Submitted:
30 September 2024
Posted:
03 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Herbicidal Activity of the EOs against Target Weeds
2.1.1. Pre-Emergence Assay
2.1.2. Post-Emergence Assay
2.3. Phytotoxic activity of EOs on Arabidopsis thaliana
3. Discussion
4. Materials and Methods
4.1. Plant material and EOs Extraction and Characterization
4.2. Bioherbicidal Activity of the EOs against Target Weeds
4.2.1. Pre-emergence assay
4.2.2. Post-Emergence Assay
4.3. Phytotoxic Activity of EOs on Arabidopsis thaliana (L.) Heynh
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oyekunle, J.A.O.; Adekunle, A.S.; Adewole, A.M. Determination of organochlorine pesticide residues in some evaporated milk samples in Nigeria using gas chromatography-mass spectrometry. Chem. Afr. 2021, 4, 349–366. [Google Scholar] [CrossRef]
- Fahed, C.; Hayar, S. Conventional vs. organic cucumber production in Lebanon: Risk assessment of the recommended agrochemicals on consumer health and the environment. Chem. Afr, 4. [CrossRef]
- Oliveira, A.F.; Costa Junior, L.M.; Lima, A.S.; Silva, C.R.; Ribeiro, M.N.S.; Mesquista, J.W.C.; Rocha, C.Q.; Tangerina, M.M.P.; Vilegas, W. Anthelmintic activity of plant extracts from Brazilian savanna. Vet. Parasitol. 2017, 236, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Fried, G.; Chauvel, B.; Reynaud, P.; Sache, I. Decreases in crop production by non-native weeds, pests and pathogens. In Impact of Biological Invasions on Ecosystem Services; Vilà, M., Hulme, P.E., Eds.; Springer: Cham, Switzerland, 2017; pp. 83–101. [Google Scholar]
- Byron, M.; Treadwell, D.; Dittmar, P. Weeds as reservoirs of plant pathogens affecting economically important crops. EDIS 2019, 5, 7–7. [Google Scholar] [CrossRef]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295(30), 10307–10330. [Google Scholar] [CrossRef]
- Cordeau, S.; Triolet, M.; Wayman, S.; Steinberg, C.; Guillemin, J.P. Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Prot. 2016, 87, 44–49. [Google Scholar] [CrossRef]
- Olson, S. An analysis of the biopesticide market now and where it is going. Outlooks Pest. Manag. 2015, 26, 203–206. [Google Scholar] [CrossRef]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef]
- De Souza Barros, V.M.; Pedrosa, J.L.F.; Gonçalves, D.R.; de Medeiros, F.C.L.; Carvalho, G.R.; Gonçalves, A.H.; Teixeira, P.V.V.Q. Herbicides of biological origin: A review. J. Hortic. Sci. Biotechnol. 2021, 96, 288–296. [Google Scholar] [CrossRef]
- Vurro, M.; Boari, A.; Casella, F.; Zonno, M.C. Fungal phytotoxins in sustainable weed management. Curr. Med. Chem. 2018, 25, 268–286. [Google Scholar] [CrossRef]
- Palanivel, H.; Tilaye, G.; Belliathan, S.K.; Benor, S.; Abera, S.; Kamaraj, M. Allelochemicals as natural herbicides for sustainable agriculture to promote a cleaner environment. In strategies and tools for pollutant mitigation; Aravind, J., Kamaraj, M., Prashanthi Devi, M., Rajakumar, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 93–116. [Google Scholar]
- Hierro, J.L.; Callaway, R.M. The ecological importance of allelopathy. Annu. Rev. Ecol. Evol. Syst. 2021, 52, 25–45. [Google Scholar] [CrossRef]
- Araniti, F.; Mancuso, R.; Lupini, A.; Giofre, S.V.; Sunseri, F.; Gabriele, B.; Abenavoli, M. R. Phytotoxic potential and biological activity of three synthetic coumarin derivatives as new natural-like herbicides. Molecules 2015, 20(10), 17883–17902. [Google Scholar] [CrossRef]
- Berestetskiy, A. Modern approaches for the development of new herbicides based on natural compounds. Plants 2023, 12(2), 234. [Google Scholar] [CrossRef]
