Submitted:
06 October 2024
Posted:
07 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Biological Functions of Disordered Peptides
3. Synthesis of IDPols for Biomedical Applications using Disordered Peptides Containing Disorder-Promoting Residues
3.1. Modification of the Chain Extender with a Disorder-Promoting Oligopeptide
3.2. Synthesis of the Prepolymer and Polymer
4. Characterization and Production of IDPols
5. Computational Approaches
6. Conclusions
Author Contributions
Funding
References
- Dunker, A.K.; Lawson, J.D.; Brown, C.J.; Williams, R.M.; Romero, P.; Oh, J.S.; Oldfield, C.J.; Campen, A.M.; Ratliff, C.M.; Hipps, K.W.; Ausio, J.; Nissen, M.S.; Reeves, R.; Kang, C.; Kissinger, C.R.; Bailey, R.W.; Griswold, M.D.; Chiu, W.; Garner, E.C.; Obradovic, Z. ; Intrinsically disordered protein, J Mol Graph Model 2001, 19, 26–59. [CrossRef]
- Coskuner-Weber, O.; Mirzanli, O.; Uversky, V.N. , Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases, Biophys Rev 2022, 14, 679–707. [CrossRef]
- Coskuner, O.; Uversky, V.N. , Intrinsically disordered proteins in various hypotheses on the pathogenesis of Alzheimer’s and Parkinson’s diseases, in: Progress in Molecular Biology and Translational Science, Elsevier, 2019: pp. 145–223. [CrossRef]
- Coskuner, O.; Murray, I.V.J. , Adenosine Triphosphate (ATP) Reduces Amyloid-β Protein Misfolding in vitro, JAD 2014, 41, 561–574. [CrossRef]
- Wright, P.E.; Dyson, H.J. , Intrinsically disordered proteins in cellular signalling and regulation, Nat Rev Mol Cell Biol 2015, 16, 18–29. [CrossRef]
- Darling, A.L.; Uversky, V.N. , Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter, Frontiers in Genetics 2018, 9, 158. 9. [CrossRef]
- Coskuner-Weber, O.; Uversky, V. , Insights into the Molecular Mechanisms of Alzheimer’s and Parkinson’s Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology, IJMS 2018, 19, 336. [CrossRef]
- Uversky, V.N. , Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators, Front Mol Biosci 2014, 1, 6. 1. [CrossRef]
- Ruan, H.; Sun, Q.; Zhang, W.; Liu, Y.; Lai, L. , Targeting intrinsically disordered proteins at the edge of chaos, Drug Discovery Today 2019, 24, 217–227. [CrossRef]
- He, B.; Wang, K.; Liu, Y.; Xue, B.; Uversky, V.N.; Dunker, A.K. , Predicting intrinsic disorder in proteins: an overview, Cell Res 2009, 19, 929–949. [CrossRef]
- Theillet, F.-X.; Kalmar, L.; Tompa, P.; Han, K.-H.; Selenko, P.; Dunker, A.K.; Daughdrill, G.W.; Uversky, V.N. , The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins, Intrinsically Disord Proteins 1 (2013) e24360. [CrossRef]
- Uversky, V.N. , The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins, Intrinsically Disord Proteins 1 (2013) e24684. [CrossRef]
- Coskuner, O.; Wise-Scira, O. , Arginine and Disordered Amyloid-β Peptide Structures: Molecular Level Insights into the Toxicity in Alzheimer’s Disease, ACS Chem. Neurosci. 2013, 4, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Yuce-Erarslan, E.; Domb, J.; Kasem, H.; Uversky, V.N.; Coskuner-Weber, O. , Intrinsically Disordered Synthetic Polymers in Biomedical Applications, Polymers 2023, 15, 2406. [CrossRef]
- Coskuner-Weber, O.; Yuce-Erarslan, E.; Uversky, V.N. , Paving the Way for Synthetic Intrinsically Disordered Polymers for Soft Robotics, Polymers 2023, 15, 763. [CrossRef]
- Bhatia, S. , Nanotechnology in Drug Delivery, 0 ed., Apple Academic Press, 2017. [CrossRef]
- Juanes-Gusano, D.; Santos, M.; Reboto, V.; Alonso, M.; Rodríguez-Cabello, J.C. , Self-assembling systems comprising intrinsically disordered protein polymers like elastin-like recombinamers, J Pep Sci 28 (2022). [CrossRef]
- MacEwan, S.R.; Chilkoti, A. , Applications of elastin-like polypeptides in drug delivery, Journal of Controlled Release 2014, 190, 314–330. [CrossRef]
- Jose, G.; Shalumon, K.T.; Chen, J.-P. , Natural Polymers Based Hydrogels for Cell Culture Applications, CMC 2020, 27, 2734–2776. [CrossRef]
- Sarangthem, V.; Singh, T.D.; Dinda, A.K. , Emerging Role of Elastin-Like Polypeptides in Regenerative Medicine, Advances in Wound Care 2021, 10, 257–269. [CrossRef]
- Wang, B.; Patkar, S.S.; Kiick, K.L. , Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials, Macromol. Biosci. 2021, 21, 2100129. [Google Scholar] [CrossRef]
- Pasinszki, T.; Krebsz, M.; Tung, T.T.; Losic, D. , Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis, Sensors 2017, 17, 1919. [CrossRef]
- Psoma, S.D.; Kanthou, C. , Wearable Insulin Biosensors for Diabetes Management: Advances and Challenges, Biosensors 2023, 13, 719. [CrossRef]
- Sempionatto, J.R.; Lasalde-Ramírez, J.A.; Mahato, K.; Wang, J.; Gao, W. , Wearable chemical sensors for biomarker discovery in the omics era, Nat Rev Chem 2022, 6, 899–915. [CrossRef]
- Samui, A.B. (Ed.) ; Smart polymers: basics; applications; First edition; Press, C.R., Boca Raton London New York, 2022.
