouse IL-12 mRNA, which was well tolerated, especially with less than 10% weight loss detected at 0.05 and 0.5mg dose levels [169]. A single intratumoral dose of mIL12 mRNA induced regression of multiple tumors such as MC38-S, B16F10 and A20, and even showed good antitumor effects on MC38-R tumor models with ICI antagonism [169]. The antitumor activity of mIL12 mRNA depends on induced IFN-γ and CD8+ T cells, and does not require NK and NKT cells, and its antitumor activity is also associated with TH1 TME transformation [169]. In addition, there are many studies exploring IL-12 in combination with other therapies. Local mIL12 mRNA induces a systemic anti-tumor immune response to distal lesions and exhibits a synergistic tumor suppressive effect in combination with PD-L1 antibody therapy [169]. Since IL-12 has shown promising results in combination with other therapies, direct delivery of IL-12 and other target mRNAs may also have exciting results. F-PLP/pIL12, an FRα-targeted IL-12 lipoplex, has tumor-cell targeting and IL-12 delivery functions [170]. Folate receptorα (FRα) overexpression in colon cancer, F-PLP/pIL12 treatment significantly inhibits CT26 tumor growth and is safe, accompanied by increased IL-12 expression and IFN-γ secretion in tumor tissues [170]. The anti-tumor mechanisms include inducing tumor cell apoptosis, reducing microvascular density, stimulating TNF-α secretion, and activating natural killer cells [170]. Therefore, dual-targeted or even multi-targeted IL-12 lipid nanoparticles may be a promising platform for cancer immunotherapy in the future.

2.3.2. Bio-Derived Delivery Vector

Extracellular vesicle (EVs) are important intercellular communication systems that promote the transfer of macromolecules between cells. For example, Exos are considered natural mRNA delivery systems. In one study, an inhalable extracellular vesicle loaded with IL-12 mRNA (IL-12-Exo) was developed, which effectively controlled the development of lung cancer and enhanced systemic immunity [198]. Importantly, the specific targeting of IL-12-Exo to lung tumors is much higher than that of liposome loaded IL-12 mRNA (IL-12-Lipo), about 1.54 times [198]. IL-12-Exo significantly inhibited LL/2 and B16F10 tumor growth and progression, accompanied by moderate weight gain in mice [198]. The antitumor mechanism was attributed to the remodeling of TME, increasing the proportion of CD8+ T cells, CD4+ T cells, NK cells, and NKT cell populations, while decreasing the proportion of immunosuppressive Tregs and Myeloid-derived suppressor cells (MDSCs) [198]. IL-12 mRNA stimulates upregulation of a broad spectrum of inflammatory cytokines and chemokines in TME, especially the sustained secretion of high levels of IFN-γ [198]. Compared with liposome delivery systems, exosomes enhance the expression of IL-12 and greatly reduce its toxicity in vivo [198]. As a non-invasive method, inhalation is expected to lead to better patient compliance than intratumoral injection. Exos, as biocompatible vesicles, provide a universal RNA delivery scheme [198]. Table 7

2.4. Cells-Based Delivers IL-12 for Cancer Therapy

Recently, cells have also been proposed as drug carriers because of their effective delivery of therapeutic substances to the tumor [203,204,205,206]. Dendritic cells, T cells, Mesenchymal stromal cells and other cells have been designed to express IL-12 for cancer therapy.

Dendritic Cells (DCs)

DCs are the most powerful antigen presenting molecule (APCs) in vivo, linking innate and adaptive immunity. DCs-based therapeutic strategies have proven to be a positive approach to treating cancer by altering the TME and enhancing the systemic host immune response [207]. Following i.t. or peritumorally (p.t.) injection, DCs have been engineered to express IL-12 to induce a powerful anti-tumor immune response (Table 8).
In preclinical studies, DCs transfected with IL-12 effectively inhibited the growth of various tumors such as melanoma [208,209,210,211,212,213], Colon cancer [214,215,216,217,218] and other tumors [219,220,221]. The therapeutic benefits of DCs-expressed IL-12 are associated with induction of specific CD8+ T cells and durable anti-tumor immunity. In a clinical study, the feasibility, safety, and antitumor activity of DCs-transduced IL-12 (AFIL-12) in the treatment of metastatic gastrointestinal cancer was validated. The results showed that 2 patients were stable and 8 progressed, of which 2 progressed rapidly during treatment, demonstrating that i.t. injection of AFIL-12 for the treatment of metastatic gastrointestinal malignancies is feasible and well tolerated, but further studies are needed to determine and improve clinical efficacy [222].

T Cells

T cells therapy is a promising therapeutic approach, but it is often hampered by the highly immunosuppressive TME, such as limited T cell trafficking, persistence and durable anti-tumor activity. Engineering T cells to express IL-12 has been shown to improve antitumor efficacy and reduce systemic toxicity in solid tumors (Table 9). In multiple models, injection of IL-12-expressing T cells induced regression of many tumors, including melanoma [223,224,225,226,227], sarcoma [226], colorectal adenocarcinoma [226,228] and other cancers [229,230,231,232,233]. The efficacy of T cell therapy generally depends on increasing chemokines and cytokines, promoting the proliferation of CD8+ T cells, and reducing the proportion of Treg cells, which can directly promote the effective enrichment of T cells and anti-tumor effects.

Mesenchymal stromal cells (MSCs)

MSCs have been used in many trials due to their immunosuppressive properties and their tendency to target cancer cells, including as IL-12 vectors for solid tumors (Table 10). Such as, one study observed that after i.v. administration of MSCs-loaded IL-12 (MSC/IL-12) in tumor-bearing mice, tumor growth was inhibited, the number of metastases significantly decreased, blood vessel density decreased, and the number of anticancer M1 macrophages and CD8+ T lymphocytes in the tumors increased, and without systemic toxicity [236]. In addition,Park et al. designed mesenchymal stem cells (MSC_IL-12) with glioblastoma propensity to secrete IL-12 and evaluated that MSC_IL-12 has a good efficacy in glioblastoma (25.0% cure rate) [237]. Tumor infiltrating lymphocytes (TILs) analysis showed that MSC_IL-12 treatment resulted in CD4+ T cell and NK cell infiltration, as well as reduced Tregs frequency [237]. Moreover, the combination of PD-1 antibodies and MSC_IL-12 showed a better anti-tumor effect (50% cure rate) [237]. Excitingly, no tumor growth was observed in the cured mice after re-attack, indicating long-term immunity to treatment-induced glioblastoma [237].

Other cells

In fact, in addition to the commonly used cell carriers such as DC, CAR T and MSCs, there are other different cell delivery carriers, such as macrophages, NK cells, glial cells, etc., and even genetically engineered tumor cells (Table 11). In one study, autologous tumor cell vaccines via EBV/liposomes were designed to secrete IL-12 and IL-18 (B16/mIL-12+mIL-18), and repeated immunization showed strong tumor inhibition in a B16 melanoma model, accompanied by high IFN-γ production [249].

3. Clinical Perspectives

IL-12 with different strategic loads has been shown to have good broad-spectrum antitumor effects and safety in preclinical models, suggesting that IL-12 is an attractive therapeutic candidate. In general, safety remains the most concerned aspect when transferring results from the laboratory to the bedside, as does dose, route of administration, viral pharmacokinetics, and host cell resistance mechanisms. Currently, some IL-12 is being tested in clinical studies against various cancers, such as breast cancer, lung cancer, pancreatic cancer, ovarian cancer, colorectal cancer and melanoma, etc. (Table 12). Because some traditional recombinant human IL-12 has been associated with different degrees of adverse reactions in clinical trials, different strategies of delivery of IL-12 are under clinical study.
Safety and anti-tumor efficacy of NHS-IL12 as monotherapy or combination therapy has been demonstrated in preclinical tumor models [23,24,25]. Excitingly, safety and anti-tumor efficacy of human NHS-IL12 was found in a Phase I clinical trial (NCT01417546) to have good treatment tolerance, enhanced immune-related activity, and increased immune infiltration in TME [255]. And multiple clinical trials (NCT04287868, NCT04491955, NCT02994953, NCT04303117, NCT04235777) have demonstrated promising results for NHS-IL12 in Advanced HPV Associated malignancies, small bowel and colorectal cancers, kaposi's sarcoma, urothelial cancer etc. For example, the Phase II clinical trial (NCT04491955) of the NHS-IL12 combination therapy in patients with small intestine and colon cancer showed encouraging results (CR 12.5%), but was accompanied by grade 3 anemia (37.5%), grade 3 duodenal bleeding (12.5%) in some patients. And no other side effects. Similarly, virus expressing human IL-12 is also under clinical trial investigation as monotherapy or combination therapy in prostate cancer (NCT02555397, NCT00406939), pancreatic cancer (NCT03281382), breast cancer (NCT00849459, NCT00301106), melanoma (NCT01397708, NCT00003556), pediatric brain tumor (NCT03330197), glioblastoma (NCT02026271, NCT03636477, NCT05084430) and other solid tumors (NCT04613492, NCT04613492). In addition, electroporation is a non-viral gene delivery method of plasmid DNA. The plasmid gene encoding IL-12 in intratuminal metastasis has been proved to be safe and effective in clinical experiments, and has good local tumor control effect (Table 12). And the strategy of cells as carriers for delivering IL-12 has also been validated in clinical trials (Table 12). In our view, many preclinical and clinical studies of IL-12 delivered with different strategies have shown exciting performance in combination with other therapies. Therefore, the combined study of IL-12 and ICI is worthy of clinical investigation and may become an attractive treatment strategy for cancer patients. It is worth mentioning that many pre-clinical studies have shown that liposome loaded IL-12 mRNA has good anti-tumor effect and safety, and its related studies deserve attention and push to clinical trials.

4. Conclusions and Future Directions

In the field of tumor therapy, although IL-12 is a high-profile molecule, its therapeutic effect on solid tumors is not ideal and even causes serious adverse reactions. The current research focus is mainly on local targeted drug delivery to reduce adverse reactions, and to play a synergistic role in combination with chemoradiotherapy or immunotherapy. For systematic administration, the focus is on reducing the off-target effect of IL-12. In order to achieve the goal of IL-12 effectively treating tumors, many strategies to modify or deliver IL-12 are under investigation. It is believed that with the in-depth study of the anti-tumor mechanism of IL-12 and the improvement of IL-12 delivery strategy, drug use, pathway and synergistic drug use, IL-12 will be successfully developed into an anticancer drug with important clinical application value.

Author Contributions

Chunyan Dong was responsible for the manuscript writing and data collection. Dejiang Tan, Huimin Sun and Qing He are responsible for funding acquisition and conceptualization. Zhuang Li, Linyu Zhang, Yiyang Zheng, Sihan Liu, Yu Zhang and Junzhi Wang checked and revised the article. All authors have read have read and approved the final manuscript.

Funding

This review was supported by State Key Laboratory of Drug Regulatory Sciences (research on the nonclinical efficacy evaluation study of precision therapeutic cancer vaccines with tumor neogenic antigen mRNA binding liposome polymer nanodelivery vector, 2023SKLDRS0110. Study on key techniques for preclinical pharmacodynamic evaluation of tumor neoantigen mRNA therapeutic cancer vaccines, GJJS-2022-6-2).

Conflicts of interest

The authors have no conflicts of interest to declare.