- Verdeguer, M.; Sanchez-Moreiras, A.M.; Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 9, 1–48. [CrossRef] [PubMed]
- Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of essential oils: opportunities and constraints for the development of biopesticides. A review. Foods 2020, 9(9), 1291. [Google Scholar] [CrossRef] [PubMed]
- Pouresmaeil, M.; Nojadeh, M. S.; Movafeghi, A.; Maggi, F. Exploring the bio-control efficacy of Artemisia fragrans essential oil on the perennial weed Convolvulus arvensis: Inhibitory effects on the photosynthetic machinery and induction of oxidative stress. Ind. Crops Prod. 2020, 155, 112785. [Google Scholar] [CrossRef]
- Araniti, F.; Graña, E.; Krasuska, U.; Bogatek, R.; Reigosa, M.J.; Abenavoli, M.R.; Sanchez-Moreiras, A.M. Loss of gravitropism in farnesene-treated Arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance. PloS one 2016, 11(8), e0160202. [Google Scholar] [CrossRef]
- Trindade, H.; Pedro, L. G.; Figueiredo, A. C.; Barroso, J. G. Chemotypes and terpene synthase genes in Thymus genus: State of the art. Ind. Crops Prod. 2018, 124, 530–547. [Google Scholar] [CrossRef]
- Kong, Q.; Zhou, L.; Wang, X.; Luo, S.; Li, J.; Xiao, H.; Zhang, X.; Xiang, T.; Feng, S.; Chen, T.; Yuan, M. Chemical composition and allelopathic effect of essential oil of Litsea pungens. Agronomy 2021, 11(6), 1115. [Google Scholar] [CrossRef]
- Casella, F.; Vurro, M.; Valerio, F.; Perrino, E.V.; Mezzapesa, G.N.; Boari, A. Phytotoxic effects of essential oils from six Lamiaceae species. Agronomy 2023, 13(1), 257. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Guo, C.; Chen, Q.; Zhao, T.; Chen, X.; Du, Y.; Du, H.; Miao, Y.; Liu, D. Artemisia argyi essential oil exerts herbicidal activity by inhibiting photosynthesis and causing oxidative damage. Ind. Crops Prod. 2023, 194, 116258. [Google Scholar] [CrossRef]
- Miloudi, S.; Abbad, I.; Soulaimani, B.; Ferradous, A.; Abbad, A. Optimization of herbicidal activity of essential oil mixtures from Satureja alpina, Thymus satureioides and Myrtus communis on seed germination and post-emergence growth of Amaranthus retroflexus L. Crop Prot. 2024, 106642. [Google Scholar] [CrossRef]
- Vargas, P. The Mediterranean floristic region: high diversity of plants and vegetation types. In: Goldestein M.I. and Dellasala D.A. (eds). Encyclopedia of the World's Biomes. Netherlands: Elsevier Science, 2020, pp. 602-616.
- Díaz-Tielas, C.; Graña, E.; Sotelo, T.; Reigosa, M.J.; Sánchez-Moreiras, A.M. The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant. Cell Environ. 2012, 35, 1500–1517. [Google Scholar] [CrossRef] [PubMed]
- Benchaa, S.; Hazzit, M.; Zermane, N.; Abdelkrim, H. Chemical composition and herbicidal activity of essential oils from two Labiatae species from Algeria. J Essent. Oil Res. 2019, 31(4), 335–346. [Google Scholar] [CrossRef]
- Saleh, I.; Abd-ElGawad, A.; El Gendy, A.N.; Aty, A.A.; Mohamed, T.; Kassem, H.; Aldorsi, F.; Elshamy, A.; Hegazy, M.E.F. Phytotoxic and antimicrobial activities of Teucrium polium and Thymus decussatus essential oils extracted using hydrodistillation and microwave-assisted techniques. Plants 2020, 9, 716. [Google Scholar] [CrossRef]
- Ghasemi, G.; Alirezalu, A.; Ghosta, Y.; Jarrahi, A.; Safavi, S.A.; Abbas-Mohammadi, M.; Barba, F.J.; Munekata, P.E.; Domínguez, R.; Lorenzo, J.M. Composition, antifungal, phytotoxic, and insecticidal activities of Thymus kotschyanus essential oil. Molecules 2020, 25(5), 1152. [Google Scholar] [CrossRef]
- Portuguez-García, M.P.; Agüero-Alvarado, R.; González-Lutz, M.I. Herbicidal activity of three natural products on four weed species. Agronomía Mesoamericana.