- Heinritz, C.; Ng, X.J.; Scheibel, T. , Bio-inspired Protein-Based and Activatable Adhesion Systems, Adv Funct Materials 2024, 34, 2303609. [CrossRef]
- Balu, R.; Whittaker, J.; Dutta, N.K.; Elvin, C.M.; Choudhury, N.R. , Multi-responsive biomaterials and nanobioconjugates from resilin-like protein polymers, J. Mater. Chem. B 2014, 2, 5936–5947. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.T.; Zhao, Y. , Engineered Hybrid Nanoparticles for On-Demand Diagnostics and Therapeutics, Acc. Chem. Res. 2015, 48, 3016–3025. [Google Scholar] [CrossRef] [PubMed]
- Kröger, A.P.P.; Paulusse, J.M.J. , Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging, Journal of Controlled Release 2018, 286, 326–347. [CrossRef]
- Chakrabarti, P.; Chakravarty, D. , Intrinsically disordered proteins/regions and insight into their biomolecular interactions, Biophysical Chemistry 2022, 283, 106769. [CrossRef]
- Uversky, V.N. , p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept, Int J Mol Sci 2016, 17, 1874. [CrossRef]
- Liu, J.; Perumal, N.B.; Oldfield, C.J.; Su, E.W.; Uversky, V.N.; Dunker, A.K. , Intrinsic Disorder in Transcription Factors, Biochemistry 2006, 45, 6873–6888. [CrossRef]
- Melková, K.; Zapletal, V.; Narasimhan, S.; Jansen, S.; Hritz, J.; Škrabana, R.; Zweckstetter, M.; Jensen, M.R.; Blackledge, M.; Žídek, L. , Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences, Biomolecules 2019, 9, 105. 9. [CrossRef]
- Iqbal, K.; Liu, F.; Gong, C.-X.; Grundke-Iqbal, I. , Tau in Alzheimer disease and related tauopathies, Curr Alzheimer Res 2010, 7, 656–664. [CrossRef]
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. , Molecular chaperones in protein folding and proteostasis, Nature 2011, 475, 324–332. [CrossRef]
- Westerheide, S.D.; Raynes, R.; Powell, C.; Xue, B.; Uversky, V.N. , HSF Transcription Factor Family, Heat Shock Response, and Protein Intrinsic Disorder, CPPS 2012, 13, 86–103. [CrossRef]
- Cortese, M.S.; Uversky, V.N.; Dunker, A.K. , Intrinsic disorder in scaffold proteins: Getting more from less, Progress in Biophysics and Molecular Biology 2008, 98, 85–106. [CrossRef]
- Coskuner-Weber, O.; Uversky, V.N. , Liquid-Liquid Phase Separation Associated with Intrinsically Disordered Proteins: Experimental and Computational Tools, Curr Protein Pept Sci (2024). [CrossRef]
- Carey, J.L.; Guo, L. , Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases, Front. Mol. Biosci. 2022, 9, 826719. [Google Scholar] [CrossRef]
- Dawson, J.E.; Bah, A.; Zhang, Z.; Vernon, R.M.; Lin, H.; Chong, P.A.; Vanama, M.; Sonenberg, N.; Gradinaru, C.C.; Forman-Kay, J.D. , Non-cooperative 4E-BP2 folding with exchange between eIF4E-binding and binding-incompatible states tunes cap-dependent translation inhibition, Nat Commun 2020, 11, 3146. [CrossRef]
- Coskuner, O.; Wise-Scira, O. , Structures and Free Energy Landscapes of the A53T Mutant-Type α-Synuclein Protein and Impact of A53T Mutation on the Structures of the Wild-Type α-Synuclein Protein with Dynamics, ACS Chem. Neurosci. 2013, 4, 1101–1113. [Google Scholar] [CrossRef] [PubMed]
- Wise-Scira, O.; Dunn, A.; Aloglu, A.K.; Sakallioglu, I.T.; Coskuner, O. , Structures of the E46K Mutant-Type α-Synuclein Protein and Impact of E46K Mutation on the Structures of the Wild-Type α-Synuclein Protein, ACS Chem. Neurosci. 2013, 4, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Wise-Scira, O.; Aloglu, A.K.; Dunn, A.; Sakallioglu, I.T.; Coskuner, O. , Structures and Free Energy Landscapes of the Wild-Type and A30P Mutant-Type α-Synuclein Proteins with Dynamics, ACS Chem. Neurosci. 2013, 4, 486–497. [Google Scholar] [CrossRef]