References

  1. Flanigan, R.C. , Salmon, S.E., Blumenstein, B.A., Bearman, S.I., Roy, V., McGrath, P.C., Caton, J.R., Jr., Munshi, N., and Crawford, E.D. (2001). Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med 345, 1655-1659. 10.1056/NEJMoa003013.
  2. Atkins, M.B. , Lotze, M.T., Dutcher, J.P., Fisher, R.I., Weiss, G., Margolin, K., Abrams, J., Sznol, M., Parkinson, D., Hawkins, M., et al. (1999). High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17, 2105-2116. 10.1200/jco.1999.17.7.2105.
  3. Del Vecchio, M. , Bajetta, E., Canova, S., Lotze, M.T., Wesa, A., Parmiani, G., and Anichini, A. (2007). Interleukin-12: biological properties and clinical application. Clin Cancer Res 13, 4677-4685. 10.1158/1078-0432.Ccr-07-0776.
  4. Weiss, J.M. , Subleski, J.J., Wigginton, J.M., and Wiltrout, R.H. (2007). Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin Biol Ther 7, 1705-1721. 10.1517/14712598.7.11.1705.
  5. Smyth, M.J. , Taniguchi, M., and Street, S.E. (2000). The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165, 2665-2670. 10.4049/jimmunol.165.5.2665.
  6. Colombo, M.P. , and Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13, 155-168. 10.1016/s1359-6101(01)00032-6.
  7. Boggio, K. , Di Carlo, E., Rovero, S., Cavallo, F., Quaglino, E., Lollini, P.L., Nanni, P., Nicoletti, G., Wolf, S., Musiani, P., and Forni, G. (2000). Ability of systemic interleukin-12 to hamper progressive stages of mammary carcinogenesis in HER2/neu transgenic mice. Cancer Res 60, 359-364.
  8. Nguyen, K.G. , Vrabel, M.R., Mantooth, S.M., Hopkins, J.J., Wagner, E.S., Gabaldon, T.A., and Zaharoff, D.A. (2020). Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 11, 575597. 10.3389/fimmu.2020.575597.
  9. Chiocca, E.A. , Gelb, A.B., Chen, C.C., Rao, G., Reardon, D.A., Wen, P.Y., Bi, W.L., Peruzzi, P., Amidei, C., Triggs, D., et al. (2022). Combined immunotherapy with controlled interleukin-12 gene therapy and immune checkpoint blockade in recurrent glioblastoma: An open-label, multi-institutional phase I trial. Neuro Oncol 24, 951-963. 10.1093/neuonc/noab271.
  10. Mirlekar, B. , and Pylayeva-Gupta, Y. (2021). IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers (Basel) 13. 10.3390/cancers13020167.
  11. Cohen, J. (1995). IL-12 deaths: explanation and a puzzle. Science 270, 908. 10.1126/science.270.5238.908a.
  12. Leonard, J.P. , Sherman, M.L., Fisher, G.L., Buchanan, L.J., Larsen, G., Atkins, M.B., Sosman, J.A., Dutcher, J.P., Vogelzang, N.J., and Ryan, J.L. (1997). Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90, 2541-2548.
  13. Gollob, J.A. , Mier, J.W., Veenstra, K., McDermott, D.F., Clancy, D., Clancy, M., and Atkins, M.B. (2000). Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res 6, 1678-1692.
  14. Schilbach, K. , Alkhaled, M., Welker, C., Eckert, F., Blank, G., Ziegler, H., Sterk, M., Müller, F., Sonntag, K., Wieder, T., et al. (2015). Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation. Oncoimmunology 4, e1014760. 10.1080/2162402x.2015.1014760.
  15. Salem, M.L. , Gillanders, W.E., Kadima, A.N., El-Naggar, S., Rubinstein, M.P., Demcheva, M., Vournakis, J.N., and Cole, D.J. (2006). Review: novel nonviral delivery approaches for interleukin-12 protein and gene systems: curbing toxicity and enhancing adjuvant activity. J Interferon Cytokine Res 26, 593-608. 10.1089/jir.2006.26.593.
  16. Sangro, B. , Melero, I., Qian, C., and Prieto, J. (2005). Gene therapy of cancer based on interleukin 12. Curr Gene Ther 5, 573-581. 10.2174/156652305774964712.
  17. Xue, D. , Moon, B., Liao, J., Guo, J., Zou, Z., Han, Y., Cao, S., Wang, Y., Fu, Y.X., and Peng, H. (2022). A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci Immunol 7, eabi6899. 10.1126/sciimmunol.abi6899.
  18. Mansurov, A. , Hosseinchi, P., Chang, K., Lauterbach, A.L., Gray, L.T., Alpar, A.T., Budina, E., Slezak, A.J., Kang, S., Cao, S., et al. (2022). Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nat Biomed Eng 6, 819-829. 10.1038/s41551-022-00888-0.
  19. Momin, N. , Mehta, N.K., Bennett, N.R., Ma, L., Palmeri, J.R., Chinn, M.M., Lutz, E.A., Kang, B., Irvine, D.J., Spranger, S., and Wittrup, K.D. (2019). Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci Transl Med 11. 10.1126/scitranslmed.aaw2614.
  20. Mansurov, A. , Ishihara, J., Hosseinchi, P., Potin, L., Marchell, T.M., Ishihara, A., Williford, J.M., Alpar, A.T., Raczy, M.M., Gray, L.T., et al. (2020). Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat Biomed Eng 4, 531-543. 10.1038/s41551-020-0549-2.
  21. Ongaro, T. , Matasci, M., Cazzamalli, S., Gouyou, B., De Luca, R., Neri, D., and Villa, A. (2019). A novel anti-cancer L19-interleukin-12 fusion protein with an optimized peptide linker efficiently localizes in vivo at the site of tumors. J Biotechnol 291, 17-25. 10.1016/j.jbiotec.2018.12.004.
  22. Gafner, V. , Trachsel, E., and Neri, D. (2006). An engineered antibody-interleukin-12 fusion protein with enhanced tumor vascular targeting properties. Int J Cancer 119, 2205-2212. 10.1002/ijc.22101.
  23. Fallon, J.K. , Vandeveer, A.J., Schlom, J., and Greiner, J.W. (2017). Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget 8, 20558-20571. 10.18632/oncotarget.16137.
  24. Xu, C. , Marelli, B., Qi, J., Qin, G., Yu, H., Wang, H., Jenkins, M.H., Lo, K.-M., and Lan, Y. (2022). NHS-IL12 and bintrafusp alfa combination therapy enhances antitumor activity in preclinical cancer models. Translational Oncology 16, 101322. [CrossRef]
  25. Xu, C. , Zhang, Y., Rolfe, P.A., Hernández, V.M., Guzman, W., Kradjian, G., Marelli, B., Qin, G., Qi, J., Wang, H., et al. (2017). Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models. Clin Cancer Res 23, 5869-5880. 10.1158/1078-0432.Ccr-17-0483.
  26. Cini, J.K. , Dexter, S., Rezac, D.J., McAndrew, S.J., Hedou, G., Brody, R., Eraslan, R.N., Kenney, R.T., and Mohan, P. (2023). SON-1210 - a novel bifunctional IL-12 / IL-15 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 14, 1326927. 10.3389/fimmu.2023.1326927.
  27. Pan, W.Y. , Lo, C.H., Chen, C.C., Wu, P.Y., Roffler, S.R., Shyue, S.K., and Tao, M.H. (2012). Cancer immunotherapy using a membrane-bound interleukin-12 with B7-1 transmembrane and cytoplasmic domains. Mol Ther 20, 927-937. 10.1038/mt.2012.10.
  28. Nasu, Y. , Bangma, C.H., Hull, G.W., Lee, H.M., Hu, J., Wang, J., McCurdy, M.A., Shimura, S., Yang, G., Timme, T.L., and Thompson, T.C. (1999). Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Ther 6, 338-349. 10.1038/sj.gt.3300834.
  29. Martuza, R.L. , Malick, A., Markert, J.M., Ruffner, K.L., and Coen, D.M. (1991). Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854-856. 10.1126/science.1851332.
  30. Macedo, N. , Miller, D.M., Haq, R., and Kaufman, H.L. (2020). Clinical landscape of oncolytic virus research in 2020. J Immunother Cancer 8. 10.1136/jitc-2020-001486.
  31. Sheridan, C. (2015). First oncolytic virus edges towards approval in surprise vote. Nat Biotechnol 33, 569-570. 10.1038/nbt0615-569.
  32. Toda, M. , Martuza, R.L., and Rabkin, S.D. (2001). Combination suicide/cytokine gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Ther 8, 332-339. 10.1038/sj.gt.3301392.
  33. Chouljenko, D.V. , Ding, J., Lee, I.F., Murad, Y.M., Bu, X., Liu, G., Delwar, Z., Sun, Y., Yu, S., Samudio, I., et al. (2020). Induction of Durable Antitumor Response by a Novel Oncolytic Herpesvirus Expressing Multiple Immunomodulatory Transgenes. Biomedicines 8. 10.3390/biomedicines8110484.
  34. Hu, H. , Zhang, S., Cai, L., Duan, H., Li, Y., Yang, J., Wang, Y., Liu, B., Dong, S., Fang, Z., and Liu, B. (2022). A novel cocktail therapy based on quintuplet combination of oncolytic herpes simplex virus-2 vectors armed with interleukin-12, interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 results in enhanced antitumor efficacy. Virol J 19, 74. 10.1186/s12985-022-01795-1.
  35. Bennett, J.J. , Malhotra, S., Wong, R.J., Delman, K., Zager, J., St-Louis, M., Johnson, P., and Fong, Y. (2001). Interleukin 12 secretion enhances antitumor efficacy of oncolytic herpes simplex viral therapy for colorectal cancer. Ann Surg 233, 819-826. 10.1097/00000658-200106000-00012.
  36. Zhang, N. , Li, J., Yu, J., Wan, Y., Zhang, C., Zhang, H., and Cao, Y. (2023). Construction of an IL12 and CXCL11 armed oncolytic herpes simplex virus using the CRISPR/Cas9 system for colon cancer treatment. Virus Res 323, 198979. 10.1016/j.virusres.2022.198979.
  37. Ghouse, S.M. , Nguyen, H.M., Bommareddy, P.K., Guz-Montgomery, K., and Saha, D. (2020). Oncolytic Herpes Simplex Virus Encoding IL12 Controls Triple-Negative Breast Cancer Growth and Metastasis. Front Oncol 10, 384. 10.3389/fonc.2020.00384.
  38. Saha, D. , Wakimoto, H., Peters, C.W., Antoszczyk, S.J., Rabkin, S.D., and Martuza, R.L. (2018). Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models. Clin Cancer Res 24, 3409-3422. 10.1158/1078-0432.Ccr-17-1717.
  39. Saha, D. , Rabkin, S.D., and Martuza, R.L. (2020). Temozolomide antagonizes oncolytic immunovirotherapy in glioblastoma. J Immunother Cancer 8. 10.1136/jitc-2019-000345.
  40. Saha, D. , Martuza, R.L., and Rabkin, S.D. (2018). Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy 10, 779-786. 10.2217/imt-2018-0009.
  41. Saha, D. , Martuza, R.L., and Rabkin, S.D. (2017). Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell 32, 253-267.e255. 10.1016/j.ccell.2017.07.006.
  42. Ino, Y. , Saeki, Y., Fukuhara, H., and Todo, T. (2006). Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin Cancer Res 12, 643-652. 10.1158/1078-0432.Ccr-05-1494.
  43. Zhang, W. , Fulci, G., Wakimoto, H., Cheema, T.A., Buhrman, J.S., Jeyaretna, D.S., Stemmer Rachamimov, A.O., Rabkin, S.D., and Martuza, R.L. (2013). Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models. Neoplasia 15, 591-599. 10.1593/neo.13158.
  44. Wang, L. , Zhou, X., Chen, X., Liu, Y., Huang, Y., Cheng, Y., Ren, P., Zhao, J., and Zhou, G.G. (2024). Enhanced therapeutic efficacy for glioblastoma immunotherapy with an oncolytic herpes simplex virus armed with anti-PD-1 antibody and IL-12. Mol Ther Oncol 32, 200799. 10.1016/j.omton.2024.200799.
  45. Bommareddy, P.K. , Wakimoto, H., Martuza, R.L., Kaufman, H.L., Rabkin, S.D., and Saha, D. (2024). Oncolytic herpes simplex virus expressing IL-2 controls glioblastoma growth and improves survival. J Immunother Cancer 12. 10.1136/jitc-2024-008880.
  46. De Lucia, M. , Cotugno, G., Bignone, V., Garzia, I., Nocchi, L., Langone, F., Petrovic, B., Sasso, E., Pepe, S., Froechlich, G., et al. (2020). Retargeted and Multi-cytokine-Armed Herpes Virus Is a Potent Cancer Endovaccine for Local and Systemic Anti-tumor Treatment. Mol Ther Oncolytics 19, 253-264. 10.1016/j.omto.2020.10.006.
  47. Chouljenko, D.V. , Murad, Y.M., Lee, I.F., Delwar, Z., Ding, J., Liu, G., Liu, X., Bu, X., Sun, Y., Samudio, I., and Jia, W.W. (2023). Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol Ther Oncolytics 28, 334-348. 10.1016/j.omto.2023.02.003.
  48. Kim, K.J. , Moon, D., Kong, S.J., Lee, Y.S., Yoo, Y., Kim, S., Kim, C., Chon, H.J., Kim, J.H., and Choi, K.J. (2021). Antitumor effects of IL-12 and GM-CSF co-expressed in an engineered oncolytic HSV-1. Gene Ther 28, 186-198. 10.1038/s41434-020-00205-x.
  49. Antoszczyk, S. , Spyra, M., Mautner, V.F., Kurtz, A., Stemmer-Rachamimov, A.O., Martuza, R.L., and Rabkin, S.D. (2014). Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro Oncol 16, 1057-1066. 10.1093/neuonc/not317.
  50. Cheema, T.A. , Wakimoto, H., Fecci, P.E., Ning, J., Kuroda, T., Jeyaretna, D.S., Martuza, R.L., and Rabkin, S.D. (2013). Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci U S A 110, 12006-12011. 10.1073/pnas.1307935110.