- Zhou, S.; Han, C.; Zhang, C.; Kuchkarova, N.; Wei, C.; Zhang, C.; Shao, H. Allelopathic, phytotoxic, and insecticidal effects of Thymus proximus Serg. essential oil and its major constituents. Front. Plant Sci. 2021, 12, 689875. [Google Scholar] [CrossRef]
- Vaiciulyte, V.; Loziene, K.; Svediene, J.; Raudoniene, V.; Paskevicius, A. α-Terpinyl acetate: occurrence in essential oils bearing Thymus pulegioides, phytotoxicity, and antimicrobial effects. Molecules 2021, 26, 26,1065–1571. [Google Scholar] [CrossRef]
- Elghobashy, R.M.; El-Darier, S.M.; Atia, A.M.; Zakaria, M. Allelopathic potential of aqueous extracts and essential Oils of Rosmarinus officinalis L. and Thymus vulgaris L. J. Soil Sci. Plant Nutr. 2024, 24(1), 700–715. [Google Scholar] [CrossRef]
- Qian, H.; Xu, X.; Chen, W.; Jiang, H.; Jin, Y.; Liu, W.; Fu, Z. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere. [CrossRef]
- Silva, V.S.; Cândido, A.C.S.; Muller, C.; Laura, V.A.; Faccenda, O.; Hess, S.E.S.C.; Peres, M.T.L.P. Potencial ftotóxico de Dicranopteris fexuosa (Schrad.) Underw. (Gleicheniaceae). Acta. Bot. Bras.
- De Oliveira Roberto, C.E.; Pinheiro, P.F.; de Assis Alves, T.; da Silva, J.A.; Praça-Fontes, M.M.; Soares, T.C.B. Phytogenotoxicity of thymol and semisynthetic thymoxyacetic acid in pre/post emergence of model plants and weeds. Environ. Sci. Pol. Res. 2023, 30(13), 38955–38969. [Google Scholar] [CrossRef]
- Hasan, M.; Mokhtar, A.S.; Mahmud, K.; Berahim, Z.; Rosli, A.M.; Hamdan, H.; Motmainna, M.; Ahmad-Hamdani, M.S. Physiological and biochemical responses of selected weed and crop species to the plant-based bioherbicide WeedLock. Sci. Rep. 2022, 12(1), 19602. [Google Scholar] [CrossRef]
- Amri, I.; Hamrouni, L.; Hanana, M.; Gargouri, S.; Fezzani, T.; Jamoussi, B. Chemical composition, physico-chemical properties, antifungal and herbicidal activities of Pinus halepensis Miller essential oils. Bio. Agri. Hort. 2013, 29(2), 91–106. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Rodríguez-Serrano, M.; Corpas, F.J.; Gomez, M.D.; Del Río, L.A.; Sandalio, L.M. Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ. 2004, 27, 1122–1134. [Google Scholar] [CrossRef]
- Silva, E.R.; Lazarotto, D.C.; Schwambach, J.; Overbeck, G.E.; Soares, G.L.G. Phytotoxic effects of extract and essential oil of Eucalyptus saligna (Myrtaceae) leaf litter on grassland species. Austr. J. Bot. 2017, 65, 172–182. [Google Scholar] [CrossRef]
- Bruxel, F.; Schneider, C.E.; Gastmann, J.; Orlandi, C.R.; Gastmann, R.; Hoehne, L.; Soares, G.L.G.; Ethur, E.M.; Sperotto, R.A.; de Freitas, E.M. Phytotoxicity of Hesperozygis ringens (Benth.) Epling essential oil on Eragrostis plana Nees. Flora. [CrossRef]
- Omezzine, F.; Rinez, A.; Ladhari, A.; Farooq, M.; Haouala, R. Allelopathic potential of Inula viscosa against crops and weeds. Inter. J. Agri. Bio. 2011, 13(6), 841–849. [Google Scholar]
- Tuyen, P.T.; Xuan, T.D.; Tu Anh, T.T.; Mai Van, T.; Ahmad, A.; Elzaawely, A.A.; Khanh, T.D. Weed suppressing potential and isolation of potent plant growth inhibitors from Castanea crenata Sieb. et Zucc. Molecules 2018, 23(2), 345. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Krutovsky, K.V. ; Shestibratov; K.A. …Fell upas sits; the hydra-tree of death; or the phytotoxicity of trees. Molecules, 1636. [Google Scholar] [CrossRef]
- Jmii, G.; Molinillo, J. M.; Zorrilla, J. G.; Haouala, R. Allelopathic activity of Thapsia garganica L. leaves on lettuce and weeds; and identification of the active principles. S. Afr. J. Bot. [CrossRef]
- Rial, C.; Gómez, E.; Varela, R.M.; Molinillo, J. M.; Macías, F.A. Ecological relevance of the major allelochemicals in Lycopersicon esculentum roots and exudates. J. Agri. Food Chem. 2018, 66(18), 4638–4644. [Google Scholar] [CrossRef]
- Jouini, A.; Verdeguer, M.; Pinton, S.; Araniti, F.; Palazzolo, E.; Badalucco, L.; Laudicina, V. A. Potential effects of essential oils extracted from Mediterranean aromatic plants on target weeds and soil microorganisms. Plants 2020, 9(10), 1289. [Google Scholar] [CrossRef]
- Heap, I. The international survey of herbicide resistant weeds. https://www.weedscience.org/Pages/Species.aspx 2024. (accessed: ). 30 June.