- Bello-Madruga, R.; Burgas, M.T. , The limits of prediction: Why intrinsically disordered regions challenge our understanding of antimicrobial peptides, Computational and Structural Biotechnology Journal 2024, 23, 972–981. [CrossRef]
- De Oliveira, A.A.; Vergara, A.; Wang, X.; Vederas, J.C.; Oudit, G.Y. , Apelin pathway in cardiovascular, kidney, and metabolic diseases: Therapeutic role of apelin analogs and apelin receptor agonists, Peptides 2022, 147, 170697. [CrossRef]
- Orzáez, M.; Gortat, A.; Mondragón, L.; Pérez-Payá, E. , Peptides and Peptide Mimics as Modulators of Apoptotic Pathways, ChemMedChem 2009, 4, 146–160. [CrossRef]
- Weber, O.C. , Intrinsically Disordered Proteins by Homology Modeling and Replica Exchange Molecular Dynamics Simulations: A Case Study of Amyloid-β42, JOTCSA (2024) 1151–1164. [CrossRef]
- Zheng, W.; Zhang, C.; Li, Y.; Pearce, R.; Bell, E.W.; Zhang, Y. , Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations, Cell Reports Methods 2021, 1, 100014. [CrossRef]
- Xie, F.; Halley, P.J.; Avérous, L. , Rheology to understand and optimize processibility, structures and properties of starch polymeric materials, Progress in Polymer Science 2012, 37, 595–623. [CrossRef]
- Di, X.; Li, L.; Jin, Q.; Yang, R.; Li, Y.; Wang, X.; Wu, G.; Yuan, C.; Sensitive, H. ; Degradable, and Rapid Self-Healing Hydrogel Sensor with Semi-Interpenetrating Network for Recognition of Micro-Expressions, Small (2024) 2403955. [CrossRef]
- Baqasah, H.; He, F.; Zai, B.A.; Asif, M.; Khan, K.A.; Thakur, V.K.; Khan, M.A. , In-Situ Dynamic Response Measurement for Damage Quantification of 3D Printed ABS Cantilever Beam under Thermomechanical Load, Polymers 2019, 11, 2079. [CrossRef]
- Shah, V.P.; Elkins, J.S.; Williams, R.L. , Evaluation of the Test System Used for In Vitro Release of Drugs for Topical Dermatological Drug Products, Pharmaceutical Development and Technology 1999, 4, 377–385. [CrossRef]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. , A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives, Journal of Advanced Research 2018, 9, 1–16. [CrossRef]
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.-E. , Polymer biodegradation: Mechanisms and estimation techniques – A review, Chemosphere 2008, 73, 429–442. [CrossRef]
- Barrat, J.-L.; Baschnagel, J.; Lyulin, A. , Molecular dynamics simulations of glassy polymers, Soft Matter 2010, 6, 3430. [CrossRef]
- Mavrantzas, V.G. , Using Monte Carlo to Simulate Complex Polymer Systems: Recent Progress and Outlook, Front. Phys. 2021, 9, 661367. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F.; Calvo, G.F. , Models for polymers and biopolymers based on quantum mechanics, Molecular Physics 2002, 100, 2957–2970. [CrossRef]
- McCormick, T.M.; Bridges, C.R.; Carrera, E.I.; DiCarmine, P.M.; Gibson, G.L.; Hollinger, J.; Kozycz, L.M.; Seferos, D.S. , Conjugated Polymers: Evaluating DFT Methods for More Accurate Orbital Energy Modeling, Macromolecules 2013, 46, 3879–3886. [CrossRef]
- Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. , Coarse-Grained Protein Models and Their Applications, Chem. Rev. 2016, 116, 7898–7936. [Google Scholar] [CrossRef]
- Fisher, F.T.; Brinson, L.C. , Viscoelastic interphases in polymer–matrix composites: theoretical models and finite-element analysis, Composites Science and Technology 2001, 61, 731–748. [CrossRef]
- Cencer, M.M.; Moore, J.S.; Assary, R.S. , Machine learning for polymeric materials: an introduction, Polymer International 2022, 71, 537–542. [CrossRef]