  51. Wong, R.J. , Chan, M.K., Yu, Z., Kim, T.H., Bhargava, A., Stiles, B.M., Horsburgh, B.C., Shah, J.P., Ghossein, R.A., Singh, B., and Fong, Y. (2004). Effective intravenous therapy of murine pulmonary metastases with an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 10, 251-259. 10.1158/1078-0432.Ccr-0197-3.
  52. Passer, B.J. , Cheema, T., Wu, S., Wu, C.L., Rabkin, S.D., and Martuza, R.L. (2013). Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther 20, 17-24. 10.1038/cgt.2012.75.
  53. Wong, R.J. , Chan, M.K., Yu, Z., Ghossein, R.A., Ngai, I., Adusumilli, P.S., Stiles, B.M., Shah, J.P., Singh, B., and Fong, Y. (2004). Angiogenesis inhibition by an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 10, 4509-4516. 10.1158/1078-0432.Ccr-04-0081.
  54. Wong, R.J. , Patel, S.G., Kim, S., DeMatteo, R.P., Malhotra, S., Bennett, J.J., St-Louis, M., Shah, J.P., Johnson, P.A., and Fong, Y. (2001). Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther 12, 253-265. 10.1089/10430340150218396.
  55. Varghese, S. , Rabkin, S.D., Liu, R., Nielsen, P.G., Ipe, T., and Martuza, R.L. (2006). Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther 13, 253-265. 10.1038/sj.cgt.7700900.
  56. Jarnagin, W.R. , Zager, J.S., Klimstra, D., Delman, K.A., Malhotra, S., Ebright, M., Little, S., DeRubertis, B., Stanziale, S.F., Hezel, M., et al. (2003). Neoadjuvant treatment of hepatic malignancy: an oncolytic herpes simplex virus expressing IL-12 effectively treats the parent tumor and protects against recurrence-after resection. Cancer Gene Ther 10, 215-223. 10.1038/sj.cgt.7700558.
  57. Parker, J.N. , Meleth, S., Hughes, K.B., Gillespie, G.Y., Whitley, R.J., and Markert, J.M. (2005). Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12. Cancer Gene Ther 12, 359-368. 10.1038/sj.cgt.7700784.
  58. Ring, E.K. , Li, R., Moore, B.P., Nan, L., Kelly, V.M., Han, X., Beierle, E.A., Markert, J.M., Leavenworth, J.W., Gillespie, G.Y., and Friedman, G.K. (2017). Newly Characterized Murine Undifferentiated Sarcoma Models Sensitive to Virotherapy with Oncolytic HSV-1 M002. Mol Ther Oncolytics 7, 27-36. 10.1016/j.omto.2017.09.003.
  59. Friedman, G.K. , Bernstock, J.D., Chen, D., Nan, L., Moore, B.P., Kelly, V.M., Youngblood, S.L., Langford, C.P., Han, X., Ring, E.K., et al. (2018). Enhanced Sensitivity of Patient-Derived Pediatric High-Grade Brain Tumor Xenografts to Oncolytic HSV-1 Virotherapy Correlates with Nectin-1 Expression. Sci Rep 8, 13930. 10.1038/s41598-018-32353-x.
  60. Cody, J.J. , Scaturro, P., Cantor, A.B., Yancey Gillespie, G., Parker, J.N., and Markert, J.M. (2012). Preclinical evaluation of oncolytic δγ(1)34.5 herpes simplex virus expressing interleukin-12 for therapy of breast cancer brain metastases Int J Breast Cancer 2012, 628697. 10.1155/2012/628697.
  61. Gillory, L.A. , Megison, M.L., Stewart, J.E., Mroczek-Musulman, E., Nabers, H.C., Waters, A.M., Kelly, V., Coleman, J.M., Markert, J.M., Gillespie, G.Y., et al. (2013). Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of neuroblastoma. PLoS One 8, e77753. 10.1371/journal.pone.0077753.
  62. Megison, M.L. , Gillory, L.A., Stewart, J.E., Nabers, H.C., Mroczek-Musulman, E., Waters, A.M., Coleman, J.M., Kelly, V., Markert, J.M., Gillespie, G.Y., et al. (2014). Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of pediatric solid tumors. PLoS One 9, e86843. 10.1371/journal.pone.0086843.
  63. Leoni, V. , Vannini, A., Gatta, V., Rambaldi, J., Sanapo, M., Barboni, C., Zaghini, A., Nanni, P., Lollini, P.L., Casiraghi, C., and Campadelli-Fiume, G. (2018). A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog 14, e1007209. 10.1371/journal.ppat.1007209.
  64. Alessandrini, F. , Menotti, L., Avitabile, E., Appolloni, I., Ceresa, D., Marubbi, D., Campadelli-Fiume, G., and Malatesta, P. (2019). Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 38, 4467-4479. 10.1038/s41388-019-0737-2.
  65. Enhancement of Oncolytic Activity of oHSV Expressing IL-12 and Anti PD-1__Antibody by Concurrent Administration of Exosomes Carrying CTLA-4 Mirn.pdf.
  66. Xiao, X. , Li, J., McCown, T.J., and Samulski, R.J. (1997). Gene transfer by adeno-associated virus vectors into the central nervous system. Exp Neurol 144, 113-124. 10.1006/exnr.1996.6396.
  67. Xiao, X. , Li, J., and Samulski, R.J. (1998). Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72, 2224-2232. 10.1128/jvi.72.3.2224-2232.1998.
  68. Xiao, X. , Li, J., and Samulski, R.J. (1996). Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70, 8098-8108. 10.1128/jvi.70.11.8098-8108.1996.
  69. Vanrell, L. , Di Scala, M., Blanco, L., Otano, I., Gil-Farina, I., Baldim, V., Paneda, A., Berraondo, P., Beattie, S.G., Chtarto, A., et al. (2011). Development of a liver-specific Tet-on inducible system for AAV vectors and its application in the treatment of liver cancer. Mol Ther 19, 1245-1253. 10.1038/mt.2011.37.
  70. Daya, S. , and Berns, K.I. (2008). Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21, 583-593. 10.1128/cmr.00008-08.
  71. Kanagawa, N. , Gao, J.Q., Motomura, Y., Yanagawa, T., Mukai, Y., Yoshioka, Y., Okada, N., and Nakagawa, S. (2008). Antitumor mechanism of intratumoral injection with IL-12-expressing adenoviral vector against IL-12-unresponsive tumor. Biochem Biophys Res Commun 372, 821-825. 10.1016/j.bbrc.2008.05.129.
  72. Thaci, B. , Ahmed, A.U., Ulasov, I.V., Wainwright, D.A., Nigam, P., Auffinger, B., Tobias, A.L., Han, Y., Zhang, L., Moon, K.S., and Lesniak, M.S. (2014). Depletion of myeloid-derived suppressor cells during interleukin-12 immunogene therapy does not confer a survival advantage in experimental malignant glioma. Cancer Gene Ther 21, 38-44. 10.1038/cgt.2013.81.
  73. Chiu, T.L. , Lin, S.Z., Hsieh, W.H., and Peng, C.W. (2009). AAV2-mediated interleukin-12 in the treatment of malignant brain tumors through activation of NK cells. Int J Oncol 35, 1361-1367. 10.3892/ijo_00000454.
  74. Chiu, T.L. , Wang, M.J., and Su, C.C. (2012). The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J Biomed Sci 19, 45. 10.1186/1423-0127-19-45.
  75. Mazzolini, G. , Qian, C., Xie, X., Sun, Y., Lasarte, J.J., Drozdzik, M., and Prieto, J. (1999). Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12. Cancer Gene Ther 6, 514-522. 10.1038/sj.cgt.7700072.
  76. Caruso, M. , Pham-Nguyen, K., Kwong, Y.L., Xu, B., Kosai, K.I., Finegold, M., Woo, S.L., and Chen, S.H. (1996). Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma. Proc Natl Acad Sci U S A 93, 11302-11306. 10.1073/pnas.93.21.11302.
  77. Huang, J.H. , Zhang, S.N., Choi, K.J., Choi, I.K., Kim, J.H., Lee, M.G., Lee, M., Kim, H., and Yun, C.O. (2010). Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL. Mol Ther 18, 264-274. 10.1038/mt.2009.205.
  78. Zhang, S.N. , Choi, I.K., Huang, J.H., Yoo, J.Y., Choi, K.J., and Yun, C.O. (2011). Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol Ther 19, 1558-1568. 10.1038/mt.2011.29.
  79. Lo, C.H. , Chang, C.M., Tang, S.W., Pan, W.Y., Fang, C.C., Chen, Y., Wu, P.Y., Chen, K.Y., Ma, H.I., Xiao, X., and Tao, M.H. (2010). Differential antitumor effect of interleukin-12 family cytokines on orthotopic hepatocellular carcinoma. J Gene Med 12, 423-434. 10.1002/jgm.1452.
  80. Schmitz, V. , Tirado-Ledo, L., Raskopf, E., Rabe, C., Wernert, N., Wang, L., Prieto, J., Qian, C., Sauerbruch, T., and Caselmann, W.H. (2005). Effective antitumour mono- and combination therapy by gene delivery of angiostatin-like molecule and interleukin-12 in a murine hepatoma model. Int J Colorectal Dis 20, 494-501. 10.1007/s00384-004-0727-9.
  81. Fujita, T. , Timme, T.L., Tabata, K., Naruishi, K., Kusaka, N., Watanabe, M., Abdelfattah, E., Zhu, J.X., Ren, C., Ren, C., et al. (2007). Cooperative effects of adenoviral vector-mediated interleukin 12 gene therapy with radiotherapy in a preclinical model of metastatic prostate cancer. Gene Ther 14, 227-236. 10.1038/sj.gt.3302788.
  82. Gonzalez-Aparicio, M. , Alzuguren, P., Mauleon, I., Medina-Echeverz, J., Hervas-Stubbs, S., Mancheno, U., Berraondo, P., Crettaz, J., Gonzalez-Aseguinolaza, G., Prieto, J., and Hernandez-Alcoceba, R. (2011). Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice. Gut 60, 341-349. 10.1136/gut.2010.211722.
  83. Oh, E. , Oh, J.E., Hong, J., Chung, Y., Lee, Y., Park, K.D., Kim, S., and Yun, C.O. (2017). Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy. J Control Release 259, 115-127. 10.1016/j.jconrel.2017.03.028.
  84. Hwang, K.S. , Cho, W.K., Yoo, J., Yun, H.J., Kim, S., and Im, D.S. (2005). Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice. BMC Cancer 5, 51. 10.1186/1471-2407-5-51.
  85. Düchs, M.J. , Kratzer, R.F., Vieyra-Garcia, P., Strobel, B., Schönberger, T., Groß, P., Aljayyoussi, G., Gupta, A., Lang, I., Klein, H., et al. (2024). Riboswitch-controlled IL-12 gene therapy reduces hepatocellular cancer in mice. Front Immunol 15, 1360063. 10.3389/fimmu.2024.1360063.
  86. Barrett, J.A. , Cai, H., Miao, J., Khare, P.D., Gonzalez, P., Dalsing-Hernandez, J., Sharma, G., Chan, T., Cooper, L.J.N., and Lebel, F. (2018). Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System(®) (RTS(®)) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther 25, 106-116. 10.1038/s41417-018-0019-0.
  87. Choi, K.J. , Zhang, S.N., Choi, I.K., Kim, J.S., and Yun, C.O. (2012). Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Ther 19, 711-723. 10.1038/gt.2011.125.
  88. Kirchhammer, N. , Trefny, M.P., Natoli, M., Brücher, D., Smith, S.N., Werner, F., Koch, V., Schreiner, D., Bartoszek, E., Buchi, M., et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Sci Transl Med 14, eabm9043. 10.1126/scitranslmed.abm9043.
  89. Poutou, J. , Bunuales, M., Gonzalez-Aparicio, M., Garcia-Aragoncillo, E., Quetglas, J.I., Casado, R., Bravo-Perez, C., Alzuguren, P., and Hernandez-Alcoceba, R. (2015). Safety and antitumor effect of oncolytic and helper-dependent adenoviruses expressing interleukin-12 variants in a hamster pancreatic cancer model. Gene Ther 22, 696-706. 10.1038/gt.2015.45.
  90. Bortolanza, S. , Bunuales, M., Otano, I., Gonzalez-Aseguinolaza, G., Ortiz-de-Solorzano, C., Perez, D., Prieto, J., and Hernandez-Alcoceba, R. (2009). Treatment of pancreatic cancer with an oncolytic adenovirus expressing interleukin-12 in Syrian hamsters. Mol Ther 17, 614-622. 10.1038/mt.2009.9.
  91. Sangro, B. , Mazzolini, G., Ruiz, J., Herraiz, M., Quiroga, J., Herrero, I., Benito, A., Larrache, J., Pueyo, J., Subtil, J.C., et al. (2004). Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol 22, 1389-1397. 10.1200/jco.2004.04.059.
  92. Choi, I.K. , Lee, J.S., Zhang, S.N., Park, J., Sonn, C.H., Lee, K.M., and Yun, C.O. (2011). Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther 18, 898-909. 10.1038/gt.2011.37.
  93. Lee, Y.S. , Kim, J.H., Choi, K.J., Choi, I.K., Kim, H., Cho, S., Cho, B.C., and Yun, C.O. (2006). Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clin Cancer Res 12, 5859-5868. 10.1158/1078-0432.Ccr-06-0935.
  94. Narvaiza, I. , Mazzolini, G., Barajas, M., Duarte, M., Zaratiegui, M., Qian, C., Melero, I., and Prieto, J. (2000). Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J Immunol 164, 3112-3122. 10.4049/jimmunol.164.6.3112.
  95. Gyorffy, S. , Palmer, K., Podor, T.J., Hitt, M., and Gauldie, J. (2001). Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: a role for combined anti-angiogenesis and immunotherapy. J Immunol 166, 6212-6217. 10.4049/jimmunol.166.10.6212.
  96. Hall, S.J. , Canfield, S.E., Yan, Y., Hassen, W., Selleck, W.A., and Chen, S.H. (2002). A novel bystander effect involving tumor cell-derived Fas and FasL interactions following Ad.HSV-tk and Ad.mIL-12 gene therapies in experimental prostate cancer. Gene Ther 9, 511-517. 10.1038/sj.gt.3301669.