- Matzrafi, M.; Preston, C.; Brunharo, C. A. Evolutionary drivers of agricultural adaptation in Lolium spp. Pest Manag. Sci. 2021, 77(5), 2209–2218. [Google Scholar] [CrossRef]
- Neve, P.; Powles, S. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity. [CrossRef]
- Amri, I.; Khammassi, M.; Ben Ayed, R. ; Khedhri; S.; Mansour, M.; Ben Kochti, O.; Pieracci, Y.; Flamini, G.; Mabrouk, Y.; Gargouri, S.; Hanana, M.; Hamrouni, L. Essential oils and biological activities of Eucalyptus falcata.; E. sideroxylon and E. citriodora growing in Tunisia. Plants. [CrossRef]
- Somala, N.; Laosinwattana, C.; Teerarak, M. Formulation process; physical stability and herbicidal activities of Cymbopogon nardus essential oil-based nanoemulsion. Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Amato, G.; Caputo, L.; Francolino, R.; Martino, M.; Feo, V.; De Martino, L. Origanum heracleoticum essential oils: chemical composition; phytotoxic and Alpha amylase inhibitory activities. Plants 2023, 12, 866. [Google Scholar] [CrossRef]
- De Assis Alves, T.; Pinheiro, P.F.; Praça-Fontes, M.M.; Andrade-Vieira, L.F.; Corrêa, K.B.; de Assis Alves, T.; da Cruz, F.A.; Lacerda Júnior, V.; Ferreira, A.; Soares, T.C.B. Toxicity of thymol; carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Ind. Crops Prod. 2018, 114, 59–67. [Google Scholar] [CrossRef]
- Bozhuyuk, A.U. Herbicidal activity and chemical composition of two essential oils on seed germinations and seedling growths of three weed species. J. Essent. Oil Bearing Plants 2020, 23, 821–831. [Google Scholar] [CrossRef]
- Khammassi, M.; Polito, F.; Kochti, O.; Kouki, H.; Souihi, M.; Khedhri, S.; Hamrouni, L.; Mabrouk, Y.; Amri, I.; De Feo, V. Investigation on chemical composition; antioxidant; antifungal and herbicidal activities of volatile constituents from Deverra tortuosa (desf.). Plants, 2556. [Google Scholar] [CrossRef]
- Xianfei, X.; Xiaoqiang, C.; Shunying, Z.; Guolin, Z. Chemical composition; and antimicrobial activity of essential oils of Chaenomeles speciosa from China. Food Chem. 2007, 100, 1312–1315. [Google Scholar] [CrossRef]
- Lins, L.; Dal Maso, S.; Foncoux, B.; Kamili, A.; Laurin, Y.; Genva, M.; Jijakli, M.H.; De Clerck, C.; Fauconnier, M.L.; Deleu, M. Insights into the relationships between herbicide activities; molecular structure and membrane interaction of cinnamon and citronella essential oils components. Int. J. Mol. Sci. 2019, 20, 4007. [Google Scholar] [CrossRef]
- Verdeguer, M.; Torres-Pagan, N.; Muñoz, M.; Jouini, A.; García-Plasencia, S.; Chinchilla, P.; Berbegal, M.; Salamone, A.; Agnello, S.; Carrubba, A.; Cabeiras-Freijanes, L. Herbicidal activity of Thymbra capitata (L.) Cav. essential oil. Molecules, 2832. [Google Scholar] [CrossRef]
- Blume, Y.B.; Krasylenko, Y.A.; Yemets, A.I. Effects of phytohormones on the cytoskeleton of the plant cell. Russ. J. Plant. Physiol. 2012, 59, 515–529. [Google Scholar] [CrossRef]