| Sequence | Structure | Degree of Accuracy (C-scoreb) | Function | |
|---|---|---|---|---|
| Peptide 1 | GPSQKRDEEE | ![]() |
-1.38 | hydrolase activity |
| Peptide 2 | PSGREQKDKK | ![]() |
-1.46 | cation binding 3',5'-cyclic-nucleotide phosphodiesterase activity |
| Peptide 3 | DQKRESPGDP | ![]() |
-1.33 | peptide transporter activity |
| Peptide 4 | KERQDSPGKK | ![]() |
-1.16 | nucleic acid binding |
| Peptide 5 | SDPKQGRDEP | ![]() |
-1.18 | transporter activity |
| Peptide 6 | RKGEQDPSKG | ![]() |
-1.30 | -tRNA binding -Sep-tRNA:Cys-tRNA -synthase activity -heparan sulfate proteoglycan binding -heparin binding -asparaginase activity -complement component C3b binding |
| Peptide 7 | EGPSKQRDGE | ![]() |
-1.15 | glucosidase activity |
| Peptide 8 | DQGRKPSQED | ![]() |
-1.03 | -fructokinase activity -glucose binding -ATP binding -glucokinase activity |
| Peptide 9 | PRGKDEQSGP | ![]() |
-1.56 | cation binding |
| Peptide 10 | SKGEQPRDGP | ![]() |
-1.26 | cation binding |
| Peptide 11 | KDSGPRQEGK | ![]() |
-1.28 | metal ion binding |
| Peptide 12 | RQDEGPSKPR | ![]() |
-1.18 | RNA glycosylase activity |
| Peptide 13 | GPRQSKEDGQ | ![]() |
-1.34 | -oxidoreductase activity -antioxidant activity -ATP binding -GMP synthase (glutamine-hydrolyzing) activity -protein disulfide isomerase activity |
| Peptide 14 | KGRPQDEGSK | ![]() |
-1.03 | -DNA binding -RNA polymerase III activity -RNA polymerase II activity -RNA polymerase I activity |
| Peptide 15 | DPSQGKREPD | ![]() |
-0.84 | cation binding |
| Peptide 16 | QEGPRKSDGP | ![]() |
-1.30 | translation initiation factor activity |
| Peptide 17 | SKPGQERDKS | ![]() |
-0.84 | cation binding |
| Peptide 18 | RKDPSGEQRP | ![]() |
-1.18 | DNA binding |
| Peptide 19 | EPQGRSDPKR | ![]() |
-1.18 | 4-hydroxy-tetrahydrodipicolinate synthase |
| Peptide 20 | DGEQKSPRQD | ![]() |
-1.31 | -transition metal ion binding -endopeptidase activity |
| Peptide 21 | QKDRPGESKP | ![]() |
-1.36 | cellulase activity |
| Peptide 22 | GRKDESPQGR | ![]() |
-1.15 | xylanase activity |
| Peptide 23 | SPRKEQGDPS | ![]() |
-1.25 | -cofactor binding -aryl-acylamidase activity -protein homodimerization activity -(+)-trans-carveol dehydrogenase activity -amino acid binding -ATP binding -iron ion binding -phenylalanine 4-monooxygenase activity |
| Peptide 24 | PKRGSQDPEK | ![]() |
-1.33 | -oxidoreductase activity, acting on CH-OH group of donors |
| Peptide 25 | EGRDPQSKGR | ![]() |
-1.28 | -purine ribonucleoside triphosphate binding -adenyl ribonucleotide binding -purine ribonucleoside binding -nucleic acid binding |
| Peptide 26 | QPGSRKDEPG | ![]() |
-1.37 | -transferase activity, transferring acyl groups other than amino-acyl groups |
| Peptide 27 | SGKRQEDPGR | ![]() |
-1.26 | catalytic activity |
| Peptide 28 | DEGPRSKGQK | ![]() |
-1.48 | -3-oxo-pimeloyl-[acp] methyl ester reductase activity -trans-2-enoyl-CoA reductase (NADPH) activity -2,4-dienoyl-CoA reductase (NADPH) activity -receptor binding -3-oxoacyl-[acyl-carrier-protein] reductase (NADPH) activity -nucleotide binding |
| Peptide 29 | RQPKGESDPQ | ![]() |
-1.26 | -purine ribonucleoside triphosphate binding -RNA polymerase activity -adenyl ribonucleotide binding -purine ribonucleoside binding -substrate-specific channel activity -ion transmembrane transporter activity -cysteine-type peptidase activity -helicase activity -endopeptidase activity -nucleic acid binding |
| Peptide 30 | KSDPGRQEKS | ![]() |
-1.05 | -adenine phosphoribosyltransferase activity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






























