Submitted:
02 October 2024
Posted:
03 October 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction
Purging Strategy
Blood Cancer Elimination Strategy
Conclusion
Funding
Conflicts of Interest
References
- Malard, F.; Holler, E.; Sandmaier, B.M.; et al. Acute graft-versus-host disease. Nat Rev Dis Primers 2023, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Crees, Z.D.; Rettig, M.P.; Jayasinghe, R.G.; et al. Motixafortide and G-CSF to mobilize hematopoietic stem cells for autologous transplantation in multiple myeloma: a randomized phase 3 trial. Nat Med 2023, 29, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Ishitsuka, K.; Nishikii, H.; Kimura, T.; et al. Purging myeloma cell contaminants and simultaneous expansion of peripheral blood-mobilized stem cells. Experimental Hematology 2024, 131, 104138. [Google Scholar] [CrossRef]
- Landau, D.A.; Carter, S.L.; Getz, G.; et al. Clonal evolution in hematologic malignancies and therapeutic implications. Leukemia 2014, 28, 34–43. [Google Scholar] [CrossRef]
- Renteln, M. Conditional replication of oncolytic viruses based on detection of oncogenic mRNA. Gene Ther 2018, 25, 1–3. [Google Scholar] [CrossRef]
- Renteln, M.A. Promoting Oncolytic Vector Replication with Switches that Detect Ubiquitous Mutations. CCTR 2024, 20, 40–52. [Google Scholar] [CrossRef]
- Renteln, M. Targeting Clonal Mutations with Synthetic Microbes. 2024. [CrossRef]
- Wang, H.; Georgakopoulou, A.; Zhang, W.; et al. HDAd6/35++ - A new helper-dependent adenovirus vector platform for in vivo transduction of hematopoietic stem cells. Mol Ther Methods Clin Dev 2023, 29, 213–226. [Google Scholar] [CrossRef]
- Bozza, M.; Green, E.W.; Espinet, E.; et al. Novel Non-integrating DNA Nano-S/MAR Vectors Restore Gene Function in Isogenic Patient-Derived Pancreatic Tumor Models. Molecular Therapy - Methods & Clinical Development 2020, 17, 957–968. [Google Scholar] [CrossRef]
- Garaudé, S.; Marone, R.; Lepore, R.; et al. Selective haematological cancer eradication with preserved haematopoiesis. Nature 2024, 630, 728–735. [Google Scholar] [CrossRef]
- Dever, D.P.; Bak, R.O.; Reinisch, A.; et al. CRISPR/Cas9 Beta-globin Gene Targeting in Human Hematopoietic Stem Cells. Nature 2016, 539, 384–389. [Google Scholar] [CrossRef]
- Haltalli, M.L.R.; Wilkinson, A.C.; Rodriguez-Fraticelli, A.; et al. Hematopoietic stem cell gene editing and expansion: State-of-the-art technologies and recent applications. Experimental Hematology 2022, 107, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Meaker, G.A.; Wilkinson, A.C. Ex vivo hematopoietic stem cell expansion technologies: recent progress, applications, and open questions. Experimental Hematology 2024, 130. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, P.L.; Harada, T.; Christian, D.A.; et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Milani, M.; Annoni, A.; Moalli, F.; et al. Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Science Translational Medicine 2019, 11, eaav7325. [Google Scholar] [CrossRef] [PubMed]
- Ferdosi, S.R.; Ewaisha, R.; Moghadam, F.; et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 2019, 10, 1842. [Google Scholar] [CrossRef]
- Hoyng, S.A.; Gnavi, S.; de Winter, F.; et al. Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve. Gene Ther 2014, 21, 549–557. [Google Scholar] [CrossRef]
- Wang, X.; Cabrera, F.G.; Sharp, K.L.; et al. Engineering Tolerance toward Allogeneic CAR-T Cells by Regulation of MHC Surface Expression with Human Herpes Virus-8 Proteins. Molecular Therapy 2021, 29, 718–733. [Google Scholar] [CrossRef]
- Willis, J.C.W.; Silva-Pinheiro, P.; Widdup, L.; et al. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat Commun 2022, 13, 7204. [Google Scholar] [CrossRef]
- Fauser, F.; Kadam, B.N.; Arangundy-Franklin, S.; et al. Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells. Nat Commun 2024, 15, 1181. [Google Scholar] [CrossRef]
- Luo, L.; Jea, J.D.-Y.; Wang, Y.; et al. Control of mammalian gene expression by modulation of polyA signal cleavage at 5′ UTR. Nat Biotechnol 2024, 1–13. [Google Scholar] [CrossRef]
- Kaseniit, K.E.; Katz, N.; Kolber, N.S.; et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat Biotechnol 2023, 41, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Gayet, R.V.; Ilia, K.; Razavi, S.; et al. Autocatalytic base editing for RNA-responsive translational control. Nat Commun 2023, 14, 1339. [Google Scholar] [CrossRef] [PubMed]
- Adamala, K.P.; Martin-Alarcon, D.A.; Boyden, E.S. Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci USA 2016, 113, E2579–E2588. [Google Scholar] [CrossRef] [PubMed]
- Wellhausen, N.; O’Connell, R.P.; Lesch, S.; et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci Transl Med 2023, 15, eadi1145. [Google Scholar] [CrossRef]
- Casirati, G.; Cosentino, A.; Mucci, A.; et al. Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature 2023, 621, 404–414. [Google Scholar] [CrossRef]
- Jo, S.; Das, S.; Williams, A.; et al. Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nat Commun 2022, 13, 3453. [Google Scholar] [CrossRef]
- Stavrou, M.; Philip, B.; Traynor-White, C.; et al. A Rapamycin-Activated Caspase 9-Based Suicide Gene. Mol Ther 2018, 26, 1266–1276. [Google Scholar] [CrossRef]
- Hayal, T.B.; Wu, C.; Abraham, D.; et al. The Impact of CD45-Antibody-Drug Conjugate Conditioning on Clonal Dynamics and Immune Tolerance Post HSPC Transplantation in Rhesus Macaques. Blood 2023, 142, 3419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).