  97. Wang, L. , Hernández-Alcoceba, R., Shankar, V., Zabala, M., Kochanek, S., Sangro, B., Kramer, M.G., Prieto, J., and Qian, C. (2004). Prolonged and inducible transgene expression in the liver using gutless adenovirus: a potential therapy for liver cancer. Gastroenterology 126, 278-289. 10.1053/j.gastro.2003.10.075.
  98. Chang, C.J. , Chen, Y.H., Huang, K.W., Cheng, H.W., Chan, S.F., Tai, K.F., and Hwang, L.H. (2007). Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology 45, 746-754. 10.1002/hep.21560.
  99. Chen, S.H. , Pham-Nguyen, K.B., Martinet, O., Huang, Y., Yang, W., Thung, S.N., Chen, L., Mittler, R., and Woo, S.L. (2000). Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation. Mol Ther 2, 39-46. 10.1006/mthe.2000.0086.
  100. Fang, L. , Tian, W., Zhang, C., Wang, X., Li, W., Zhang, Q., Zhang, Y., and Zheng, J. (2023). Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma. Pharmacol Res 189, 106701. 10.1016/j.phrs.2023.106701.
  101. Mercer, J. , and Helenius, A. (2008). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531-535. 10.1126/science.1155164.
  102. Hiley, C.T. , Yuan, M., Lemoine, N.R., and Wang, Y. (2010). Lister strain vaccinia virus, a potential therapeutic vector targeting hypoxic tumours. Gene Ther 17, 281-287. 10.1038/gt.2009.132.
  103. Lu, S. , Zhang, Z., Du, P., Chard, L.S., Yan, W., El Khouri, M., Wang, Z., Zhang, Z., Chu, Y., Gao, D., et al. (2020). A Virus-Infected, Reprogrammed Somatic Cell-Derived Tumor Cell (VIReST) Vaccination Regime Can Prevent Initiation and Progression of Pancreatic Cancer. Clin Cancer Res 26, 465-476. 10.1158/1078-0432.Ccr-19-1395.
  104. Hou, W. , Chen, H., Rojas, J., Sampath, P., and Thorne, S.H. (2014). Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int J Cancer 135, 1238-1246. 10.1002/ijc.28747.
  105. Breitbach, C.J. , Burke, J., Jonker, D., Stephenson, J., Haas, A.R., Chow, L.Q., Nieva, J., Hwang, T.H., Moon, A., Patt, R., et al. (2011). Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477, 99-102. 10.1038/nature10358.
  106. Nakao, S. , Arai, Y., Tasaki, M., Yamashita, M., Murakami, R., Kawase, T., Amino, N., Nakatake, M., Kurosaki, H., Mori, M., et al. (2020). Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med 12. 10.1126/scitranslmed.aax7992.
  107. Chen, B. , Timiryasova, T.M., Haghighat, P., Andres, M.L., Kajioka, E.H., Dutta-Roy, R., Gridley, D.S., and Fodor, I. (2001). Low-dose vaccinia virus-mediated cytokine gene therapy of glioma. J Immunother 24, 46-57. 10.1097/00002371-200101000-00006.
  108. Chen, B. , Timiryasova, T.M., Andres, M.L., Kajioka, E.H., Dutta-Roy, R., Gridley, D.S., and Fodor, I. (2000). Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model. Cancer Gene Ther 7, 1437-1447. 10.1038/sj.cgt.7700252.
  109. Ahmed, J. , Chard, L.S., Yuan, M., Wang, J., Howells, A., Li, Y., Li, H., Zhang, Z., Lu, S., Gao, D., et al. (2020). A new oncolytic Vacciniavirus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J Immunother Cancer 8. 10.1136/jitc-2019-000415.
  110. Kaufman, H.L. , Flanagan, K., Lee, C.S., Perretta, D.J., and Horig, H. (2002). Insertion of interleukin-2 (IL-2) and interleukin-12 (IL-12) genes into vaccinia virus results in effective anti-tumor responses without toxicity. Vaccine 20, 1862-1869. 10.1016/s0264-410x(02)00032-4.
  111. Jackaman, C. , and Nelson, D.J. (2010). Cytokine-armed vaccinia virus infects the mesothelioma tumor microenvironment to overcome immune tolerance and mediate tumor resolution. Cancer Gene Ther 17, 429-440. 10.1038/cgt.2009.85.
  112. Martin, N.T. , Crupi, M.J.F., Taha, Z., Poutou, J., Whelan, J.T., Vallati, S., Petryk, J., Marius, R., Austin, B., Azad, T., et al. (2023). Engineering Rapalog-Inducible Genetic Switches Based on Split-T7 Polymerase to Regulate Oncolytic Virus-Driven Production of Tumour-Localized IL-12 for Anti-Cancer Immunotherapy. Pharmaceuticals (Basel) 16. 10.3390/ph16050709.
  113. Ge, Y. , Wang, H., Ren, J., Liu, W., Chen, L., Chen, H., Ye, J., Dai, E., Ma, C., Ju, S., et al. (2020). Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer 8. 10.1136/jitc-2020-000710.
  114. Kurokawa, C. , Agrawal, S., Mitra, A., Galvani, E., Burke, S., Varshine, A., Rothstein, R., Schifferli, K., Monks, N.R., Foloppe, J., et al. (2024). Mediation of antitumor activity by AZD4820 oncolytic vaccinia virus encoding IL-12. Mol Ther Oncol 32, 200758. 10.1016/j.omton.2023.200758.
  115. Seclì, L. , Infante, L., Nocchi, L., De Lucia, M., Cotugno, G., Leoni, G., Micarelli, E., Garzia, I., Avalle, L., Sdruscia, G., et al. (2023). Vector Aided Microenvironment programming (VAMP): reprogramming the TME with MVA virus expressing IL-12 for effective antitumor activity. J Immunother Cancer 11. 10.1136/jitc-2023-006718.
  116. Bella, Á. , Arrizabalaga, L., Di Trani, C.A., Gonzalez-Gomariz, J., Gomar, C., Russo-Cabrera, J.S., Olivera, I., Cirella, A., Fernandez-Sendin, M., Alvarez, M., et al. (2023). Intraperitoneal administration of a modified vaccinia virus Ankara confers single-chain interleukin-12 expression to the omentum and achieves immune-mediated efficacy against peritoneal carcinomatosis. J Immunother Cancer 11. 10.1136/jitc-2023-006702.
  117. Backhaus, P.S. , Veinalde, R., Hartmann, L., Dunder, J.E., Jeworowski, L.M., Albert, J., Hoyler, B., Poth, T., Jäger, D., Ungerechts, G., and Engeland, C.E. (2019). Immunological Effects and Viral Gene Expression Determine the Efficacy of Oncolytic Measles Vaccines Encoding IL-12 or IL-15 Agonists. Viruses 11. 10.3390/v11100914.
  118. Veinalde, R. , Grossardt, C., Hartmann, L., Bourgeois-Daigneault, M.C., Bell, J.C., Jäger, D., von Kalle, C., Ungerechts, G., and Engeland, C.E. (2017). Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncoimmunology 6, e1285992. 10.1080/2162402x.2017.1285992.
  119. Najmuddin, S. , Amin, Z.M., Tan, S.W., Yeap, S.K., Kalyanasundram, J., Ani, M.A.C., Veerakumarasivam, A., Chan, S.C., Chia, S.L., Yusoff, K., and Alitheen, N.B. (2020). Cytotoxicity study of the interleukin-12-expressing recombinant Newcastle disease virus strain, rAF-IL12, towards CT26 colon cancer cells in vitro and in vivo. Cancer Cell Int 20, 278. 10.1186/s12935-020-01372-y.
  120. Ren, G. , Tian, G., Liu, Y., He, J., Gao, X., Yu, Y., Liu, X., Zhang, X., Sun, T., Liu, S., et al. (2016). Recombinant Newcastle Disease Virus Encoding IL-12 and/or IL-2 as Potential Candidate for Hepatoma Carcinoma Therapy. Technol Cancer Res Treat 15, Np83-94. 10.1177/1533034615601521.
  121. Syed Najmuddin, S.U.F. , Amin, Z.M., Tan, S.W., Yeap, S.K., Kalyanasundram, J., Veerakumarasivam, A., Chan, S.C., Chia, S.L., Yusoff, K., and Alitheen, N.B. (2020). Oncolytic effects of the recombinant Newcastle disease virus, rAF-IL12, against colon cancer cells in vitro and in tumor-challenged NCr-Foxn1nu nude mice. PeerJ 8, e9761. 10.7717/peerj.9761.
  122. Asselin-Paturel, C. , Lassau, N., Guinebretière, J.M., Zhang, J., Gay, F., Bex, F., Hallez, S., Leclere, J., Peronneau, P., Mami-Chouaib, F., and Chouaib, S. (1999). Transfer of the murine interleukin-12 gene in vivo by a Semliki Forest virus vector induces B16 tumor regression through inhibition of tumor blood vessel formation monitored by Doppler ultrasonography. Gene Ther 6, 606-615. 10.1038/sj.gt.3300841.
  123. Colmenero, P. , Chen, M., Castaños-Velez, E., Liljeström, P., and Jondal, M. (2002). Immunotherapy with recombinant SFV-replicons expressing the P815A tumor antigen or IL-12 induces tumor regression. Int J Cancer 98, 554-560. 10.1002/ijc.10184.
  124. Melero, I. , Quetglas, J.I., Reboredo, M., Dubrot, J., Rodriguez-Madoz, J.R., Mancheño, U., Casales, E., Riezu-Boj, J.I., Ruiz-Guillen, M., Ochoa, M.C., et al. (2015). Strict requirement for vector-induced type I interferon in efficacious antitumor responses to virally encoded IL12. Cancer Res 75, 497-507. 10.1158/0008-5472.Can-13-3356.
  125. Roche, F.P. , Sheahan, B.J., O'Mara, S.M., and Atkins, G.J. (2010). Semliki Forest virus-mediated gene therapy of the RG2 rat glioma. Neuropathol Appl Neurobiol 36, 648-660. 10.1111/j.1365-2990.2010.01110.x.
  126. Quetglas, J.I. , Labiano, S., Aznar, M., Bolaños, E., Azpilikueta, A., Rodriguez, I., Casales, E., Sánchez-Paulete, A.R., Segura, V., Smerdou, C., and Melero, I. (2015). Virotherapy with a Semliki Forest Virus-Based Vector Encoding IL12 Synergizes with PD-1/PD-L1 Blockade. Cancer Immunol Res 3, 449-454. 10.1158/2326-6066.Cir-14-0216.
  127. Quetglas, J.I. , Dubrot, J., Bezunartea, J., Sanmamed, M.F., Hervas-Stubbs, S., Smerdou, C., and Melero, I. (2012). Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12. Mol Ther 20, 1664-1675. 10.1038/mt.2012.56.
  128. Yamanaka, R. , Zullo, S.A., Tanaka, R., Ramsey, J., Blaese, M., and Xanthopoulos, K.G. (2000). Induction of a therapeutic antitumor immunological response by intratumoral injection of genetically engineered Semliki Forest virus to produce interleukin-12. Neurosurg Focus 9, e7. 10.3171/foc.2000.9.6.8.
  129. Chikkanna-Gowda, C.P. , Sheahan, B.J., Fleeton, M.N., and Atkins, G.J. (2005). Regression of mouse tumours and inhibition of metastases following administration of a Semliki Forest virus vector with enhanced expression of IL-12. Gene Ther 12, 1253-1263. 10.1038/sj.gt.3302561.
  130. Rodriguez-Madoz, J.R. , Prieto, J., and Smerdou, C. (2005). Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol Ther 12, 153-163. 10.1016/j.ymthe.2005.02.011.
  131. Quetglas, J.I. , Rodriguez-Madoz, J.R., Bezunartea, J., Ruiz-Guillen, M., Casales, E., Medina-Echeverz, J., Prieto, J., Berraondo, P., Hervas-Stubbs, S., and Smerdou, C. (2013). Eradication of liver-implanted tumors by Semliki Forest virus expressing IL-12 requires efficient long-term immune responses. J Immunol 190, 2994-3004. 10.4049/jimmunol.1201791.
  132. Rodriguez-Madoz, J.R. , Zabala, M., Alfaro, M., Prieto, J., Kramer, M.G., and Smerdou, C. (2014). Short-term intratumoral interleukin-12 expressed from an alphaviral vector is sufficient to induce an efficient antitumoral response against spontaneous hepatocellular carcinomas. Hum Gene Ther 25, 132-143. 10.1089/hum.2013.080.
  133. Rodriguez-Madoz, J.R. , Liu, K.H., Quetglas, J.I., Ruiz-Guillen, M., Otano, I., Crettaz, J., Butler, S.D., Bellezza, C.A., Dykes, N.L., Tennant, B.C., et al. (2009). Semliki forest virus expressing interleukin-12 induces antiviral and antitumoral responses in woodchucks with chronic viral hepatitis and hepatocellular carcinoma. J Virol 83, 12266-12278. 10.1128/jvi.01597-09.
  134. Ren, H. , Boulikas, T., Lundstrom, K., Söling, A., Warnke, P.C., and Rainov, N.G. (2003). Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene--a phase I/II clinical protocol. J Neurooncol 64, 147-154. 10.1007/bf02700029.
  135. Kramer, M.G. , Masner, M., Casales, E., Moreno, M., Smerdou, C., and Chabalgoity, J.A. (2015). Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice. BMC Cancer 15, 620. 10.1186/s12885-015-1618-x.
  136. Alkayyal, A.A. , Tai, L.H., Kennedy, M.A., de Souza, C.T., Zhang, J., Lefebvre, C., Sahi, S., Ananth, A.A., Mahmoud, A.B., Makrigiannis, A.P., et al. (2017). NK-Cell Recruitment Is Necessary for Eradication of Peritoneal Carcinomatosis with an IL12-Expressing Maraba Virus Cellular Vaccine. Cancer Immunol Res 5, 211-221. 10.1158/2326-6066.Cir-16-0162.
  137. Shin, E.J. , Wanna, G.B., Choi, B., Aguila, D., 3rd, Ebert, O., Genden, E.M., and Woo, S.L. (2007). Interleukin-12 expression enhances vesicular stomatitis virus oncolytic therapy in murine squamous cell carcinoma. Laryngoscope 117, 210-214. 10.1097/01.mlg.0000246194.66295.d8.
  138. Ryapolova, A. , Minskaia, E., Gasanov, N., Moroz, V., Krapivin, B., Egorov, A.D., Laktyushkin, V., Zhuravleva, S., Nagornych, M., Subcheva, E., et al. (2023). Development of Recombinant Oncolytic rVSV-mIL12-mGMCSF for Cancer Immunotherapy. Int J Mol Sci 25. 10.3390/ijms25010211.