- López-González, D.; Costas-Gil, A.; Reigosa, M.J.; Araniti, F.; Sánchez-Moreiras, A.M. A natural indole alkaloid; norharmane; affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant. Physiol. Biochem. 2020, 151, 378–390. [Google Scholar] [CrossRef]
- Lakehal, A.; Bellini, C. Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiol. Plantarum 2019, 165, 90–100. [Google Scholar] [CrossRef]
- Lewis, D.R.; Negi, S.; Sukumar, P.; Muday, G.K. Ethylene inhibits lateral root development; increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development, 3485. [Google Scholar] [CrossRef]
- Ivanchenko, M.G.; Muday, G.K.; Dubrovsky, J.G. Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J. 2008, 55(2), 335–47. [Google Scholar] [CrossRef]
- Swarup, R.; Parry, G.; Graham, N.; Allen, T.; Bennett, M. Auxin cross-talk: integration of signalling pathways to control plant development. Auxin Molecular Biology: Springer. 2002 p. 411–26.
- Alonso, J.M.; Stepanova, A.N.; Solano, R.; Wisman, E.; Ferrari, S.; Ausubel, F.M.; Ecker, J.R. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proceed. Nat. Acad. Sci. 2003, 100(5), 2992–2997. [Google Scholar] [CrossRef]
- Ellis, J.R.; Taylor, R.; Hussey, P.J. Molecular modeling indicates that two chemically distinct classes of anti-mitotic herbicide bind to the same receptor site (s). Plant Physio. 1994, 105(1), 15–18. [Google Scholar] [CrossRef]
- Boukhalfa, R.; Ruta, C.; Messgo-Moumene, S.; Calabrese, G.J.; Argentieri, M.P.; De Mastro, G. Valorization of Mediterranean species of thyme for the formulation of bio-herbicides. Agronomy 2024, 14(9), 2077. [Google Scholar] [CrossRef]
- Abd-El Gawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharth, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic effects of plant essential oils: A systematic review and structure-activity relationship based on chemometric analyses. Plants. [CrossRef]
- Islam, A.M.; Kato-Noguchi, H. Phytotoxic activity of Ocimum tenuiflorum extracts on germination and seedling growth of different plant species. Sci. World J. 2014, 2014(1), 676242. [Google Scholar] [CrossRef] [PubMed]
- El Mahdi, J.; Tarraf, W.; Ruta, C.; Piscitelli, L.; Aly, A.; De Mastro, G. Bio-herbicidal potential of the essential oils from different Rosmarinus officinalis L. chemotypes in laboratory assays. Agronomy 2020, 10(6), 775. [Google Scholar] [CrossRef]
- Shedden, K. Generalized Linear Models; Creative Commons Attribution Share Alike 3.0 License; Department of Statistics, University of Michigan: Ann Arbor, MI, USA, 2015; 35p. [Google Scholar]






| N° | Compound | KI1 | KI2 | T1 | T2 | T3 | T4 |
|---|---|---|---|---|---|---|---|
| 01 | santolina triene | 908 | 910 | 0.36 | -- | -- | -- |
| 02 | trycyclene | 926 | 924 | 0.47 | -- | -- | -- |