  139. Granot, T. , Venticinque, L., Tseng, J.C., and Meruelo, D. (2011). Activation of cytotoxic and regulatory functions of NK cells by Sindbis viral vectors. PLoS One 6, e20598. 10.1371/journal.pone.0020598.
  140. Tseng, J.C. , Hurtado, A., Yee, H., Levin, B., Boivin, C., Benet, M., Blank, S.V., Pellicer, A., and Meruelo, D. (2004). Using sindbis viral vectors for specific detection and suppression of advanced ovarian cancer in animal models. Cancer Res 64, 6684-6692. 10.1158/0008-5472.Can-04-1924.
  141. Opp, S. , Hurtado, A., Pampeno, C., Lin, Z., and Meruelo, D. (2022). Potent and Targeted Sindbis Virus Platform for Immunotherapy of Ovarian Cancer. Cells 12. 10.3390/cells12010077.
  142. Scherwitzl, I. , Opp, S., Hurtado, A.M., Pampeno, C., Loomis, C., Kannan, K., Yu, M., and Meruelo, D. (2020). Sindbis Virus with Anti-OX40 Overcomes the Immunosuppressive Tumor Microenvironment of Low-Immunogenic Tumors. Mol Ther Oncolytics 17, 431-447. 10.1016/j.omto.2020.04.012.
  143. Triozzi, P.L. , Strong, T.V., Bucy, R.P., Allen, K.O., Carlisle, R.R., Moore, S.E., Lobuglio, A.F., and Conry, R.M. (2005). Intratumoral administration of a recombinant canarypox virus expressing interleukin 12 in patients with metastatic melanoma. Hum Gene Ther 16, 91-100. 10.1089/hum.2005.16.91.
  144. Triozzi, P.L. , Allen, K.O., Carlisle, R.R., Craig, M., LoBuglio, A.F., and Conry, R.M. (2005). Phase I study of the intratumoral administration of recombinant canarypox viruses expressing B7.1 and interleukin 12 in patients with metastatic melanoma. Clin Cancer Res 11, 4168-4175. 10.1158/1078-0432.Ccr-04-2283.
  145. Puisieux, I. , Odin, L., Poujol, D., Moingeon, P., Tartaglia, J., Cox, W., and Favrot, M. (1998). Canarypox virus-mediated interleukin 12 gene transfer into murine mammary adenocarcinoma induces tumor suppression and long-term antitumoral immunity. Hum Gene Ther 9, 2481-2492. 10.1089/hum.1998.9.17-2481.
  146. Jiang, H. , Nace, R., Carrasco, T.F., Zhang, L., Whye Peng, K., and Russell, S.J. (2024). Oncolytic varicella-zoster virus engineered with ORF8 deletion and armed with drug-controllable interleukin-12. J Immunother Cancer 12. 10.1136/jitc-2023-008307.
  147. Paunovska, K. , Loughrey, D., and Dahlman, J.E. (2022). Drug delivery systems for RNA therapeutics. Nat Rev Genet 23, 265-280. 10.1038/s41576-021-00439-4.
  148. Aslan, C. , Kiaie, S.H., Zolbanin, N.M., Lotfinejad, P., Ramezani, R., Kashanchi, F., and Jafari, R. (2021). Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope. BMC Biotechnol 21, 20. 10.1186/s12896-021-00683-w.
  149. Yang, Z. , Shi, J., Xie, J., Wang, Y., Sun, J., Liu, T., Zhao, Y., Zhao, X., Wang, X., Ma, Y., et al. (2020). Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng 4, 69-83. 10.1038/s41551-019-0485-1.
  150. You, Y. , Tian, Y., Yang, Z., Shi, J., Kwak, K.J., Tong, Y., Estania, A.P., Cao, J., Hsu, W.H., Liu, Y., et al. (2023). Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat Biomed Eng 7, 887-900. 10.1038/s41551-022-00989-w.
  151. Li, Y. , Ma, X., Yue, Y., Zhang, K., Cheng, K., Feng, Q., Ma, N., Liang, J., Zhang, T., Zhang, L., et al. (2022). Rapid Surface Display of mRNA Antigens by Bacteria-Derived Outer Membrane Vesicles for a Personalized Tumor Vaccine. Adv Mater 34, e2109984. 10.1002/adma.202109984.
  152. Gao, X. , Li, Y., Nie, G., and Zhao, X. (2023). mRNA Delivery Platform Based on Bacterial Outer Membrane Vesicles for Tumor Vaccine. Bio Protoc 13, e4774. 10.21769/BioProtoc.4774.
  153. Segel, M. , Lash, B., Song, J., Ladha, A., Liu, C.C., Jin, X., Mekhedov, S.L., Macrae, R.K., Koonin, E.V., and Zhang, F. (2021). Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882-889. 10.1126/science.abg6155.
  154. Zochowska, M. , Piguet, A.C., Jemielity, J., Kowalska, J., Szolajska, E., Dufour, J.F., and Chroboczek, J. (2015). Virus-like particle-mediated intracellular delivery of mRNA cap analog with in vivo activity against hepatocellular carcinoma. Nanomedicine 11, 67-76. 10.1016/j.nano.2014.07.009.
  155. Zhou, J. , Liu, J., Cheng, C.J., Patel, T.R., Weller, C.E., Piepmeier, J.M., Jiang, Z., and Saltzman, W.M. (2011). Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat Mater 11, 82-90. 10.1038/nmat3187.
  156. Kauffman, A.C. , Piotrowski-Daspit, A.S., Nakazawa, K.H., Jiang, Y., Datye, A., and Saltzman, W.M. (2018). Tunability of Biodegradable Poly(amine- co-ester) Polymers for Customized Nucleic Acid Delivery and Other Biomedical Applications. Biomacromolecules 19, 3861-3873. 10.1021/acs.biomac.8b00997.
  157. Jiang, Y. , Gaudin, A., Zhang, J., Agarwal, T., Song, E., Kauffman, A.C., Tietjen, G.T., Wang, Y., Jiang, Z., Cheng, C.J., and Saltzman, W.M. (2018). A "top-down" approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery. Biomaterials 176, 122-130. 10.1016/j.biomaterials.2018.05.043.
  158. Patel, A.K. , Kaczmarek, J.C., Bose, S., Kauffman, K.J., Mir, F., Heartlein, M.W., DeRosa, F., Langer, R., and Anderson, D.G. (2019). Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Adv Mater 31, e1805116. 10.1002/adma.201805116.
  159. Yang, W. , Mixich, L., Boonstra, E., and Cabral, H. (2023). Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 12, e2202688. 10.1002/adhm.202202688.
  160. Neshat, S.Y. , Chan, C.H.R., Harris, J., Zmily, O.M., Est-Witte, S., Karlsson, J., Shannon, S.R., Jain, M., Doloff, J.C., Green, J.J., and Tzeng, S.Y. (2023). Polymeric nanoparticle gel for intracellular mRNA delivery and immunological reprogramming of tumors. Biomaterials 300, 122185. 10.1016/j.biomaterials.2023.122185.
  161. Sun, Y. , Yang, J., Yang, T., Li, Y., Zhu, R., Hou, Y., and Liu, Y. (2021). Co-delivery of IL-12 cytokine gene and cisplatin prodrug by a polymetformin-conjugated nanosystem for lung cancer chemo-gene treatment through chemotherapy sensitization and tumor microenvironment modulation. Acta Biomater 128, 447-461. 10.1016/j.actbio.2021.04.034.
  162. Sun, Y. , Liu, L., Zhou, L., Yu, S., Lan, Y., Liang, Q., Liu, J., Cao, A., and Liu, Y. (2020). Tumor Microenvironment-Triggered Charge Reversal Polymetformin-Based Nanosystem Co-Delivered Doxorubicin and IL-12 Cytokine Gene for Chemo-Gene Combination Therapy on Metastatic Breast Cancer. ACS Appl Mater Interfaces 12, 45873-45890. 10.1021/acsami.0c14405.
  163. Estapé Senti, M. , García Del Valle, L., and Schiffelers, R.M. (2024). mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Adv Drug Deliv Rev 206, 115190. 10.1016/j.addr.2024.115190.
  164. Kon, E. , Ad-El, N., Hazan-Halevy, I., Stotsky-Oterin, L., and Peer, D. (2023). Targeting cancer with mRNA-lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol 20, 739-754. 10.1038/s41571-023-00811-9.
  165. Zong, Y. , Lin, Y., Wei, T., and Cheng, Q. (2023). Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. Adv Mater 35, e2303261. 10.1002/adma.202303261.
  166. Cheng, Q. , Wei, T., Farbiak, L., Johnson, L.T., Dilliard, S.A., and Siegwart, D.J. (2020). Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol 15, 313-320. 10.1038/s41565-020-0669-6.
  167. Dilliard, S.A. , Cheng, Q., and Siegwart, D.J. (2021). On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci U S A 118, 10.1073/pnas.2109256118.
  168. Lai, I. , Swaminathan, S., Baylot, V., Mosley, A., Dhanasekaran, R., Gabay, M., and Felsher, D.W. (2018). Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J Immunother Cancer 6, 125. 10.1186/s40425-018-0431-x.
  169. Hewitt, S.L. , Bailey, D., Zielinski, J., Apte, A., Musenge, F., Karp, R., Burke, S., Garcon, F., Mishra, A., Gurumurthy, S., et al. (2020). Intratumoral IL12 mRNA Therapy Promotes TH1 Transformation of the Tumor Microenvironment. Clin Cancer Res 26, 6284-6298. 10.1158/1078-0432.Ccr-20-0472.
  170. Luo, M. , Liang, X., Luo, S.T., Wei, X.W., Liu, T., Ren, J., Ma, C.C., Yang, Y.H., Wang, B.L., Liu, L., et al. (2015). Folate-Modified Lipoplexes Delivering the Interleukin-12 Gene for Targeting Colon Cancer Immunogene Therapy. J Biomed Nanotechnol 11, 2011-2023. 10.1166/jbn.2015.2136.
  171. Jia, S.F. , Worth, L.L., Densmore, C.L., Xu, B., Duan, X., and Kleinerman, E.S. (2003). Aerosol gene therapy with PEI: IL-12 eradicates osteosarcoma lung metastases. Clin Cancer Res 9, 3462-3468.
  172. Rodrigo-Garzón, M. , Berraondo, P., Ochoa, L., Zulueta, J.J., and González-Aseguinolaza, G. (2010). Antitumoral efficacy of DNA nanoparticles in murine models of lung cancer and pulmonary metastasis. Cancer Gene Ther 17, 20-27. 10.1038/cgt.2009.45.
  173. Jia, S.F. , Worth, L.L., Densmore, C.L., Xu, B., Zhou, Z., and Kleinerman, E.S. (2002). Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther 9, 260-266. 10.1038/sj.cgt.7700432.
  174. Duan, X. , Jia, S.F., Koshkina, N., and Kleinerman, E.S. (2006). Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer 106, 1382-1388. 10.1002/cncr.21744.
  175. Maheshwari, A. , Mahato, R.I., McGregor, J., Han, S., Samlowski, W.E., Park, J.S., and Kim, S.W. (2000). Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. Mol Ther 2, 121-130. 10.1006/mthe.2000.0105.
  176. Son, H.J. , and Kim, J.S. (2007). Therapeutic efficacy of DNA-loaded PLGA microspheres in tumor-bearing mice. Arch Pharm Res 30, 1047-1050. 10.1007/bf02993975.
  177. Maheshwari, A. , Han, S., Mahato, R.I., and Kim, S.W. (2002). Biodegradable polymer-based interleukin-12 gene delivery: role of induced cytokines, tumor infiltrating cells and nitric oxide in anti-tumor activity. Gene Ther 9, 1075-1084. 10.1038/sj.gt.3301766.
  178. Mahato, R.I. , Lee, M., Han, S., Maheshwari, A., and Kim, S.W. (2001). Intratumoral delivery of p2CMVmIL-12 using water-soluble lipopolymers. Mol Ther 4, 130-138. 10.1006/mthe.2001.0425.
  179. Janát-Amsbury, M.M. , Yockman, J.W., Lee, M., Kern, S., Furgeson, D.Y., Bikram, M., and Kim, S.W. (2005). Local, non-viral IL-12 gene therapy using a water soluble lipopolymer as carrier system combined with systemic paclitaxel for cancer treatment. J Control Release 101, 273-285. 10.1016/j.jconrel.2004.08.015.
  180. Janát-Amsbury, M.M. , Yockman, J.W., Lee, M., Kern, S., Furgeson, D.Y., Bikram, M., and Kim, S.W. (2004). Combination of local, nonviral IL12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model. Mol Ther 9, 829-836. 10.1016/j.ymthe.2004.03.015.
  181. Yockman, J.W. , Maheshwari, A., Han, S.O., and Kim, S.W. (2003). Tumor regression by repeated intratumoral delivery of water soluble lipopolymers/p2CMVmIL-12 complexes. J Control Release 87, 177-186. 10.1016/s0168-3659(02)00362-0.
  182. Wang, Y. , Gao, S., Ye, W.H., Yoon, H.S., and Yang, Y.Y. (2006). Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5, 791-796. 10.1038/nmat1737.
  183. Kim, T.H. , Jin, H., Kim, H.W., Cho, M.H., and Cho, C.S. (2006). Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol Cancer Ther 5, 1723-1732. 10.1158/1535-7163.Mct-05-0540.
  184. Sonabend, A.M. , Velicu, S., Ulasov, I.V., Han, Y., Tyler, B., Brem, H., Matar, M.M., Fewell, J.G., Anwer, K., and Lesniak, M.S. (2008). A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anticancer Drugs 19, 133-142. 10.1097/CAD.0b013e3282f24017.
  185. Díez, S. , Navarro, G., and de, I.C.T. (2009). In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma. J Gene Med 11, 38-45. 10.1002/jgm.1273.
  186. Shen, H.H. , Peng, J.F., Wang, R.R., Wang, P.Y., Zhang, J.X., Sun, H.F., Liang, Y., Li, Y.M., Xue, J.N., Li, Y.J., et al. (2024). IL-12-Overexpressed Nanoparticles Suppress the Proliferation of Melanoma Through Inducing ICD and Activating DC, CD8(+) T, and CD4(+) T Cells. Int J Nanomedicine 19, 2755-2772. 10.2147/ijn.S442446.
  187. Chen, P. , Yang, W., Nagaoka, K., Huang, G.L., Miyazaki, T., Hong, T., Li, S., Igarashi, K., Takeda, K., Kakimi, K., et al. (2023). An IL-12-Based Nanocytokine Safely Potentiates Anticancer Immunity through Spatiotemporal Control of Inflammation to Eradicate Advanced Cold Tumors. Adv Sci (Weinh) 10, e2205139. 10.1002/advs.202205139.
  188. Li, J. , Lin, W., Chen, H., Xu, Z., Ye, Y., and Chen, M. (2020). Dual-target IL-12-containing nanoparticles enhance T cell functions for cancer immunotherapy. Cell Immunol 349, 104042. 10.1016/j.cellimm.2020.104042.
  189. Liu, J.Q. , Zhang, C., Zhang, X., Yan, J., Zeng, C., Talebian, F., Lynch, K., Zhao, W., Hou, X., Du, S., et al. (2022). Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J Control Release 345, 306-313. 10.1016/j.jconrel.2022.03.021.
  190. Wang, Z. , Chen, Y., Wu, H., Wang, M., Mao, L., Guo, X., Zhu, J., Ye, Z., Luo, X., Yang, X., et al. (2024). Intravenous administration of IL-12 encoding self-replicating RNA-lipid nanoparticle complex leads to safe and effective antitumor responses. Sci Rep 14, 7366. 10.1038/s41598-024-57997-w.
  191. Li, Y. , Su, Z., Zhao, W., Zhang, X., Momin, N., Zhang, C., Wittrup, K.D., Dong, Y., Irvine, D.J., and Weiss, R. (2020). Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat Cancer 1, 882-893. 10.1038/s43018-020-0095-6.
  192. Zhao, P. , Tian, Y., Lu, Y., Zhang, J., Tao, A., Xiang, G., and Liu, Y. (2022). Biomimetic calcium carbonate nanoparticles delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis. J Nanobiotechnology 20, 525. 10.1186/s12951-022-01731-z.
  193. Liu, H. , Du, Y., Zhan, D., Yu, W., Li, Y., Wang, A., Yin, J., Cao, H., and Fu, Y. (2024). Oxaliplatin lipidated prodrug synergistically enhances the anti-colorectal cancer effect of IL12 mRNA. Drug Delivery and Translational Research. 10.1007/s13346-024-01540-x.
  194. Xu, S. , Xu, Y., Solek, N.C., Chen, J., Gong, F., Varley, A.J., Golubovic, A., Pan, A., Dong, S., Zheng, G., and Li, B. (2024). Tumor-Tailored Ionizable Lipid Nanoparticles Facilitate IL-12 Circular RNA Delivery for Enhanced Lung Cancer Immunotherapy. Adv Mater 36, e2400307. 10.1002/adma.202400307.
  195. Tros De Ilarduya, C. , Buñuales, M., Qian, C., and Düzgüneş, N. (2006). Antitumoral activity of transferrin-lipoplexes carrying the IL-12 gene in the treatment of colon cancer. J Drug Target 14, 527-535. 10.1080/10611860600825282.
  196. Men, K. , Huang, R., Zhang, X., Zhang, R., Zhang, Y., He, M., Tong, R., Yang, L., Wei, Y., and Duan, X. (2018). Local and Systemic Delivery of Interleukin-12 Gene by Cationic Micelles for Cancer Immunogene Therapy. J Biomed Nanotechnol 14, 1719-1730. 10.1166/jbn.2018.2593.
  197. Charoensit, P. , Kawakami, S., Higuchi, Y., Yamashita, F., and Hashida, M. (2010). Enhanced growth inhibition of metastatic lung tumors by intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes in mice. Cancer Gene Ther 17, 512-522. 10.1038/cgt.2010.12.
  198. Liu, M. , Hu, S., Yan, N., Popowski, K.D., and Cheng, K. (2024). Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat Nanotechnol. 10.1038/s41565-023-01580-3.
  199. Zhang, J. , Song, H., Dong, Y., Li, G., Li, J., Cai, Q., Yuan, S., Wang, Y., and Song, H. (2023). Surface Engineering of HEK293 Cell-Derived Extracellular Vesicles for Improved Pharmacokinetic Profile and Targeted Delivery of IL-12 for the Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 18, 209-223. 10.2147/ijn.S388916.
  200. Rossowska, J. , Anger, N., Wegierek, K., Szczygieł, A., Mierzejewska, J., Milczarek, M., Szermer-Olearnik, B., and Pajtasz-Piasecka, E. (2019). Antitumor Potential of Extracellular Vesicles Released by Genetically Modified Murine Colon Carcinoma Cells With Overexpression of Interleukin-12 and shRNA for TGF-β1. Front Immunol 10, 211. 10.3389/fimmu.2019.00211.
  201. Lewis, N.D. , Sia, C.L., Kirwin, K., Haupt, S., Mahimkar, G., Zi, T., Xu, K., Dooley, K., Jang, S.C., Choi, B., et al. (2021). Exosome Surface Display of IL12 Results in Tumor-Retained Pharmacology with Superior Potency and Limited Systemic Exposure Compared with Recombinant IL12. Mol Cancer Ther 20, 523-534. 10.1158/1535-7163.Mct-20-0484.
  202. Barnwal, A. , Ganguly, S., and Bhattacharyya, J. (2023). Multifaceted Nano-DEV-IL for Sustained Release of IL-12 to Avert the Immunosuppressive Tumor Microenvironment and IL-12-Associated Toxicities. ACS Appl Mater Interfaces 15, 20012-20026. 10.1021/acsami.3c02934.
  203. Stephan, M.T. , Moon Jj Fau - Um, S.H., Um Sh Fau - Bershteyn, A., Bershteyn A Fau - Irvine, D.J., and Irvine, D.J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles.
  204. Huang, B. , Abraham, W.D., Zheng, Y., Bustamante López, S.C., Luo, S.S., and Irvine, D.J. (2015). Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med 7, 291ra294. 10.1126/scitranslmed.aaa5447.
  205. Zhang, W. , Wang, M., Tang, W., Wen, R., Zhou, S., Lee, C., Wang, H., Jiang, W., Delahunty, I.M., Zhen, Z., et al. (2022). Nanoparticle-Laden Macrophages for Tumor-Tropic Drug Delivery. Adv Mater 34, e2109925. 10.1002/adma.202109925.
  206. Siriwon, N. , Kim, Y.J., Siegler, E., Chen, X., Rohrs, J.A., Liu, Y., and Wang, P. (2018). CAR-T Cells Surface-Engineered with Drug-Encapsulated Nanoparticles Can Ameliorate Intratumoral T-cell Hypofunction. Cancer Immunol Res 6, 812-824. 10.1158/2326-6066.Cir-17-0502.
  207. Hato, L. , Vizcay, A., Eguren, I., Pérez-Gracia, J.L., Rodríguez, J., Gállego Pérez-Larraya, J., Sarobe, P., Inogés, S., Díaz de Cerio, A.L., and Santisteban, M. (2024). Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers (Basel) 16. 10.3390/cancers16050981.
  208. Komita, H. , Zhao, X., Katakam, A.K., Kumar, P., Kawabe, M., Okada, H., Braughler, J.M., and Storkus, W.J. (2009). Conditional interleukin-12 gene therapy promotes safe and effective antitumor immunity. Cancer Gene Ther 16, 883-891. 10.1038/cgt.2009.33.
  209. Akiyama, Y. , Watanabe, M., Maruyama, K., Ruscetti, F.W., Wiltrout, R.H., and Yamaguchi, K. (2000). Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines. Gene Ther 7, 2113-2121. 10.1038/sj.gt.3301353.
  210. Yoshida, M. , Jo, J., and Tabata, Y. (2010). Augmented anti-tumor effect of dendritic cells genetically engineered by interleukin-12 plasmid DNA. J Biomater Sci Polym Ed 21, 659-675. 10.1163/156856209x434674.
  211. Yao, W. , Li, Y., Zeng, L., Zhang, X., Zhou, Z., Zheng, M., and Wan, H. (2019). Intratumoral injection of dendritic cells overexpressing interleukin-12 inhibits melanoma growth. Oncol Rep 42, 370-376. 10.3892/or.2019.7165.
  212. Zhao, X. , Bose, A., Komita, H., Taylor, J.L., Kawabe, M., Chi, N., Spokas, L., Lowe, D.B., Goldbach, C., Alber, S., et al. (2011). Intratumoral IL-12 gene therapy results in the crosspriming of Tc1 cells reactive against tumor-associated stromal antigens. Mol Ther 19, 805-814. 10.1038/mt.2010.295.
  213. Okada, N. , Iiyama, S., Okada, Y., Mizuguchi, H., Hayakawa, T., Nakagawa, S., Mayumi, T., Fujita, T., and Yamamoto, A. (2005). Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther 12, 72-83. 10.1038/sj.cgt.7700772.
  214. Rodríguez-Calvillo, M. , Duarte, M., Tirapu, I., Berraondo, P., Mazzolini, G., Qian, C., Prieto, J., and Melero, I. (2002). Upregulation of natural killer cells functions underlies the efficacy of intratumorally injected dendritic cells engineered to produce interleukin-12. Exp Hematol 30, 195-204. 10.1016/s0301-472x(01)00792-5.
  215. Mierzejewska, J. Mierzejewska, J. , Węgierek-Ciura, K., Rossowska, J., Szczygieł, A., Anger-Góra, N., Szermer-Olearnik, B., Geneja, M., and Pajtasz-Piasecka, E. (2022). The Beneficial Effect of IL-12 and IL-18 Transduced Dendritic Cells Stimulated with Tumor Antigens on Generation of an Antitumor Response in a Mouse Colon Carcinoma Model. J Immunol Res 2022, 7508928. 10.1155/2022/7508928.
  216. Melero, I. , Duarte, M., Ruiz, J., Sangro, B., Galofré, J., Mazzolini, G., Bustos, M., Qian, C., and Prieto, J. (1999). Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther 6, 1779-1784. 10.1038/sj.gt.3301010.
  217. Tatsumi, T. , Huang, J., Gooding, W.E., Gambotto, A., Robbins, P.D., Vujanovic, N.L., Alber, S.M., Watkins, S.C., Okada, H., and Storkus, W.J. (2003). Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 63, 6378-6386.
  218. Tatsumi, T. , Takehara, T., Yamaguchi, S., Sasakawa, A., Miyagi, T., Jinushi, M., Sakamori, R., Kohga, K., Uemura, A., Ohkawa, K., et al. (2007). Injection of IL-12 gene-transduced dendritic cells into mouse liver tumor lesions activates both innate and acquired immunity. Gene Ther 14, 863-871. 10.1038/sj.gt.3302941.
  219. Shimizu, T. , Berhanu, A., Redlinger, R.E., Jr., Watkins, S., Lotze, M.T., and Barksdale, E.M., Jr. (2001). Interleukin-12 transduced dendritic cells induce regression of established murine neuroblastoma. J Pediatr Surg 36, 1285-1292. 10.1053/jpsu.2001.25796.
  220. Saika, T. , Satoh, T., Kusaka, N., Ebara, S., Mouraviev, V.B., Timme, T.L., and Thompson, T.C. (2004). Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther 11, 317-324. 10.1038/sj.cgt.7700709.
  221. Huang, C. , Ramakrishnan, R., Trkulja, M., Ren, X., and Gabrilovich, D.I. (2012). Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines. Cancer Immunol Immunother 61, 573-579. 10.1007/s00262-011-1198-9.
  222. Mazzolini, G. , Alfaro, C., Sangro, B., Feijoó, E., Ruiz, J., Benito, A., Tirapu, I., Arina, A., Sola, J., Herraiz, M., et al. (2005). Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J Clin Oncol 23, 999-1010. 10.1200/jco.2005.00.463.
  223. Di Trani, C.A. , Cirella, A., Arrizabalaga, L., Bella, Á., Fernandez-Sendin, M., Russo-Cabrera, J.S., Gomar, C., Olivera, I., Bolaños, E., González-Gomariz, J., et al. (2023). Intracavitary adoptive transfer of IL-12 mRNA-engineered tumor-specific CD8(+) T cells eradicates peritoneal metastases in mouse models. Oncoimmunology 12, 2147317. 10.1080/2162402x.2022.2147317.
  224. Etxeberria, I. , Bolaños, E., Quetglas, J.I., Gros, A., Villanueva, A., Palomero, J., Sánchez-Paulete, A.R., Piulats, J.M., Matias-Guiu, X., Olivera, I., et al. (2019). Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8(+) T Cells. Cancer Cell 36, 613-629.e617. 10.1016/j.ccell.2019.10.006.
  225. Olivera, I. , Bolaños, E., Gonzalez-Gomariz, J., Hervas-Stubbs, S., Mariño, K.V., Luri-Rey, C., Etxeberria, I., Cirella, A., Egea, J., Glez-Vaz, J., et al. (2023). mRNAs encoding IL-12 and a decoy-resistant variant of IL-18 synergize to engineer T cells for efficacious intratumoral adoptive immunotherapy. Cell Rep Med 4, 100978. 10.1016/j.xcrm.2023.100978.
  226. Chinnasamy, D. , Yu, Z., Kerkar, S.P., Zhang, L., Morgan, R.A., Restifo, N.P., and Rosenberg, S.A. (2012). Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 18, 1672-1683. 10.1158/1078-0432.Ccr-11-3050.
  227. Kerkar, S.P. , Leonardi, A.J., van Panhuys, N., Zhang, L., Yu, Z., Crompton, J.G., Pan, J.H., Palmer, D.C., Morgan, R.A., Rosenberg, S.A., and Restifo, N.P. (2013). Collapse of the tumor stroma is triggered by IL-12 induction of Fas. Mol Ther 21, 1369-1377. 10.1038/mt.2013.58.
  228. Chmielewski, M. , Kopecky, C., Hombach, A.A., and Abken, H. (2011). IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71, 5697-5706. 10.1158/0008-5472.Can-11-0103.
  229. Meister, H. , Look, T., Roth, P., Pascolo, S., Sahin, U., Lee, S., Hale, B.D., Snijder, B., Regli, L., Ravi, V.M., et al. (2022). Multifunctional mRNA-Based CAR T Cells Display Promising Antitumor Activity Against Glioblastoma. Clin Cancer Res 28, 4747-4756. 10.1158/1078-0432.Ccr-21-4384.
  230. Pegram, H.J. , Lee, J.C., Hayman, E.G., Imperato, G.H., Tedder, T.F., Sadelain, M., and Brentjens, R.J. (2012). Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133-4141. 10.1182/blood-2011-12-400044.
  231. Kueberuwa, G. , Kalaitsidou, M., Cheadle, E., Hawkins, R.E., and Gilham, D.E. (2018). CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity. Mol Ther Oncolytics 8, 41-51. 10.1016/j.omto.2017.12.003.