| 03 | α-thujene | 926 | 924 | -- | 0.20 | 0.48 | 0.66 |
| 04 | α-pinene | 936 | 940 | 19.73 | 0.21 | 1.03 | 1.15 |
| 05 | camphene | 954 | 950 | 8.64 | 0.29 | 0.88 | 0.93 |
| 06 | verbenene | 967 | 968 | 0.34 | -- | 0.05 | -- |
| 07 | sabinene | 975 | 975 | 0.87 | 0.05 | -- | -- |
| 08 | β-pinene | 979 | 980 | 4.37 | 0.14 | 0.21 | -- |
| 09 | myrcene | 991 | 992 | 2.77 | 0.36 | 0.52 | 1.35 |
| 10 | α-terpinene | 1017 | 1012 | 0.25 | 0.05 | 0.13 | 0.24 |
| 11 | p-cymene | 1022 | 1021 | 0.30 | 0.13 | 35.63 | 23.85 |
| 12 | limonene | 1029 | 1026 | 1.95 | 1.36 | 0.79 | 1.33 |
| 13 | 1,8 cineole | 1031 | 1028 | 2.99 | 0.16 | 3.53 | 3.30 |
| 14 | β(E)- ocymene | 1050 | 1047 | 1.17 | 0.07 | -- | -- |
| 15 | γ-terpinene | 1059 | 1058 | 0.54 | 0.98 | 2.35 | 10.36 |
| 16 | cis-sabinene hydrate | 1070 | 1067 | 0.45 | 0.10 | -- | -- |
| 17 | terpinolene | 1088 | 1088 | 0.47 | -- | 0.48 | 0.17 |
| 18 | linalool | 1096 | 1103 | 3.09 | 93.06 | 2.57 | 2.54 |
| 19 | 1-octen-3γlacetate | 1110 | 1116 | 0.43 | -- | -- | -- |
| 20 | α-campholenal | 1125 | 1125 | 0.99 | -- | -- | -- |
| 21 | camphor | 1143 | 1142 | 4.32 | 0.38 | 1.66 | 1.20 |
| 22 | trans-verbenol | 1144 | 1145 | 2.61 | -- | -- | -- |
| 23 | pinocarvone | 1162 | 1158 | 0.56 | -- | -- | -- |
| 24 | borneol | 1165 | 1166 | 11.31 | -- | 1.47 | 1.22 |
| 25 | ρ-mentha-1,5 dien-8-ol | 1170 | 1174 | 1.72 | -- | 1.76 | 1.65 |
| 26 | terpin-4-ol | 1177 | 1182 | 0.76 | -- | -- | -- |
| 27 | α-terpineol | 1189 | 1187 | 0.96 | -- | -- | -- |
| 28 | myrtenal | 1193 | 1190 | 0.90 | -- | -- | -- |
| 29 | verbenone | 1204 | 1215 | 0.73 | -- | -- | -- |
| 30 | isobonyl formate | 1233 | 1243 | 0.33 | -- | -- | -- |
| 31 | thymol methyl ester | 1235 | 1234 | -- | -- | 1.97 | 1.48 |
| 32 | linalool acetate | 1257 | 1262 | 3.96 | -- | -- | -- |
| 33 | isobornyl acetate | 1285 | 1289 | 5.28 | -- | -- | -- |
| 34 | thymol | 1290 | 1293 | -- | 0.55 | 20.35 | 21.77 |
| 35 | carvacrol | 1298 | 1300 | -- | -- | 11,76 | 18.15 |
| 36 | trans-carvyl acetate | 1328 | 1337 | 0.11 | -- | -- | -- |
| 37 | α-terpenyl acetate | 1350 | 1353 | 13.21 | -- | -- | -- |
| 38 | α-copaene | 1376 | 1370 | 0.49 | -- | -- | -- |
| 39 | β-bourbonene | 1384 | 1376 | 0.22 | -- | -- | -- |
| 40 | β-cedrene | 1418 | 1404 | 0.51 | 1.98 | 7.69 | 6.56 |
| 41 | germacrene | 1480 | 1475 | 1.58 | -- | -- | -- |
| 42 | Δ-cadinene | 1524 | 1530 | 0.26 | -- | -- | -- |
| 43 | caryophyllene oxide | 1581 | 1573 | -- | -- | 5.57 | 2.09 |
| Monoterpene hydrocarbons | 42.23 | 3.77 | 42.85 | 40.04 | |||
| Oxygen-containing monoterpenes | 54.71 | 94.18 | 43.89 | 51.31 | |||
| Sesquiterpene hydrocarbons | 3.06 | 1.98 | 7.69 | 6.56 | |||
| Oxygen-containing sesquiterpenes | - | - | 5.57 | 2.09 | |||
| Others | - | - | - | - | |||
| KI: Kovats index; 1: literature; 2: calculated | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