  232. Koneru, M. , Purdon, T.J., Spriggs, D., Koneru, S., and Brentjens, R.J. (2015). IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 4, e994446. 10.4161/2162402x.2014.994446.
  233. Liu, Y. , Di, S., Shi, B., Zhang, H., Wang, Y., Wu, X., Luo, H., Wang, H., Li, Z., and Jiang, H. (2019). Armored Inducible Expression of IL-12 Enhances Antitumor Activity of Glypican-3-Targeted Chimeric Antigen Receptor-Engineered T Cells in Hepatocellular Carcinoma. J Immunol 203, 198-207. 10.4049/jimmunol.1800033.
  234. Luo, Y. , Chen, Z., Sun, M., Li, B., Pan, F., Ma, A., Liao, J., Yin, T., Tang, X., Huang, G., et al. (2022). IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy. Biomaterials 281, 121341. 10.1016/j.biomaterials.2021.121341.
  235. Yang, Z. , Pietrobon, V., Bobbin, M., Stefanson, O., Yang, J., Goswami, A., Alphson, B., Choi, H., Magallanes, K., Cai, Q., et al. (2023). Nanoscale, antigen encounter-dependent, IL-12 delivery by CAR T cells plus PD-L1 blockade for cancer treatment. J Transl Med 21, 158. 10.1186/s12967-023-04014-9.
  236. Kułach, N. , Pilny, E., Cichoń, T., Czapla, J., Jarosz-Biej, M., Rusin, M., Drzyzga, A., Matuszczak, S., Szala, S., and Smolarczyk, R. (2021). Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci Rep 11, 18335. 10.1038/s41598-021-97435-9.
  237. Park, J. , Park, S.A., Kim, Y.-S., Kim, D., Shin, S., Lee, S.H., Jeun, S.-S., Chung, Y.-J., and Ahn, S. (2024). Intratumoral IL-12 delivery via mesenchymal stem cells combined with PD-1 blockade leads to long-term antitumor immunity in a mouse glioblastoma model. Biomedicine & Pharmacotherapy 173, 115790. [CrossRef]
  238. Elzaouk, L. , Moelling, K., and Pavlovic, J. (2006). Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 15, 865-874. 10.1111/j.1600-0625.2006.00479.x.
  239. McKenna, M.K. , Englisch, A., Brenner, B., Smith, T., Hoyos, V., Suzuki, M., and Brenner, M.K. (2021). Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol Ther 29, 1808-1820. 10.1016/j.ymthe.2021.02.004.
  240. Eliopoulos, N. , Francois, M., Boivin, M.N., Martineau, D., and Galipeau, J. (2008). Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 68, 4810-4818. 10.1158/0008-5472.Can-08-0160.
  241. Hong, X. , Miller, C., Savant-Bhonsale, S., and Kalkanis, S.N. (2009). Antitumor treatment using interleukin- 12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery 64, 1139-1146; discussion 1146-1137. 10.1227/01.Neu.0000345646.85472.Ea.
  242. Gao, P. , Ding, Q., Wu, Z., Jiang, H., and Fang, Z. (2010). Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 290, 157-166. 10.1016/j.canlet.2009.08.031.
  243. Jeong, K.Y. , Lee, E.J., Kim, S.J., Yang, S.H., Sung, Y.C., and Seong, J. (2015). Irradiation-induced localization of IL-12-expressing mesenchymal stem cells to enhance the curative effect in murine metastatic hepatoma. Int J Cancer 137, 721-730. 10.1002/ijc.29428.
  244. Wu, J. , Xie, S., Li, H., Zhang, Y., Yue, J., Yan, C., Liu, K., Liu, Y., Xu, R., and Zheng, G. (2021). Antitumor effect of IL-12 gene-modified bone marrow mesenchymal stem cells combined with Fuzheng Yiliu decoction in an in vivo glioma nude mouse model. J Transl Med 19, 143. 10.1186/s12967-021-02809-2.
  245. Zhang, H. , Feng, Y., Xie, X., Song, T., Yang, G., Su, Q., Li, T., Li, S., Wu, C., You, F., et al. (2022). Engineered Mesenchymal Stem Cells as a Biotherapy Platform for Targeted Photodynamic Immunotherapy of Breast Cancer. Adv Healthc Mater 11, e2101375. 10.1002/adhm.202101375.
  246. Hombach, A.A. , Geumann, U., Günther, C., Hermann, F.G., and Abken, H. (2020). IL7-IL12 Engineered Mesenchymal Stem Cells (MSCs) Improve A CAR T Cell Attack Against Colorectal Cancer Cells. Cells 9. 10.3390/cells9040873.
  247. Seo, S.H. , Kim, K.S., Park, S.H., Suh, Y.S., Kim, S.J., Jeun, S.S., and Sung, Y.C. (2011). The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 18, 488-495. 10.1038/gt.2010.170.
  248. Ryu, C.H. , Park, S.H., Park, S.A., Kim, S.M., Lim, J.Y., Jeong, C.H., Yoon, W.S., Oh, W.I., Sung, Y.C., and Jeun, S.S. (2011). Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum Gene Ther 22, 733-743. 10.1089/hum.2010.187.
  249. Asada, H. , Kishida, T., Hirai, H., Satoh, E., Ohashi, S., Takeuchi, M., Kubo, T., Kita, M., Iwakura, Y., Imanishi, J., and Mazda, O. (2002). Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 5, 609-616. 10.1006/mthe.2002.0587.
  250. Satoh, T., Saika, T., Ebara, S., Kusaka, N., Timme, T.L., Yang, G., Wang, J., Mouraviev, V., Cao, G., Fattah el, M.A., and Thompson, T.C. (2003). Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res 63, 7853-7860.
  251. Tabata, K. , Watanabe, M., Naruishi, K., Edamura, K., Satoh, T., Yang, G., Abdel Fattah, E., Wang, J., Goltsov, A., Floryk, D., et al. (2009). Therapeutic effects of gelatin matrix-embedded IL-12 gene-modified macrophages in a mouse model of residual prostate cancer. Prostate Cancer Prostatic Dis 12, 301-309. 10.1038/pcan.2008.57.
  252. Landoni, E. , Woodcock, M.G., Barragan, G., Casirati, G., Cinella, V., Stucchi, S., Flick, L.M., Withers, T.A., Hudson, H., Casorati, G., et al. (2024). IL-12 reprograms CAR-expressing natural killer T cells to long-lived Th1-polarized cells with potent antitumor activity. Nat Commun 15, 89. 10.1038/s41467-023-44310-y.
  253. Croce, M. , Meazza, R., Orengo, A.M., Radić, L., De Giovanni, B., Gambini, C., Carlini, B., Pistoia, V., Mortara, L., Accolla, R.S., et al. (2005). Sequential immunogene therapy with interleukin-12- and interleukin-15-engineered neuroblastoma cells cures metastatic disease in syngeneic mice. Clin Cancer Res 11, 735-742.
  254. Galvan, D.L. , O'Neil, R.T., Foster, A.E., Huye, L., Bear, A., Rooney, C.M., and Wilson, M.H. (2015). Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model. PLoS One 10, e0140744. 10.1371/journal.pone.0140744.
  255. Strauss, J. , Heery, C.R., Kim, J.W., Jochems, C., Donahue, R.N., Montgomery, A.S., McMahon, S., Lamping, E., Marté, J.L., Madan, R.A., et al. (2019). First-in-Human Phase I Trial of a Tumor-Targeted Cytokine (NHS-IL12) in Subjects with Metastatic Solid Tumors. Clin Cancer Res 25, 99-109. 10.1158/1078-0432.Ccr-18-1512.
Table 1. Modified IL-12 for cancer therapy.
Table 1. Modified IL-12 for cancer therapy.
Name manner Cancer Model RoA Combination therapy Ref
pro-IL-12 extracellular matrix proteins MC38, B16F10, 4T1 i.p. / [17]
M-L-IL-12 fused a domain of the IL-12 receptor EMT6, B16F10 intravenous (i.v.) PD-1 antibodies [18]
IL-12-MSA-Lumican fuses with Lumican B16F10 i.t. PD-1 antibodies [19]
CBD-IL-12 fusion collagen-binding domain EMT6, B16F10 i.t. PD-1 antibodies [20]
IL12-scFv(L19)-FLAG fuse anti-EDB antibody fragment scFv(L19) F9 i.v. / [22]
mIL12-FHAB-hIL15 fused single-chain human IL-12 and native human IL-15 in cis onto a fully human albumin binding (FHAB) domain single-chain antibody fragment (scFv) B16F10 i.v. / [26]
scIL-12-B7TM membrane-bound IL-12 containing murine single-chain IL-12 and B7-1 transmembrane and cytoplasmic domains CT26 i.t. / [27]
NHS-IL12 fuses a DNA/ DNA-histone complex antibody (NHS76) MC38, MB49, 4T1, EMT-6 s.c. Bintrafusp alfa, PD-L1 antibodies [23,24,25]
Table 2. Viral vector delivers IL-12 for cancer therapy-HSV.
Table 2. Viral vector delivers IL-12 for cancer therapy-HSV.
Name Dose (pfu) Cancer Model RoA Combination therapy Ref
dvIL12-tk/tsK 2 × 105 CT26 i.t. / [32]
VG161 5×106 CT26, A20 i.t. / [33]
O-HSV12 107 MC38 i.t. / [36]
VG2026 108 A20 i.t. / [47]
∆6/GM/IL12 107 B16-F10 i.t. / [48]
G47Δ-mIL2 5×105 005 GSC, CT-2A, GL261 i.t. / [45]
9× 105 M3 cells i.t. / [49]
2 × 106 4T1 i.t. / [37]
106 U87 i.t. G47Δ-mAngio [43]
5 × 105 005 GSCs i.t. / [50]
5 × 105 005 GSCs i.t. TMZ, d O6-BG [39]
2.5 × 105 005 GSCs,
MGG123 GSCs
i.t. Axitinib,
CTLA-4 antibodies
[38]
5 × 105 005 GSCs i.t. PD-1, CTLA-4 antibodies [40]
5 × 105 Glioma, CT-2A i.t. PD-1, CTLA-4 antibodies [41]
C5252 5 × 106 U87 i.t. / [44]
oHSV2-IL12 107 4T1, CT26 i.t. oHSV2-PD1v, IL7 × CCL19, GM-CSF and IL15 [34]
vHsv-IL-12 8 × 103-2 × 106 Neuro2a i.t. vHsv-B7.1-Ig and IL-18 [42]
NV1042 5 × 107 SCC i.v. / [51]
1 × 107 CT26 i.t. / [35]
5 × 105 CWr22 i.t. Vinblastine [52]
2 × 107 SCC VII i.t. / [53,54]
107 TRAMP-C2, Pr14-2 i.p. / [55]
107 McA-R-7777 i.t. / [56]
M002 107 Neuro-2a i.t. M010 (HSV expressing CCL2) [57]
107 SARC i.t. / [58]
107 X21415, D456, GBM-12, UAB106 i.t. / [59]
1.5 × 107 Intracranial SCK i.t. / [60]
107 Xenograft SK-N-AS and SK-N-BE, Neuro-2a i.t. irradiation (XRT) [61]
107 HuH6, G401, SK-NEP-1 i.t. irradiation (XRT) [62]
R-115 1 × 108-2 × 109 HER2 i.p. / [63]
2 × 106, 1 × 108 HER2 i.t. [64]
R-123 108 HER2-LLC1 i.t. PD-1 antibodies [46]
T2850
T3855
107 A20, MFC i.t. / [65]
5 ×106
107
3 ×107
B16 i.t. / [65]
Table 3. Viral vector delivers IL-12 for cancer therapy-AV or AAV.
Table 3. Viral vector delivers IL-12 for cancer therapy-AV or AAV.
Name Dose (pfu) Cancer Model RoA Combination therapy Ref
AdmIL-12 108 RM-9 i.p. / [28]
murine IL-12 2.5 × 108 Renca cells i.t. / [84]
AAV9.RS-mIL-12 2.5 × 1010 vg/kg Hepa1-6 i.v. / [85]
Ad-RTS-mIL-12 5 × 109 vp GL-261 i.t. / [86]
Ad-ΔB7/IL12/GMCSF 5 × 107 B16-F10 i.t. / [87]
AdV5-IL-12 1.5 × 108 EMT6-HER2 p.t. / [88]
Ad.mIL12 / GL261 i.t. / [72]
AdRGD-IL12 2 × 107 Meth-A i.t. / [71]
AdCMVIL-12 108 and 109 CT-26 cells i.t. / [75]
ADV/mIL-12 3 × 108 MCA-26 i.t. / [76]
oAd+DC 2 × 1010 LLC i.t. / [83]
rAAV/IL-12 1011 vp DBTRG i.t. / [73]
rAAV2/IL12 1.96 × 1012 RG2 i.t. / [74]
AAV8-Tetbidir-Alb-IL-12 5 × 1011 vg/kg MC38 i.v. / [69]
AAV8/IL-12 109 - 1011 BNL HCC i.v. / [79]
OAV-scIL-12-TM 2.5 × 108
109 iu
HaP-T1 i.t. / [89]
Ad-DHscIL12 107 iu H2T i.t. / [90]
Ad.IL-12 2.5 × 1010- 3 × 1012 vp advanced pancreatic, colorectal, or primary liver malignancies i.t. / [91]
RdB/IL-12/IL-18 108 B16-F10 i.t. / [92]
YKL-IL12/B7 5 × 108 B16-F10 i.t. / [93]
AdCMVIL-12 7.5 × 107 CT26 i.t. / [94]
Ad-IL-12 109 PyMidT i.t. / [95]
Ad.mIL-12 3.3 × 109 7500 RM-1 i.t. / [96]
GL-Ad/RUhIL-12 3 × 109 iu MC-38 i.v. RU486 [97]
Ad/IL-12 109 BNL cells i.t. GM-CSF [98]
AdmIL-12 108-109 178-2 BMA i.t. radiation therapy [81]
AdIL-12 2.5x109 Hepa129 i.t. AdK1-3 [80]
HC-Ad/RUmIL-12 2.5×108 iu MC38 Intrahepatic Oxaliplatin [82]
Adv.mIL-12 3.2 × 108 MCA26 i.t. 4-1BB antibodies [99]
Ad5-ZD55-CCL5-IL12 109 OSRC-2 i.t. CA9-CAR-T [100]
Ad-ΔB7/IL-12/4-1BBL 5 × 109 B16-F10 i.t. Dendritic Cells [77]
Ad-ΔB7/IL12/GMCSF 5 × 1010 B16-F10 i.t. Dendritic Cells [78]
Table 4. Viral vector delivers IL-12 for cancer therapy-VV or MVA.
Table 4. Viral vector delivers IL-12 for cancer therapy-VV or MVA.
Name Dose (pfu) Cancer Model RoA Combination therapy Ref
rVV–mIL-12 105-107 C6 glioma i.t. / [107]
rVV-p53/rVV-2-12 2×107 C6 glioma i.t. / [108]
VVΔTKΔN1L-IL12 108 LLC, LY2, DT6606,4T1, CT26, SCCVII, HCPC1 i.t. / [109]
VAC-2-12 107 CT26.CL25 i.v / [110]
rVVHA-IL-12 5×106 AE17 i.t. / [111]
hIL-7/mIL-12-VV 2 × 107 B16-F10, CT26, LLC, TRAMP-C2 i.t. PD-1 or CTLA4 antibodies [106]
VV-IL-12mCLTX-HiBiT 107
108
U2OS, ID8, 4T1.2, MC38 i.t. PD-1 antibodies [112]
vvDD-IL-12 109 MC38, B16, AB12, CT26 i.p. PD-1 antibodies [113]
VACV muIL-12 107 CT26, MC38 i.t. PD-L1 antibodies [114]
MVA-IL-12 6 × 105 MC38, B16F10, CT26 i.t. PD-1 antibodies [115]
MVA.scIL-12 5 × 107 MC38, CT26 i.p. PD-L1 antibodies [116]
Table 5. Viral vector delivers IL-12 for cancer therapy-Other viruses.
Table 5. Viral vector delivers IL-12 for cancer therapy-Other viruses.
Name Dose (pfu) Cancer Model RoA Combination therapy Ref
Measles vaccine strain viruses (MeV)
FmIL-12 5 × 105 ciu MC38cea, B16hCD46 i.t. / [117]
FmIL-12 / MC38cea i.t. / [118]
Newcastle disease virus (NDV)
rAF-IL12 27 HA CT26 i.t. / [119]
rClone30s-IL12 107 H22 i.t. / [120]
rAF-IL12 / HT29 i.t. / [121]
Semliki Forest virus (SFV)
SFV-IL12 107 iu B16 i.t. / [122]
rSFV/IL12 106 iu P815 i.t. / [123]
SFV-IL12 108 vp MC38 or TC-1 i.v. / [124]
IL-12 VLPs 5 × 108 RG2 i.t. / [125]
SFV-IL12 108 vp B16, MC38, 4T1 cells i.t. PD-1 antibodies [126]
SFV-IL-12 108 B16, TC-1 i.t. CD137 antibodies [127]
SFV-IL12 108 203-glioma cells i.t. / [128]
rSFV10-E-IL12 4 × 109 iu CT26, 4T1 i.t. / [129]
SFV-IL-12 108 vp MC38 i.t. / [130,131]
SFV-IL-12 108 vp HCC i.t. / [132]
SFV-enhIL-12 1.2 ×1010 HCC i.t. / [133]
LSFV-IL12 107-109 Panc-1 i.t. / [134]
SFV-IL-12 2 × 108 vp 4T1 i.t. / [135]
Maraba Virus (MV)
MG1-IL12-ICV 105 CT26 i.p. / [136]
Vesicular stomatitis virus (VSV)
rVSV-IL12 107 SCC i.t. / [137]
rVSV-mIL12-mGMCSF 107 TCID50 B16F10 i.t. / [138]
Sindbis virus (SV)
Sin/IL12 107 ES-2 i.p. / [139]
Sindbis/IL-12 107 ES-2, MOSEC i.p. / [140]
SV.IgGOX40.IL-12 5× 106 TU MOSEC i.p. / [141]
SV.IL12 5× 106 TU CT.26 i.p. OX40 antibodies [142]
Canarypox virus
ALVAC-IL-12 1-4 × 106 TCID50 Metastatic Melanoma i.t. / [143,144]
ALVAC-IL12. 2.5 × 105 TCID50 TS/A i.t. / [145]
Varicella-zoster virus (VZV)
Ellen-ΔORF8-tet-off-scIL12 105 B16F10 i.t. / [146]
Table 6. chemical-based delivery systems.
Table 6. chemical-based delivery systems.
Name Carrier description Cancer Model RoA Combination therapy Ref
chemical-based delivery systems—Polymer-based nanoparticles
PEI:IL-12 polyethylenimine (PEI) osteosarcoma aerosol / [171]
PEI-IL12 PEI-DNA nanoparticles carrying IL12 gene LLC, CT26 i.v. / [172]
mIL-12 polyethylenimine (PEI) osteosarcoma intranasal (i.n.) / [173]
IL-12 ifosfamide (IFX) with or without intranasal polyethylenimine (PEI) LM7 osteosarcoma i.n. ifosfamide [174]
mIL-12 poly[α-(4-aminobutyl)-Lglycolic acid] (PAGA) CT26 i.t. / [175]
p2CMVmlL12 poly-(D,L-lactic-co-glycolic acid) (PLGA) microspheres CT26 s.c. / [176]
pmIL-12 Poly[alpha-(4-aminobutyl)-L-glycolic acid] (PAGA) CT26 i.t. / [177]
4-1BBL and IL-12 mRNA Biodegradable, lipophilic poly (beta-amino ester) (PBAE) nanoparticles E0771, MC38 i.t. PD-1 antibodies [160]
HC/pIL-12/polyMET HC/pIL-12/polyMET micelleplexes LLC i.v. / [161]
HA/pIL-12/DOX-PMet HA/pIL-12/DOX-PMet micelleplexes 4T1 i.v. / [162]
p2CMVmIL-12 water-soluble lipopolymer (WSLP) CT26 i.t. / [178]
p2CMVmIL-12 water soluble lipopolymer (WSLP) 4T1, EMT-6 i.t. paclitaxel [179]
p2CMVmIL-12 water-soluble lipopolymer (WSLP) 4T1 i.t. paclitaxel [180]
p2CMVmIL-12 Water soluble lipopolymers using cholesteryl chloroformate (WSLP) and PEI CT26 i.t. / [181]
IL-12 plasmid puly(N-lnethyldietheneamine sebacate) (PMDS) and cholesterol 4T1 i.t. / [182]
pmIL-12 Mannosylated chitosan CT26 i.t. / [183]
pmIL-12 polyethylenimine covalently modified with methoxypolyethyleneglycol and cholesterol GL261 Intracranial (i.c.) carmustine [184]
pCMV IL-12 Poly (D,L-lactic-co-glycolic) acid (PLGA) (50 : 50) with the cationic lipid 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and the ligand asialofetuin (AF) BNL i.t. / [185]
CPP-IL-12 CaCO3-polydopamine-polyethylenimine (CPP) B16-F10 i.t. / [186]
Nano-IL-12 carboxydimethyl-maleic anhydride (CDM)-modified poly(ethylene glycol)-poly(L-Lysine) (PEG-pLL(CDM)) 4T1 TNBC,
B16F10
i.v. CTLA4 and PD-1 antibodies [187]
TINPs dualtarget PLGA nanoparticles HepG-2 / / [188]
chemical-based delivery systems—LNPs
IL-12-LNP lipid nanoparticle (LNP) HCC i.v. / [168]
IL12 mRNA a novel lipid nanoparticle (LNP) MC38, B16F10, A20 i.t. PD-L1 antibodies [169]
F-PLP/pIL12 an FRα-targeted lipoplex CT26 i.p. / [170]
DAL4-LNP-IL-12 mRNA and IL-27 mRNA ionizable lipid materials containing di-amino groups with various head groups (DALs)-DAL4-LNP B16F10 i.t. / [189]
JCXH-211 lipid nanoparticle-encapsulated self-replicating RNA (srRNA) encoding IL-12 MC38, B16F10, EMT6 i.v.
i.t.
PD-1 antibodies [190]
LNP-Rep(IL-12-alb) lipid nanoparticles (LNP) B16F10, CT26 i.t. PD-1 antibodies [191]
IL-12 mRNA calcium carbonate nanoparticles GL261 i.v. ultrasound [192]
IL12LNP lipid nanoparticles (LNP) HT29 i.t. / [193]
IL-12 circRNA LNP ionizable lipid nanoparticles LLC1 i.t. PD-L1 antibodies [194]
pCMVIL-12 transferrin (Tf)-lipoplexes CT26 i.t. / [195]
DMP/IL-12 Monomethoxy poly (ethylene glycol)–poly (caprolactone) with the DOTAP lipid C26,LL/2 i.p. / [196]
ATRA-cationic liposome/IL-12 pDNA All-trans-retinoic acid (ATRA)-incorporated cationic liposome (ATRA-cationic liposome) colon26 cells i.v. / [197]
Table 7. Bio-derived delivery systems.
Table 7. Bio-derived delivery systems.
Name Source Dose Cancer Model RoA Ref
IL-12-Exo human embryonic kidney cell-derived exosomes 2 × 109 particles LL/2, B16F10, 4T1 Inhal [198]
ITGB1−mscIL12+HN3+Deg EVs HEK293-derived EVs 5 × 1010 particles Hepa1-6-hGPC3 i.v. [199]
Tex MC38/IL12shTGFβ1 MC38-derived particles 2 × 106 Particles MC38 p.t. [200]
exoIL-12 HEK293SF-3F6 100 ng B16F10, MC38, CT26 i.t. [201]
IL-12-encapsulated DEVs (DEV-IL) mature dendritic cells (DEVs) 25 μg GL-261 s.c. [202]
Table 8. Cells-Based Delivery of IL-12 for cancer therapy-DCs.
Table 8. Cells-Based Delivery of IL-12 for cancer therapy-DCs.
Name Cancer Model ROA Ref
DC.RheoIL12 B16 i.t. [208]
DC-mIL-12 B16F10 i.t. [209]
mIL-12 B16 i.t. [210]
DC+IL-12 Melanoma B6 i.t. [211]
DC.IL12 B16 i.t. [212]
gp100+IL12/DCs B16BL6 i.d. [213]
DC/IL-18+IL-12/TAg MC38 p.t. [215]
AdCMVmIL-12 CT26 i.t. [214]
BM-derived DC infected with AdCMVIL-12 CT26, MC38 i.t. [216]
AdIL12/IL18DC CMS4, MethA i.t. [217]
AdIL12DC CMS4 i.t. [218]
mIL-12 TBJ-NB i.t. [219]
DC/IL-12 178-2 BMA i.t. [220]
DC-IL-12 RENCA i.t. [221]
AFIL-12 pancreatic, colorectal, primary liver,
gastrointestinal cancers malignancies
i.t. [222]
Table 9. Cells-Based Delivery of IL-12 for cancer therapy-T cells.
Table 9. Cells-Based Delivery of IL-12 for cancer therapy-T cells.
Name Cancer Model ROA Ref
OT-I-IL-12 B16-OVA,
PANC02-OVA
i.p. [223]
OT1-IL-12 mRNA B16-OVA i.t. [224]
IL-12 + DRIL18 B16-OVA i.t. [225]
IL-12 B16 tumors i.v. [227]
DC101 CAR-Flexi-IL12 B16F10, MCA205, MC17–51, MC38, CT26 i.v. [226]
T cells CAR+iIL-12 CEA-MC38,
CEA+ C15A3
s.c. [228]
mIL12 and mIFNα2 GL-261, CT-2A, SMA-560 i.v. [229]
19mz/IL-12 EL4 i.v. [230]
CAR-IL12 T-cells A20 i.v. [231]
4H11-28z/IL-12 SKOV3 i.p. [232]
GPC3-28Z-NFAT-IL-12 PLC/PRF/5, Huh-7 i.v. [233]
INS-CAR T Raji i.v. [234]
RB-312 HT1080, FaDu i.t. [235]
Table 10. Cells-Based Delivery of IL-12 for cancer therapy-MSCs.
Table 10. Cells-Based Delivery of IL-12 for cancer therapy-MSCs.
Name Cancer Model ROA Ref
MSC/IL-12 B16-F10 i.t. [236]
MSC/IL-12 B16-F10 i.p. [238]
MSC(IL-12) glioblastoma GL26 i.t. [237]
CAd12_PD-L1 MSCs A549, H1650 i.v. [239]
IL-12 MSCs 4T1 s.c. [240]
MSC-AdIL12 Ast11.9-2 / [241]
MSC/IL-12 786-0 i.v [242]
MSCs/IL-12 HCa-I, Hepa 1-6 i.t. [243]
FYD + IL-12 + BMSCs U251 i.v [244]
MB/IL12-MSCs EMT6 i.v [245]
CAR+MSC IL7/IL12 LS174T s.c. [246]
MSCs/IL-12M B16F10 i.t. [247]
UCB-MSC-IL12M GL26 i.t. [248]
Table 11. Cells-Based Delivery of IL-12 for cancer therapy- other cells.
Table 11. Cells-Based Delivery of IL-12 for cancer therapy- other cells.
Name Cancer Model ROA Ref
AdmIL-12 178-2BMA i.t. [250]
G/M//AdmIL-12 178-2BMA i.t. [251]
GD2.CAR(I)IL12 BV-173, CHLA-255 i.v. [252]
B16/mIL-12+mIL-18 B16 s.c. [249]
Neuro2a/IL-12/IL-15 neuroblastoma i.v. [253]
pT-mIL12 and pCMV-m7pB B16/OVA ACT [254]
Table 12. Research progress of IL-12 in clinical trials.
Table 12. Research progress of IL-12 in clinical trials.
Name Tumor type ROA Status NCT Number
rhIL-12 and IL-2 Advanced Solid Tumors i.v.+s.c. Phase I NCT00005604
recombinant IL-12 Primary Peritoneal Cavity Cancer
Recurrent Ovarian Epithelial Cancer
i.p. Phase II NCT00016289
NHS-IL12 Epithelial Neoplasms, Malignant
Epithelial Tumors, Malignant
Malignant Mesenchymal Tumor
s.c. Phase I NCT01417546
NHS-IL12 Advanced HPV Associated Malignancies s.c. Phase I/II NCT04287868
NHS-IL12 Small Bowel and Colorectal Cancers s.c. Phase II NCT04491955
NHS-IL12 Advanced Solid Tumors i.v. Phase Ib NCT02994953
NHS-IL12 Kaposi Sarcoma i.v. Phase I/II NCT04303117
NHS-IL12 Urothelial Cancer
Bladder Cancer
Genitourinary Cancer
Urogenital Cancer
i.v. Phase I NCT04235777
NM-IL-12 Colostomy Stoma s.c. Phase IIa NCT02544061
SON-1010 (IL12-FHAB) Platinum-resistant Ovarian Cancer / Phase 1b/2a NCT05756907
Ad5-yCD/mutTKSR39rep-hIL12 Prostate Cancer i.t. Phase I NCT02555397
Adv/IL-12 Prostate Cancer i.t. Phase I NCT00406939
Ad5-yCD/mutTKSR39rep-hIL12 Metastatic Pancreatic Cancer i.t. Phase I NCT03281382
adenovirus-mediated human interleukin-12 Breast Cancer i.t. Phase I NCT00849459
Ad.hIL-12 Radiorecurrent Prostate Cancer i.p. Phase I NCT00110526
Ad-RTS-hIL-12 Melanoma i.t. Phase I/II NCT01397708
Ad-RTS-hIL-12 Pediatric Brain Tumor
Diffuse Intrinsic Pontine Glioma
i.t. Phase I/II NCT03330197
Ad-RTS-hIL-12 Glioblastoma Multiforme
Anaplastic Oligoastrocytoma
i.t. Phase I NCT02026271
Ad-RTS-hIL-12 Glioblastoma i.t. Phase I NCT03636477
Adv.RSV-hIL12 Breast Cancer
Metastatic Cancer
i.t. Phase I NCT00301106
canarypox-hIL-12 melanoma i.t. Phase I NCT00003556
MEDI9253(Recombinant Newcastle Disease Virus Encoding Interleukin-12) Solid Tumors i.t. Phase I NCT04613492
MEDI9253 + Durvalumab Solid Tumors i.t. Phase I NCT04613492
M032 (a Genetically Engineered HSV-1 Expressing IL-12) Glioblastoma i.t. Phase I/II NCT05084430
hTERT and IL-12 DNA Breast Cancer
Lung Cancer
Pancreatic Cancer
Head and Neck Cancer
Ovarian Cancer
ColoRectal Cancer
Gastric Cancer
Esophageal Cancer
HepatoCellular Carcinoma
i.m. Phase I NCT02960594
IT-pIL12-EP Triple negative breast cancer i.t. Phase I NCT02531425
IL-12p DNA Malignant Melanoma i.t. Phase I NCT00323206
IL-12 DNA Metastatic Cancer i.t. Phase Ib NCT00028652
Interleukin-12 cDNA Colorectal Cancer
Metastatic Cancer
i.t. Phase I NCT00072098
Interleukin-12 Plasmid Merkel Cell Carcinoma i.t. Phase II NCT01440816
INO-3112 (plasmid-encoding interleukin-12/HPV DNA plasmids) and durvalumab Recurrent/Metastatic Human Papilloma Virus Associated Cancers i.m. Phase II NCT03439085
IMNN-001 (IL-12 Plasmid Formulated With PEG-PEI-Cholesterol Lipopolymer) Epithelial Ovarian Cancer
Fallopian Tube Cancer
Primary Peritoneal Cancer
i.p. Phase I NCT02480374
Egen-001 (IL-12 Plasmid Formulated With PEG-PEI-Cholesterol Lipopolymer) Ovarian Clear Cell Cystadenocarcinoma
Ovarian Endometrioid Adenocarcinoma
Ovarian Seromucinous Carcinoma
i.p. Phase I NCT01489371
EGEN-001 (IL-12 Plasmid Formulated With PEG-PEI-Cholesterol Lipopolymer) Fallopian Tube Carcinoma
Primary Peritoneal Carcinoma
Recurrent Ovarian Carcinoma
i.p. Phase II NCT01118052
EGEN-001 and Pegylated Liposomal Doxorubicin Hydrochloride Ovarian Clear Cell Cystadenocarcinoma
Ovarian Endometrioid Adenocarcinoma
Ovarian Seromucinous Carcinoma
Ovarian Serous Cystadenocarcinoma
Ovarian Undifferentiated Carcinoma
Recurrent Fallopian Tube Carcinoma
Recurrent Ovarian Carcinoma
Recurrent Primary Peritoneal Carcinoma
i.p. Phase I NCT01489371
phIL12 GET basal cell carcinomas i.t. Phase I NCT05077033
EGFR-IL12-CART Metastatic Colorectal Cancer / Phase I/II NCT03542799
Interleukin 12-Primed Activated T Cells (12ATC) Melanoma i.v. Phase I NCT00016055
interleukin-12-primed activated T cells (12ATC) Colorectal Cancer
Kidney Cancer
i.v. Phase I NCT00016042
Interleukin-12-Primed Activated T Cells in combination with 5FU, GM-CSF And Interferon Alfa-2b Colorectal Cancer
Kidney Cancer
i.v. Phase I/II NCT00030342
EGFRt/​19-28z/​IL-12 CAR T Cells Hematologic Malignancies i.v. Phase I NCT06343376
CAR-T Cells (IL7 and CCL19 or / and IL12) Targeting Nectin4/FAP Nectin4-positive Advanced Malignant Solid Tumor i.t. Phase I NCT03932565
T-Cell Membrane-Anchored Tumor Targeted Il12 (Attil12) Soft Tissue Sarcoma
Bone Sarcoma
i.v. Phase 1 NCT05621668
IL-12 gene-transduced TIL Melanoma i.v. Phase I/II NCT01236573
Dendritic and Glioma Cells Fusion Vaccine With IL-12 Glioblastoma i.d. phase I/II NCT04388033
anti-ESO-1/IL-12 white blood cells Metastatic Melanoma
Metastatic Renal Cancer
i.v. Phase I/II NCT01457131
bacTRL-IL-12 Treatment-refractory Solid Tumours i.v. Phase I NCT04025307
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated