Submitted:
10 October 2024
Posted:
11 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Search Strategy
3. Basics of the S1P Signaling Pathway
3.1. Synthesis, Degeneration, and Transport of S1P
3.2. Sphingosine Kinases
3.3. S1P Receptors (S1PRs)
3.4. Current Therapeutic Strategies Targeting S1P Signaling: Regulating SPHKs and S1PRs
4. Role of S1P Signaling Pathway in Pancreatic Diseases
4.1. AP
4.1.1. Functioning as Potential Biomarkers for Severity of AP
4.1.2. Mediating Local and Systematic Inflammation
4.1.3. Inducing Pyroptosis of Pancreatic Acinar Cells (PACs)
4.1.4. Involving in AP-induced Organ Injury
4.2. CP
4.3. PC
4.3.1. Targeting S1P Signaling for PC Therapy
4.3.2. Impacting Mitochondria-Mediated Apoptosis of PC Cells
4.3.3. Inhibiting S1P Signaling Improves PC by Inducing ER Stress of PC Cells
4.3.4. Mediating PSCs Activation That Transferring to PC
4.3.5. Being Activated by Bile Acids (BAs)
5. S1P Signaling Participates in the Developmental Defects of Pancreas (DDP)
| Compound | Structure | Primarily used as | Ref. |
|---|---|---|---|
| N,N-dimethylsphingosine (DMS) | ![]() |
Antagonist of SPHK1 and SPHK2 | [74,156] |
| SKI-II | ![]() |
Antagonist of SPHK1 and SPHK2 | [75,157] |
| SKI 5c | ![]() |
Antagonist of SPHK1 | [72] |
| PF-543 | ![]() |
Antagonist of SPHK1 | [59,73] |
| Opaganib (ABC294640) | ![]() |
Antagonist of SPHK2 | [76] |
| K145 | ![]() |
Antagonist of SPHK2 | [158] |
| Fingolimod (FTY720) | ![]() |
Modulator of S1PR1, S1PR3, S1PR4 and S1PR5, antagonist of SPHK1 | [17,53,58] |
| Etrasimod (APD334) | ![]() |
Modulator of S1PR1, S1PR4 and S1PR5 | [159] |
| Siponimod (BAF312) | ![]() |
Modulator of S1PR1 and S1PR5 | [160] |
| Ozanimod (RPC1063) | ![]() |
Agonist of S1PR1 and S1PR5 | [161] |
| VPC23019 | ![]() |
Antagonist of S1PR1 and S1PR3 | [77] |
| SEW2871 | ![]() |
Agonist of S1PR1 | [162] |
| Ponesimod (ACT-128800) | ![]() |
Agonist of S1PR1 | [163] |
| NIBR-0213 | ![]() |
Antagonist of S1PR1 | [164] |
| CYM5520 | ![]() |
Agonist of S1PR2 | [58] |
| JTE-013 | ![]() |
Antagonist of S1PR2 | [70] |
| CYM5541 | ![]() |
Agonist of S1PR3 | [165] |
| TY52156 | ![]() |
Antagonist of S1PR3 | [164] |
| CYM50358 | ![]() |
Antagonist of S1PR4 | [166] |
| A-971432 | ![]() |
Agonist of S1PR5 | [167] |
6. Conclusions and Future Prospectives
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kimita, W.; Petrov, M.S. Iron metabolism and the exocrine pancreas. Clin. Chim. Acta. 2020, 511, 167-176. [CrossRef]
- Zhou, Q.; Melton, D.A. Pancreas regeneration. Nature 2018, 557, 351-358. [CrossRef]
- Struyvenberg, M.R.; Martin, C.R.; Freedman, S.D. Practical guide to exocrine pancreatic insufficiency - Breaking the myths. BMC Med. 2017, 15, 29. [CrossRef]
- Singh, V.K.; Yadav, D.; Garg, P.K. Diagnosis and management of chronic pancreatitis: A review. JAMA 2019, 322, 2422-2434.
- Wang, G.J.; Gao, C.F.; Wei, D.; Wang, C.; Ding, S.Q. Acute pancreatitis: etiology and common pathogenesis. World J. Gastroenterol. 2009, 15, 1427-1430. [CrossRef]
- Zhang, R.; Peng, X.; Du, J.X.; Boohaker, R.; Estevao, I.L.; Grajeda, B.I.; Cox, M.B.; Almeida, I.C.; Lu, W. Oncogenic KRASG12D reprograms lipid metabolism by upregulating SLC25A1 to drive pancreatic tumorigenesis. Cancer Res. 2023, 83, 3739-3752. [CrossRef]
- Mayerle, J.; Sendler, M.; Hegyi, E.; Beyer, G.; Lerch, M.M.; Sahin-Tóth, M. Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology 2019, 156, 1951-1968. [CrossRef]
- Chan, Y.C.; Leung, P.S. Acute pancreatitis: Animal models and recent advances in basic research. Pancreas 2007, 34, 1-14.
- Habtezion, A.; Gukovskaya, A.S.; Pandol, S.J. Acute pancreatitis: A multifaceted set of organelle and cellular interactions. Gastroenterology 2019, 156, 1941-1950. [CrossRef]
- Hammad, A.Y.; Ditillo, M.; Castanon, L. Pancreatitis. Surg. Clin. North Am. 2018, 98, 895-913.
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2021, 71, 209-249. [CrossRef]
- Lee, B.; Jones, E.K.; Manohar, M.; Li, L.; Yadav, D.; Conwell, D.L.; Hart, P.A.; Vege, S.S.; Fogel, E.L.; Serrano, J., et al. Distinct serum immune profiles define the spectrum of acute and chronic pancreatitis from the multicenter prospective evaluation of chronic pancreatitis for epidemiologic and translational studies (PROCEED) study. Gastroenterology 2023, 165, 173-186. [CrossRef]
- Zheng, L.; Xue, J.; Jaffee, E.M.; Habtezion, A. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology 2013, 144, 1230-40. [CrossRef]
- Schnedl, W.J.; Piswanger-Soelkner, C.; Wallner, S.J.; Reittner, P.; Krause, R.; Lipp, R.W.; Hohmeier, H.E. Agenesis of the dorsal pancreas and associated diseases. Dig. Dis. Sci. 2009, 54, 481-7. [CrossRef]
- Green, C.D.; Maceyka, M.; Cowart, L.A.; Spiegel, S. Sphingolipids in metabolic disease: The good, the bad, and the unknown. Cell Metab. 2021, 33, 1293-1306. [CrossRef]
- Bravo, G.; Cedeño, R.R.; Casadevall, M.P.; Ramió-Torrentà, L. Sphingosine-1-Phosphate (S1P) and S1P signaling pathway modulators, from current insights to future perspectives. Cells 2022, 11. [CrossRef]
- Colombo, E.; Farina, C. Lessons from S1P receptor targeting in multiple sclerosis. Pharmacol. Ther. 2022, 230, 107971. [CrossRef]
- Verstockt, B.; Vetrano, S.; Salas, A.; Nayeri, S.; Duijvestein, M.; Vande Casteele, N. Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 351-366. [CrossRef]
- Baeyens, A.; Bracero, S.; Chaluvadi, V.S.; Khodadadi-Jamayran, A.; Cammer, M.; Schwab, S.R. Monocyte-derived S1P in the lymph node regulates immune responses. Nature 2021, 592, 290-295. [CrossRef]
- Schneider, G. S1P signaling in the tumor microenvironment. Adv. Exp. Med. Biol. 2020, 1223, 129-153.
- Stepanovska, B.; Huwiler, A. Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacol. Res. 2020, 154, 104170. [CrossRef]
- Cartier, A.; Hla, T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2019, 366. [CrossRef]
- Mendelson, K.; Evans, T.; Hla, T. Sphingosine 1-phosphate signalling. Development. 2014, 141, 5-9.
- Spiegel, S.; Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 2003, 4, 397-407. [CrossRef]
- Konończuk, T.; Łukaszuk, B.; Mikłosz, A.; Chabowski, A.; Żendzian-Piotrowska, M.; Kurek, K. Cerulein-induced acute pancreatitis affects sphingomyelin signaling pathway in rats. Pancreas 2018, 47, 898-903. [CrossRef]
- Yang, J.; Tang, X.; Li, B.; Shi, J. Sphingosine 1-phosphate receptor 2 mediated early stages of pancreatic and systemic inflammatory responses via NF-kappa B activation in acute pancreatitis. Cell Commun. Signal. 2022, 20, 157. [CrossRef]
- Yuza, K.; Nakajima, M.; Nagahashi, M.; Tsuchida, J.; Hirose, Y.; Miura, K.; Tajima, Y.; Abe, M.; Sakimura, K.; Takabe, K., et al. Different roles of sphingosine kinase 1 and 2 in pancreatic cancer progression. J. Surg. Res. 2018, 232, 186-194. [CrossRef]
- Bi, Y.; Li, J.; Ji, B.; Kang, N.; Yang, L.; Simonetto, D.A.; Kwon, J.H.; Kamath, M.; Cao, S.; Shah, V. Sphingosine-1-phosphate mediates a reciprocal signaling pathway between stellate cells and cancer cells that promotes pancreatic cancer growth. Am. J. Pathol. 2014, 184, 2791-2802. [CrossRef]
- Edsbagge, J.; Johansson, J.K.; Esni, F.; Luo, Y.; Radice, G.L.; Semb, H. Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme. Development. 2005, 132, 1085-92. [CrossRef]
- Sand, F.W.; Hörnblad, A.; Johansson, J.K.; Lorén, C.; Edsbagge, J.; Ståhlberg, A.; Magenheim, J.; Ilovich, O.; Mishani, E.; Dor, Y., et al. Growth-limiting role of endothelial cells in endoderm development. Dev. Biol. 2011, 352, 267-277. [CrossRef]
- Fyrst, H.; Saba, J.D. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat. Chem. Biol. 2010, 6, 489-497. [CrossRef]
- Harrison, P.J.; Dunn, T.M.; Campopiano, D.J. Sphingolipid biosynthesis in man and microbes. Nat. Prod. Rep. 2018, 35, 921-954. [CrossRef]
- Jozefczuk, E.; Guzik, T.J.; Siedlinski, M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol. Res. 2020, 156, 104793. [CrossRef]
- Liu, X.; Zhang, Q.H.; Yi, G.H. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol. Cell Biochem. 2012, 363, 21-33. [CrossRef]
- Bandhuvula, P.; Saba, J.D. Sphingosine-1-phosphate lyase in immunity and cancer: Silencing the siren. Trends Mol. Med. 2007, 13, 210-217. [CrossRef]
- Mandala, S.M. Sphingosine-1-phosphate phosphatases. Prostaglandins. Other. Lipid. Mediat. 2001, 64, 143-56. [CrossRef]
- Książek, M.; Chacińska, M.; Chabowski, A.; Baranowski, M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J. Lipid Res. 2015, 56, 1271-1281. [CrossRef]
- Kawahara, A.; Nishi, T.; Hisano, Y.; Fukui, H.; Yamaguchi, A.; Mochizuki, N. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 2009, 323, 524-527. 10.1126/science.1167449.
- Spiegel, S.; Maczis, M.A.; Maceyka, M.; Milstien, S. New insights into functions of the sphingosine-1-phosphate transporter SPNS2. J. Lipid Res. 2019, 60, 484-489. [CrossRef]
- Aye, I.L.; Singh, A.T.; Keelan, J.A. Transport of lipids by ABC proteins: interactions and implications for cellular toxicity, viability and function. Chem. Biol. Interact. 2009, 180, 327-339. [CrossRef]
- Leclercq, T.M.; Pitson, S.M. Cellular signalling by sphingosine kinase and sphingosine 1-phosphate. IUBMB. Life 2006, 58, 467-472. [CrossRef]
- Pitson, S.M.; Moretti, P.A.; Zebol, J.R.; Lynn, H.E.; Xia, P.; Vadas, M.A.; Wattenberg, B.W. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 2003, 22, 5491-5500.
- Pitson, S.M.; Xia, P.; Leclercq, T.M.; Moretti, P.A.; Zebol, J.R.; Lynn, H.E.; Wattenberg, B.W.; Vadas, M.A. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J. Exp. Med. 2005, 201, 49-54. [CrossRef]
- Igarashi, N.; Okada, T.; Hayashi, S.; Fujita, T.; Jahangeer, S.; Nakamura, S. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J. Biol. Chem. 2003, 278, 46832-9. [CrossRef]
- Hait, N.C.; Allegood, J.; Maceyka, M.; Strub, G.M.; Harikumar, K.B.; Singh, S.K.; Luo, C.; Marmorstein, R.; Kordula, T.; Milstien, S., et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 2009, 325, 1254-1257. [CrossRef]
- Maceyka, M.; Sankala, H.; Hait, N.C.; Le Stunff, H.; Liu, H.; Toman, R.; Collier, C.; Zhang, M.; Satin, L.S.; Merrill, A.H., Jr., et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 2005, 280, 37118-37129. [CrossRef]
- Strub, G.M.; Maceyka, M.; Hait, N.C.; Milstien, S.; Spiegel, S. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv. Exp. Med. Biol. 2010, 688, 141-155.
- Spiegel, S.; Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 2011, 11, 403-415. [CrossRef]
- Yanagida, K.; Hla, T. Vascular and immunobiology of the circulatory sphingosine 1-phosphate gradient. Annu. Rev. Physiol. 2017, 79, 67-91. [CrossRef]
- Wu, J.; Shi, Y. Progress in regulation of vascular function by sphingosine-1-phosphate in atherosclerosis. Chinese Journal of Pathophysiology 2023, 39, 2288-2295.
- Tsai, H.C.; Han, M.H. Sphingosine-1-phosphate (S1P) and S1P signaling pathway: Therapeutic targets in autoimmunity and inflammation. Drugs 2016, 76, 1067-1079. [CrossRef]
- Aarthi, J.J.; Darendeliler, M.A.; Pushparaj, P.N. Dissecting the role of the S1P/S1PR axis in health and disease. J. Dent. Res. 2011, 90, 841-854. [CrossRef]
- Xie, Z.; Liu, H.; Geng, M. Targeting sphingosine-1-phosphate signaling for cancer therapy. Sci. China Life Sci. 2017, 60, 585-600. [CrossRef]
- McGinley, M.P.; Cohen, J.A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 2021, 398, 1184-1194. [CrossRef]
- Burg, N.; Salmon, J.E.; Hla, T. Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat. Rev. Rheumatol. 2022, 18, 335-351. [CrossRef]
- Serafimidis, I.; Rodriguez-Aznar, E.; Lesche, M.; Yoshioka, K.; Takuwa, Y.; Dahl, A.; Pan, D.; Gavalas, A. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling. PLoS Biol. 2017, 15, e2000949. [CrossRef]
- Lin, T.; Peng, M.; Zhu, Q.; Pan, X. S1PR2 participates in intestinal injury in severe acute pancreatitis by regulating macrophage pyroptosis. Front. Immunol. 2024, 15, 1405622. [CrossRef]
- Sarkar, J.; Aoki, H.; Wu, R.; Aoki, M.; Hylemon, P.; Zhou, H.; Takabe, K. Conjugated bile acids accelerate progression of pancreatic cancer metastasis via S1PR2 signaling in cholestasis. Ann. Surg. Oncol. 2023, 30, 1630-1641. [CrossRef]
- Wang, D.; Han, S.; Lv, G.; Hu, Y.; Zhuo, W.; Zeng, Z.; Tang, J.; Huang, Y.; Wang, F.; Wang, J., et al. Pancreatic acinar cells-derived sphingosine-1-phosphate contributes to fibrosis of chronic pancreatitis via inducing autophagy and activation of pancreatic stellate cells. Gastroenterology 2023, 165, 1488-1504. [CrossRef]
- Sukocheva, O.A.; Furuya, H.; Ng, M.L.; Friedemann, M.; Menschikowski, M.; Tarasov, V.V.; Chubarev, V.N.; Klochkov, S.G.; Neganova, M.E.; Mangoni, A.A., et al. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol. Ther. 2020, 207, 107464. [CrossRef]
- Mo, C. The role of sphingosine kinase 1 in acute lung injury with severe acute pancreatitis. 2015, Southwest Medical University.
- Speirs, M.M.P.; Swensen, A.C.; Chan, T.Y.; Jones, P.M.; Holman, J.C.; Harris, M.B.; Maschek, J.A.; Cox, J.E.; Carson, R.H.; Hill, J.T., et al. Imbalanced sphingolipid signaling is maintained as a core proponent of a cancerous phenotype in spite of metabolic pressure and epigenetic drift. Oncotarget 2019, 10, 449-479. [CrossRef]
- Beljanski, V.; Lewis, C.S.; Smith, C.D. Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol. Ther. 2011, 11, 524-534. [CrossRef]
- Naseh, M.; Vatanparast, J.; Rafati, A.; Bayat, M.; Haghani, M. The emerging role of FTY720 as a sphingosine 1-phosphate analog for the treatment of ischemic stroke: The cellular and molecular mechanisms. Brain Behav. 2021, 11, e02179.
- Blaho, V.A.; Hla, T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem. Rev. 2011, 111, 6299-320. [CrossRef]
- Müller, C.A.; Belyaev, O.; Burr, W.; Munding, J.; McArthur, N.; Bergmann, U.; Werner, J.; Tannapfel, A.; Uhl, W. Effects of FTY720 and rapamycin on inflammation in taurocholate-induced acute pancreatitis in the rat. Pancreas 2012, 41, 1086-1091. [CrossRef]
- Liu, H.B.; Cui, N.Q.; Wang, Q.; Li, D.H.; Xue, X.P. Sphingosine-1-phosphate and its analogue FTY720 diminish acute pulmonary injury in rats with acute necrotizing pancreatitis. Pancreas 2008, 36, 10-15. [CrossRef]
- Okamoto, T.; Yamada, T.; Kuno, A.; Ogawa, K.; Tang, M.; Sano, H.; Ohara, H.; Nakao, H.; Kataoka, H.; Shirai, T., et al. FTY720, an immunosuppressant, attenuates chronic pancreatitis in rats by suppressing T-cell infiltration. Pancreas. 2005, 30, 64-70. [CrossRef]
- Lankadasari, M.B.; Aparna, J.S.; Mohammed, S.; James, S.; Aoki, K.; Binu, V.S.; Nair, S.; Harikumar, K.B. Targeting S1PR1/STAT3 loop abrogates desmoplasia and chemosensitizes pancreatic cancer to gemcitabine. Theranostics 2018, 8, 3824-3840.
- Yang, S.; Li, H.W.; Tian, J.Y.; Wang, Z.K.; Chen, Y.; Zhan, T.T.; Ma, C.Y.; Feng, M.; Cao, S.F.; Zhao, Y., et al. Myeloid-derived growth factor suppresses VSMC dedifferentiation and attenuates postinjury neointimal formation in rats by activating S1PR2 and its downstream signaling. Acta Pharmacol. Sin. 2024, 45, 98-111. [CrossRef]
- Cui, L.; Li, C.; Zhang, G.; Zhang, L.; Yao, G.; Zhuo, Y.; Cui, N.; Zhang, S. S1P/S1PR2 promote pancreatic stellate cell activation and pancreatic fibrosis in chronic pancreatitis by regulating autophagy and the NLRP3 inflammasome. Chem. Biol. Interact. 2023, 380, 110541. [CrossRef]
- Sun, D.; Wang, S. Sphingosine kinases are involved in the regulation of all-trans retinoic acid sensitivity of K562 chronic myeloid leukemia cells. Oncol. Lett. 2021, 22, 581. [CrossRef]
- Yi, X.; Tang, X.; Li, T.; Chen, L.; He, H.; Wu, X.; Xiang, C.; Cao, M.; Wang, Z.; Wang, Y., et al. Therapeutic potential of the sphingosine kinase 1 inhibitor, PF-543. Biomed Pharmacother. 2023, 163, 114401. [CrossRef]
- Uzunova, V.; Tzoneva, R.; Stoyanova, T.; Pankov, R.; Skrobanska, R.; Georgiev, G.; Maslenkova, L.; Tsonchev, Z.; Momchilova, A. Dimethylsphingosine and miltefosine induce apoptosis in lung adenocarcinoma A549 cells in a synergistic manner. Chem. Biol. Interact. 2019, 310, 108731. [CrossRef]
- Grbčić, P.; Tomljanović, I.; Klobučar, M.; Kraljević Pavelić, S.; Lučin, K.; Sedić, M. Dual sphingosine kinase inhibitor SKI-II enhances sensitivity to 5-fluorouracil in hepatocellular carcinoma cells via suppression of osteopontin and FAK/IGF-1R signalling. Biochem. Biophys. Res. Commun. 2017, 487, 782-788. [CrossRef]
- Dai, L.; Bai, A.; Smith, C.D.; Rodriguez, P.C.; Yu, F.; Qin, Z. ABC294640, A novel sphingosine kinase 2 inhibitor, induces oncogenic virus-infected cell autophagic death and represses tumor growth. Mol. Cancer Ther. 2017, 16, 2724-2734.
- Sekine, Y.; Suzuki, K.; Remaley, A.T. HDL and sphingosine-1-phosphate activate stat3 in prostate cancer DU145 cells via ERK1/2 and S1P receptors, and promote cell migration and invasion. Prostate 2011, 71, 690-699.
- Beljanski, V.; Knaak, C.; Zhuang, Y.; Smith, C.D. Combined anticancer effects of sphingosine kinase inhibitors and sorafenib. Invest. New Drugs 2011, 29, 1132-1142. [CrossRef]
- Tian, B.; Sui, S.; Meng, Q.; Liu, P.; Lin, H.; Xin, L.; Li, Z.; Wang, L. The influence of sphlngosine 1-phosphate on migration and invasion of pancreatic cancer PANC1 cells. Chin. J. Pancreatol. 2016, 16, 73-76.
- Deng, R.; Tang, L.; Li, D.; Li, K. Sphingosine kinase 1 change in early stage for severe acute pancreatitis. Journal of Frontiers of Medicine. 2015, 2.
- Yang, L.; Zhong, M.; Li, Y.; Zheng, X.; Yan, H.; Tang, L.; Li, D. Value of sphingosine kinase 1 and C-reactive protein in prediction of severity degree of acute pancreatitis. Medical Journal of Chinese People's Liberation Army. 2014, 26, 5.
- Li, Q.; Wang, C.; Zhang, Q.; Tang, C.; Li, N.; Li, J. The role of sphingosine kinase 1 in patients with severe acute pancreatitis. Ann. Surg. 2012, 255, 954-962. [CrossRef]
- Tang, J. Mechanism of sphingosine kinase 1 mediating acinar cell pyroptosis through PERK/TXNIP/NLRP3 signaling axis in acute pancreatitis. 2022, Huazhong University of Science and Technology.
- Yang, J.X.; Wang, M.J.C.; Qiu, Q.; Huang, Y.; Wang, Y.Q.; Pu, Q.L.; Jiang, N.; Wang, R.; Wen, L.; Zhang, X.Y., et al. Time-course lipidomics of ornithine-induced severe acute pancreatitis model reveals the free fatty acids centered lipids dysregulation characteristics. Metabolites 2023, 13. [CrossRef]
- Wollny, T.; Wątek, M.; Wnorowska, U.; Piktel, E.; Góźdź, S.; Kurek, K.; Wolak, P.; Król, G.; Żendzian-Piotrowska, M.; Bucki, R. Hypogelsolinemia and decrease in blood plasma sphingosine-1-phosphate in patients diagnosed with severe acute pancreatitis. Dig. Dis. Sci. 2022, 67, 536-545. [CrossRef]
- Xiao, J.; Lin, H.; Liu, B.; Xia, Z.; Zhang, J.; Jin, J. Decreased S1P and SPHK2 are involved in pancreatic acinar cell injury. Biomark. Med. 2019, 13, 627-637. [CrossRef]
- Konończuk, T.; Łukaszuk, B.; Żendzian-Piotrowska, M.; Dąbrowski, A.; Krzyżak, M.; Ostrowska, L.; Kurek, K. Plasma sphingolipids in acute pancreatitis. Int. J. Mol. Sci. 2017, 18. [CrossRef]
- Habtezion, A. Inflammation in acute and chronic pancreatitis. Curr. Opin. Gastroenterol. 2015, 31, 395-9. [CrossRef]
- Sun, G.; Wang, B.; Wu, X.; Cheng, J.; Ye, J.; Wang, C.; Zhu, H.; Liu, X. How do sphingosine-1-phosphate affect immune cells to resolve inflammation? Front. Immunol. 2024, 15, 1362459.
- Corbett, B.; Luz, S.; Sotuyo, N.; Pearson-Leary, J.; Moorthy, G.S.; Zuppa, A.F.; Bhatnagar, S. FTY720 (Fingolimod), a modulator of sphingosine-1-phosphate receptors, increases baseline hypothalamic-pituitary adrenal axis activity and alters behaviors relevant to affect and anxiety. Physiol. Behav. 2021, 240, 113556. [CrossRef]
- Sykes, D.A.; Riddy, D.M.; Stamp, C.; Bradley, M.E.; McGuiness, N.; Sattikar, A.; Guerini, D.; Rodrigues, I.; Glaenzel, A.; Dowling, M.R., et al. Investigating the molecular mechanisms through which FTY720-P causes persistent S1P1 receptor internalization. Br. J. Pharmacol. 2014, 171, 4797-4807. [CrossRef]
- Liu, J.; Xu, P.; Zhang, L.; Kayoumu, A.; Wang, Y.; Wang, M.; Gao, M.; Zhang, X.; Wang, Y.; Liu, G. FTY720 attenuates acute pancreatitis in hypertriglyceridemic apolipoprotein CIII transgenic mice. Shock 2015, 44, 280-286. [CrossRef]
- Zou, L.; Ke, L.; Wu, C.; Tong, Z.; Li, W.; Li, N.; Li, J. SEW2871 Alleviates the severity of caerulein-induced acute pancreatitis in mice. Biol. Pharm. Bull. 2015, 38, 1012-1019. [CrossRef]
- Leung, P.S.; Ip, S.P. Pancreatic acinar cell: its role in acute pancreatitis. Int. J. Biochem. Cell Biol. 2006, 38, 1024-1030. [CrossRef]
- Sun, B.; Chen, Z.; Chi, Q.; Zhang, Y.; Gao, B. Endogenous tRNA-derived small RNA (tRF3-Thr-AGT) inhibits ZBP1/NLRP3 pathway-mediated cell pyroptosis to attenuate acute pancreatitis (AP). J. Cell. Mol. Med. 2021, 25, 10441-10453.
- Lin, T.; Song, J.; Pan, X.; Wan, Y.; Wu, Z.; Lv, S.; Mi, L.; Wang, Y.; Tian, F. Downregulating gasdermin D reduces severe acute pancreatitis associated with pyroptosis. Med. Sci. Monit. 2021, 27, e927968. [CrossRef]
- Gao, L.; Dong, X.; Gong, W.; Huang, W.; Xue, J.; Zhu, Q.; Ma, N.; Chen, W.; Fu, X.; Gao, X., et al. Acinar cell NLRP3 inflammasome and gasdermin D (GSDMD) activation mediates pyroptosis and systemic inflammation in acute pancreatitis. Br. J. Pharmacol. 2021, 178, 3533-3552. [CrossRef]
- Ge, P.; Luo, Y.; Okoye, C.S.; Chen, H.; Liu, J.; Zhang, G.; Xu, C.; Chen, H. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: A troublesome trio for acute pancreatitis. Biomed. Pharmacother. 2020, 132, 110770. [CrossRef]
- Zhou, J.; Zhou, P.; Zhang, Y.; Wang, G.; Fan, Z. Signal pathways and markers involved in acute lung injury induced by acute pancreatitis. Dis. Markers 2021, 2021, 9947047. [CrossRef]
- Yang, X; Liu, H; Cui, N; Li, D; Li, J; Wang, Q. The protective effects of sphingosine-1-phosphate on lung injury in acute necrotizing pancreatitis in rats. The Chinese Journal of General Surgery. 2008, 17, 7-232.
- Natarajan, V.; Dudek, S.M.; Jacobson, J.R.; Moreno-Vinasco, L.; Huang, L.S.; Abassi, T.; Mathew, B.; Zhao, Y.; Wang, L.; Bittman, R., et al. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury. Am. J. Respir. Cell Mol. Biol. 2013, 49, 6-17.
- Wang, Z.; Liu, J.; Li, F.; Luo, Y.; Ge, P.; Zhang, Y.; Wen, H.; Yang, Q.; Ma, S.; Chen, H. The gut-lung axis in severe acute pancreatitis-associated lung injury: The protection by the gut microbiota through short-chain fatty acids. Pharmacol. Res. 2022, 182, 106321. [CrossRef]
- Kichler, A.; Jang, S. Chronic pancreatitis: Epidemiology, diagnosis, and management updates. Drugs 2020, 80, 1155-1168. [CrossRef]
- Apte, M.; Pirola, R.; Wilson, J. The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells. Antioxid. Redox Signal. 2011, 15, 2711-2722. [CrossRef]
- Sobel, K.; Menyhart, K.; Killer, N.; Renault, B.; Bauer, Y.; Studer, R.; Steiner, B.; Bolli, M.H.; Nayler, O.; Gatfield, J. Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling. J. Biol. Chem. 2013, 288, 14839-14851. [CrossRef]
- Yang, L.; Yue, S.; Yang, L.; Liu, X.; Han, Z.; Zhang, Y.; Li, L. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J. Hepatol. 2013, 59, 114-123.
- Zhang, X.; Ritter, J.K.; Li, N. Sphingosine-1-phosphate pathway in renal fibrosis. Am. J. Physiol. Renal. Physiol. 2018, 315, 752-756. [CrossRef]
- Wang, E.; He, X.; Zeng, M. The role of S1P and the related signaling pathway in the development of tissue fibrosis. Front. Pharmacol. 2018, 9, 1504. [CrossRef]
- Furuya, H.; Shimizu, Y.; Kawamori, T. Sphingolipids in cancer. Cancer Metastasis Rev. 2011, 30, 567-576. [CrossRef]
- Bao, Y.; Guo, Y.; Zhang, C.; Fan, F.; Yang, W. Sphingosine kinase 1 and sphingosine-1-phosphate signaling in colorectal cancer. Int. J. Mol. Sci. 2017, 18. [CrossRef]
- Spiegel, S.; Milstien, S. Functions of the multifaceted family of sphingosine kinases and some close relatives. J. Biol. Chem. 2007, 282, 2125-2129. [CrossRef]
- Barth, B.M.; Shanmugavelandy, S.S.; Kaiser, J.M.; McGovern, C.; Altınoğlu, E.; Haakenson, J.K.; Hengst, J.A.; Gilius, E.L.; Knupp, S.A.; Fox, T.E., et al. PhotoImmunoNanoTherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine-1-phosphate. ACS Nano 2013, 7, 2132-2144. [CrossRef]
- Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 2008, 7, 3129-3140. [CrossRef]
- Guillermet-Guibert, J.; Davenne, L.; Pchejetski, D.; Saint-Laurent, N.; Brizuela, L.; Guilbeau-Frugier, C.; Delisle, M.B.; Cuvillier, O.; Susini, C.; Bousquet, C. Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Mol. Cancer Ther. 2009, 8, 809-820. [CrossRef]
- Fu, Y.; Ricciardiello, F.; Yang, G.; Qiu, J.; Huang, H.; Xiao, J.; Cao, Z.; Zhao, F.; Liu, Y.; Luo, W., et al. The role of mitochondria in the chemoresistance of pancreatic cancer cells. Cells 2021, 10. [CrossRef]
- Gerhard, M.C.; Schmid, R.M.; Häcker, G. Analysis of the cytochrome c-dependent apoptosis apparatus in cells from human pancreatic carcinoma. Br. J. Cancer 2002, 86, 893-898. [CrossRef]
- Yang, L.; Cao, Z.; Yan, H.; Wood, W.C. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res. 2003, 63, 6815-6824.
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F., et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457-465. [CrossRef]
- Xue, R.; Meng, Q.; Lu, D.; Liu, X.; Wang, Y.; Hao, J. Mitofusin2 induces cell autophagy of pancreatic cancer through inhibiting the PI3K/Akt/mTOR signaling pathway. Oxid. Med. Cell. Longev. 2018, 2018, 2798070. [CrossRef]
- Jamil, M.; Cowart, L.A. Sphingolipids in mitochondria-from function to disease. Front. Cell Dev. Biol. 2023, 11, 1302472. [CrossRef]
- Duan, M.; Gao, P.; Chen, S.X.; Novák, P.; Yin, K.; Zhu, X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes. Rev. 2022, 23, e13426.
- Leanza, L.; Henry, B.; Sassi, N.; Zoratti, M.; Chandy, K.G.; Gulbins, E.; Szabò, I. Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol. Med. 2012, 4, 577-593.
- Leanza, L.; Romio, M.; Becker, K.A.; Azzolini, M.; Trentin, L.; Managò, A.; Venturini, E.; Zaccagnino, A.; Mattarei, A.; Carraretto, L., et al. Direct pharmacological targeting of a mitochondrial ion channel selectively kills tumor cells in vivo. Cancer Cell 2017, 31, 516-531. [CrossRef]
- Patel, S.H.; Wilson, G.C.; Wu, Y.; Keitsch, S.; Wilker, B.; Mattarei, A.; Ahmad, S.A.; Szabo, I.; Gulbins, E. Sphingosine is involved in PAPTP-induced death of pancreas cancer cells by interfering with mitochondrial functions. J. Mol. Med. (Berl). 2024, 102, 947-959. [CrossRef]
- Limbu, K.R.; Chhetri, R.B.; Oh, Y.S.; Baek, D.J.; Park, E.Y. Mebendazole impedes the proliferation and migration of pancreatic cancer cells through SK1 inhibition dependent pathway. Molecules 2022, 27. [CrossRef]
- Lépine, S.; Allegood, J.C.; Park, M.; Dent, P.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death Differ. 2011, 18, 350-61. [CrossRef]
- Park, K.; Ikushiro, H.; Seo, H.S.; Shin, K.O.; Kim, Y.I.; Kim, J.Y.; Lee, Y.M.; Yano, T.; Holleran, W.M.; Elias, P., et al. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 1334-1342. [CrossRef]
- Blom, T.; Bergelin, N.; Meinander, A.; Löf, C.; Slotte, J.P.; Eriksson, J.E.; Törnquist, K. An autocrine sphingosine-1-phosphate signaling loop enhances NF-kappaB-activation and survival. BMC Cell Biol. 2010, 11, 45.
- Lee, S.Y.; Hong, I.K.; Kim, B.R.; Shim, S.M.; Sung Lee, J.; Lee, H.Y.; Soo Choi, C.; Kim, B.K.; Park, T.S. Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology 2015, 62, 135-146. [CrossRef]
- Gao, Z.; Janakiraman, H.; Xiao, Y.; Kang, S.W.; Dong, J.; Choi, J.; Ogretmen, B.; Lee, H.S.; Camp, E.R. Sphingosine-1-phosphate inhibition increases endoplasmic reticulum stress to enhance oxaliplatin sensitivity in pancreatic cancer. World J. Oncol. 2024, 15, 169-180. [CrossRef]
- Wang, Z.; Dong, S.; Zhou, W. Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Mol. Med. Rep. 2024, 30. [CrossRef]
- Apte, M.V.; Wilson, J.S.; Lugea, A.; Pandol, S.J. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 2013, 144, 1210-1219. [CrossRef]
- Yoshida, N.; Masamune, A.; Hamada, S.; Kikuta, K.; Takikawa, T.; Motoi, F.; Unno, M.; Shimosegawa, T. Kindlin-2 in pancreatic stellate cells promotes the progression of pancreatic cancer. Cancer. Lett. 2017, 390, 103-114. [CrossRef]
- Pothula, S.P.; Pirola, R.C.; Wilson, J.S.; Apte, M.V. Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology 2020, 20, 409-418. [CrossRef]
- Wang, Y.; Xu, H.; Zhang, X.; Ma, J.; Xue, S.; Shentu, D.; Mao, T.; Li, S.; Yue, M.; Cui, J., et al. The role of bile acids in pancreatic cancer. Curr. Cancer. Drug. Targets. 2024, 24, 1005-1014. [CrossRef]
- Gál, E.; Veréb, Z.; Kemény, L.; Rakk, D.; Szekeres, A.; Becskeházi, E.; Tiszlavicz, L.; Takács, T.; Czakó, L.; Hegyi, P., et al. Bile accelerates carcinogenic processes in pancreatic ductal adenocarcinoma cells through the overexpression of MUC4. Sci. Rep. 2020, 10, 22088. [CrossRef]
- Režen, T.; Rozman, D.; Kovács, T.; Kovács, P.; Sipos, A.; Bai, P.; Mikó, E. The role of bile acids in carcinogenesis. Cell. Mol. Life Sci. 2022, 79, 243. [CrossRef]
- Feng, H.Y.; Chen, Y.C. Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective. World J. Gastroenterol. 2016, 22, 7463-7477. [CrossRef]
- Nagathihalli, N.S.; Beesetty, Y.; Lee, W.; Washington, M.K.; Chen, X.; Lockhart, A.C.; Merchant, N.B. Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphiregulin and TGF-α: Impact on gastrointestinal cancers driven by secondary bile acids. Cancer Res. 2014, 74, 2062-2072. [CrossRef]
- Liu, R.; Zhao, R.; Zhou, X.; Liang, X.; Campbell, D.J.; Zhang, X.; Zhang, L.; Shi, R.; Wang, G.; Pandak, W.M., et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology 2014, 60, 908-918. [CrossRef]
- Nagahashi, M.; Takabe, K.; Liu, R.; Peng, K.; Wang, X.; Wang, Y.; Hait, N.C.; Wang, X.; Allegood, J.C.; Yamada, A., et al. Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology 2015, 61, 1216-1226. [CrossRef]
- Yang, C.; Yuan, H.; Gu, J.; Xu, D.; Wang, M.; Qiao, J.; Yang, X.; Zhang, J.; Yao, M.; Gu, J., et al. ABCA8-mediated efflux of taurocholic acid contributes to gemcitabine insensitivity in human pancreatic cancer via the S1PR2-ERK pathway. Cell Death Discov. 2021, 7, 6. [CrossRef]
- Xu, J.; Zhou, L.; Du, X.; Qi, Z.; Chen, S.; Zhang, J.; Cao, X.; Xia, J. Transcriptome and lipidomic analysis suggests lipid metabolism reprogramming and upregulating SPHK1 promotes stemness in pancreatic ductal adenocarcinoma stem-like cells. Metabolites 2023, 13. [CrossRef]
- Maines, L.W.; Schrecengost, R.S.; Zhuang, Y.; Keller, S.N.; Smith, R.A.; Green, C.L.; Smith, C.D. Opaganib protects against radiation toxicity: Implications for homeland security and antitumor radiotherapy. Int. J. Mol. Sci. 2022, 23. [CrossRef]
- Guo, Y.X.; Ma, Y.J.; Han, L.; Wang, Y.J.; Han, J.A.; Zhu, Y. Role of sphingosine 1-phosphate in human pancreatic cancer cells proliferation and migration. Int. J. Clin. Exp. Med. 2015, 8, 20349-20354.
- Yang, M.; Wang, L.; Li, S. Clinical significanceof SPHK1 genein pancreatic adenocarcinoma and its effect on proliferation and migration of pancreatic cancer cells. Acta Medicinae Universitatis Scientiae et Technologiae Huazhong. 2021, 50, 8.
- Cai, D.; Su, Y.; Tang, J. Department effect of sphingosine kinase 1 on the proliferation and apoptosis in human pancreatic cancer cell line SW1990. Hainan Medical Journal. 2017, 28, 4.
- Aoki, H.; Aoki, M.; Katsuta, E.; Ramanathan, R.; Idowu, M.O.; Spiegel, S.; Takabe, K. Host sphingosine kinase 1 worsens pancreatic cancer peritoneal carcinomatosis. J. Surg. Res. 2016, 205, 510-517. [CrossRef]
- Karam, M.; Ives, A.; Auclair, C. Is Sphingosine-1-phosphate a regulator of tumor vascular functionality? Cancers (Basel) 2022, 14.
- Gu, Y.; Shea, J.; Slattum, G.; Firpo, M.A.; Alexander, M.; Mulvihill, S.J.; Golubovskaya, V.M.; Rosenblatt, J. Defective apical extrusion signaling contributes to aggressive tumor hallmarks. eLife 2015, 4, e04069. [CrossRef]
- Yamada, T.; Okajima, F.; Ohwada, S.; Kondo, Y. Growth inhibition of human pancreatic cancer cells by sphingosylphosphorylcholine and influence of culture conditions. Cell. Mol. Life Sci. 1997, 53, 435-441. [CrossRef]
- Ohno, Y.; Kanematsu, T. Annular pancreas causing localized recurrent pancreatitis in a child: Report of a case. Surg. Today 2008, 38, 1052-1055. [CrossRef]
- Gutta, A.; Fogel, E.; Sherman, S. Identification and management of pancreas divisum. Expert Rev Gastroenterol Hepatol. 2019, 13, 1089-1105. [CrossRef]
- Dhakal, B.; Pant, S.; Choudhary, S.; Basnet, B.; Neupane, S. Dorsal pancreatic agenesis: A case report. Ann. Med. Surg. (Lond). 2023, 85, 2949-2952. [CrossRef]
- Scharfmann, R. Control of early development of the pancreas in rodents and humans: implications of signals from the mesenchyme. Diabetologia 2000, 43, 1083-1092. [CrossRef]
- Kim, J.W.; Kim, Y.W.; Inagaki, Y.; Hwang, Y.A.; Mitsutake, S.; Ryu, Y.W.; Lee, W.K.; Ha, H.J.; Park, C.S.; Igarashi, Y. Synthesis and evaluation of sphingoid analogs as inhibitors of sphingosine kinases. Bioorg. Med. Chem. 2005, 13, 3475-85. [CrossRef]
- Antoon, J.W.; White, M.D.; Burow, M.E.; Beckman, B.S. Dual inhibition of sphingosine kinase isoforms ablates TNF-induced drug resistance. Oncol. Rep. 2012, 27, 1779-86. [CrossRef]
- Shi, Y.; Qiao, J.; Mu, B.; Zuo, B.; Yuan, J. 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145) ameliorated dexamethasone induced hepatic gluconeogenesis through activation of Akt/FoxO1 pathway. Biochem. Biophys. Res. Commun. 2017, 493, 286-290. [CrossRef]
- Sandborn, W.J.; Vermeire, S.; Peyrin-Biroulet, L.; Dubinsky, M.C.; Panes, J.; Yarur, A.; Ritter, T.; Baert, F.; Schreiber, S.; Sloan, S., et al. Etrasimod as induction and maintenance therapy for ulcerative colitis (ELEVATE): two randomised, double-blind, placebo-controlled, phase 3 studies. Lancet 2023, 401, 1159-1171.
- Ogasawara, A.; Takeuchi, H.; Komiya, H.; Ogawa, Y.; Nishimura, K.; Kubota, S.; Hashiguchi, S.; Takahashi, K.; Kunii, M.; Tanaka, K., et al. Anti-inflammatory effects of siponimod on astrocytes. Neurosci. Res. 2022, 184, 38-46. [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Wolf, D.C.; D'Haens, G.; Vermeire, S.; Hanauer, S.B.; Ghosh, S.; Smith, H.; Cravets, M.; Frohna, P.A., et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N. Engl. J. Med. 2016, 374, 1754-1762. [CrossRef]
- Mork, B.E.; Lamerand, S.R.; Zhou, S.; Taylor, B.K.; Sheets, P.L. Sphingosine-1-phosphate receptor 1 agonist SEW2871 alters membrane properties of late-firing somatostatin expressing neurons in the central lateral amygdala. Neuropharmacology 2022, 203, 108885. [CrossRef]
- Markham, A. Ponesimod: First approval. Drugs 2021, 81, 957-962. [CrossRef]
- Hafizi, R.; Imeri, F.; Stepanovska Tanturovska, B.; Manaila, R.; Schwalm, S.; Trautmann, S.; Wenger, R.H.; Pfeilschifter, J.; Huwiler, A. Sphk1 and Sphk2 differentially regulate erythropoietin synthesis in mouse renal interstitial fibroblast-like cells. Int. J. Mol. Sci. 2022, 23. [CrossRef]
- Paradiso, E.; Lazzaretti, C.; Sperduti, S.; Antoniani, F.; Fornari, G.; Brigante, G.; Di Rocco, G.; Tagliavini, S.; Trenti, T.; Morini, D., et al. Sphingosine-1 phosphate induces cAMP/PKA-independent phosphorylation of the cAMP response element-binding protein (CREB) in granulosa cells. Mol. Cell. Endocrinol. 2021, 520, 111082. [CrossRef]
- Cencetti, F.; Bernacchioni, C.; Tonelli, F.; Roberts, E.; Donati, C.; Bruni, P. TGFβ1 evokes myoblast apoptotic response via a novel signaling pathway involving S1P4 transactivation upstream of Rho-kinase-2 activation. Faseb. J. 2013, 27, 4532-4546.
- Di Pardo, A.; Castaldo, S.; Amico, E.; Pepe, G.; Marracino, F.; Capocci, L.; Giovannelli, A.; Madonna, M.; van Bergeijk, J.; Buttari, F., et al. Stimulation of S1PR5 with A-971432, a selective agonist, preserves blood-brain barrier integrity and exerts therapeutic effect in an animal model of Huntington's disease. Hum. Mol. Genet. 2018, 27, 2490-2501.


| Object | Disease | Subject | Model | Treatment | Effects | Mechanism | Ref. |
|---|---|---|---|---|---|---|---|
| SPHK1 | AP | Severe AP patients | / | / | ↑ Peripheral blood leukocytes SPHK1 in the early stage of severe AP patients | [80] | |
| SPHK1 | AP | Mild and severe AP patients | / | / | ↑ Peripheral blood leukocytes SPHK1 in the early stage of mild and severe AP patients. | / | [81] |
| SPHK1/S1PR3 | AP | Severe AP patients | / | / | ↑ SPHK1 and S1PR3 in the early stage of severe AP patients, but recovered to normal level at the restoration stage. SPHK1 expression of peripheral neutrophils, monocytes, and CD4+ T lymphocytes was positively correlated with the APACHE score of severe AP patients | [82] | |
| S1P | AP | Wistar rats | Cerulein | / | ↑Pancreatic S1P | / | [25] |
| S1P | AP | Severe AP patients | / | / | ↓Plasma S1P in severe AP patients | / | [85] |
| SPHK2/S1P | AP | AP patients | / | / | ↓Serum S1P in AP patients | / | [86] |
| Female C57BL/6 mice | Cerulein | / | ↓Serum S1P, pancreatic S1P and SPHK2 | ||||
| AR42J cells | Cerulein | / | ↓S1P, SPHK2 | ||||
| S1P | AP | AP patients | / | / | ↑ Plasma S1P in the early stage (days 1 and 3) of mild AP patients, then returned to normal level at day 7 | / | [87] |
| ↓ Plasma S1P in the early stage (days 1 and 3) of severe AP patients, then returned to normal level at day 7 | |||||||
| S1PR2 | AP | Male ICR mice | Cerulein, injection of TCA into the pancreatic duct | / | ↑Pancreatic S1PR2 | S1PR2 regulated ROCK/NF-κB signaling | [26] |
| Inhibition of S1PR2 by JTE-013, knockdown of S1pr2 | ↓Pancreatic damage, NF-κB | ||||||
| PACs, primary peritoneal macrophages, RAW264.7 cells | TCA | / | ↑S1PR2 | ||||
| Inhibition of S1PR2 by JTE-013, knockdown of S1pr2 | ↓NF-κB, macrophage recruitment and macrophage polarization toward the M1 phenotype | ||||||
| S1PR | AP | Female apolipoprotein CIII transgenic C57BL/6J mice | Cerulein | Modulation of S1PR by FTY720 | ↓Pancreatic pathological injury, MCP-1 | / | [92] |
| S1PR | AP | Wistar rats | Injection of 5% sodium taurocholate into the biliopancreatic duct | Modulation of S1PR by FTY720 | ↓IL-6, IL-10 and TNF-α in plasma/serum, necrosis, inflammation and number of CD4+/CD8+ cells in pancreas | / | [66] |
| S1PR1 | AP | Male ICR mice | Cerulein | Activation of S1PR1 by SEW2871 | ↓Pathological injury of pancreas, serum amylase, lipase, IL-6 and TNF-α, pancreatic MPO, number of CD45+CD4+ T lymphocytes in the peripheral blood, infiltration of CD4+ T cells in pancreas, inflammation | S1PR1 regulated the phosphorylation of STAT3 | [93] |
| SPHK1 | AP | Male C57BL/6J mice | Cerulein | / | ↑Pancreatic SPHK1 | SPHK1 regulated PERK/TXNIP/NLRP3 signaling | [83] |
| Knockout of Sphk1 | ↓Pancreatic damage, pyroptosis, endoplasmic reticulum stress | ||||||
| 266-6 cells | CCK8 | / | ↑ SPHK1 | ||||
| Knockdown of Sphk1 | ↓LDH, pyroptosis, endoplasmic reticulum stress | ||||||
| SPHK1 | AP | SD rats | Injection of 5% sodium taurocholate into the biliopancreatic duct | / | ↑SPHK1 in pancreas and peripheral blood neutrophils | / | [61] |
| Inhibition of SPHK1 by SKI 5c | ↑Survival rate | ||||||
| ↓Serum amylase, lipase, TNF-α and IL-1β; MPO in the lung, protein content of bronchoalveolar lavage fluid, pathological injury of the lung | |||||||
| S1P/S1PR | AP | Male Wistar rats | Injection of 5% sodium taurocholate into the biliopancreatic duct | 100 μg/kg S1P, i.p., once, modulation of S1PR by FTY720 | ↓IL-1β, IL-6, TNF-α, protein concentration, total cell count, PMN percentage in bronchoalveolar lavage fluid, NF-κB activity of alveolar macrophages, capillary leakage and MPO in the lung. Pathological injury of pancreas and lung | / | [67] |
| S1P | AP | Wistar rats | Injection of 5% sodium taurocholate into the biliopancreatic duct | 50 μg/kg S1P, i.p., once | ↓Serum amylase and lipase, protein concentration, leucocyte and neutrophil count of bronchoalveolar lavage fluid, MPO of the lung tissue, pathological injury of pancreas and lung | / | [100] |
| S1PR2 | AP | Male C57BL/6 mice | Cerulein+ lipopolysaccharide | Inhibition of S1PR2 by JTE-013 | ↓Pathological injury of pancreas, inflammation, intestinal tissue injury and pyroptosis | S1PR2 regulated RhoA/ROCK signaling | [57] |
| THP-1 cells | Lipopolysaccharide +ATP | Knockdown or overexpression of S1pr2 | S1PR2 positively regulated macrophage pyroptosis, and negatively regulated cohesin expression in FHC cells after co-culture of FHC and THP-1 cells | ||||
| S1P/S1PR2 | CP | Male Wistar rats | Dibutyltin dichloride | / | ↑Plasma and pancreatic S1P | S1P binding to S1PR2 promoted PSC activation and pancreatic fibrosis in CP by regulating autophagy and the NLRP3 inflammasome sequentially | [71] |
| 200 μg/kg/day S1P, i.p., 4 weeks | ↑Pancreatic damage, fibrosis, autophagy, S1PR2, NLRP3 | ||||||
| PSCs | / | 5 μM S1P, 24h | ↑PSC activation, autophagy, S1PR2, NLRP3 | ||||
| Inhibition of S1PR2 by JTE-013, knockdown of S1pr2 | ↓PSC activation, autophagy, NLRP3 | ||||||
| SPHK1/S1P/S1PR2 | CP | C57BL/6 mice | Cerulein, pancreatic duct ligation | / | ↑Serum S1P, pancreatic SPHK1, S1PR2 | PACs-derived S1P contributed to fibrosis of CP via inducing autophagy and activation of PSCs through the AMPK/mTOR signaling | [59] |
| Knockout of Sphk1, inhibition of SPHK1 or S1PR2 by PF-543 and JTE-013, respectively | ↓Pathological injury of pancreas, fibrosis, inflammation, atrophy of the pancreas | ||||||
| PACs | CCK, hypoxia | / | ↑SPHK1, S1P in PACs | ||||
| Knockout of Sphk1 in PACs, PSCs treated with S1P, knockdown of S1pr2 or inhibition of S1PR2 in PSCs | SPHK1/S1P/S1PR2 signaling positively regulated activation and autophagy of PSCs | ||||||
| S1PR | CP | Male Wistar rats | Male WBN/Kob rats | Modulation of S1PR by FTY720 | ↑Pancreas weights | S1PR regulated IFN-γ and TGF-β1 expression | [68] |
| ↓Pancreatic MPO activity, hydroxyproline content, pathological injury of pancreas, inflammation, fibrosis, necrosis, infiltration of CD4 and CD8-positive T cells in the pancreas | |||||||
| S1P | PC | C57BL/6 mice | PANC-2 cells, subcutaneous | PhotoImmunoNanoTherapy | ↓Tumor volume | / | [112] |
| Athymic nude mice | Human BxPC-3-GFP cells, orthotopic | PhotoImmunoNanoTherapy | ↑Surem S1P | ||||
| SPHK2 | PC | BxPC-3 cells | / | Inhibition of SPHK2 by ABC294640, sorafenib | ↓Cell viability, ↑Cell apoptosis | / | [78] |
| SCID mice | Human BxPC-3 cells, subcutaneous | Inhibition of SPHK2 by ABC294640, sorafenib | ↓Tumor growth, ↑Tumor cell apoptosis | ||||
| SPHK2 | PC | SCID mice | Human BxPC-3 cells, subcutaneous | Inhibition of SPHK2 by ABC294640 | ↓Tumor growth | / | [63] |
| SPHK1 | PC | BxPC-3 or PANC-1 cells | Gemcitabine | Inhibition of SPHK1 by SKI or knockdown of Sphk1 | ↓Cell viability | / | [114] |
| Overexpression of Sphk1 | ↑Cell viability | ||||||
| SPHKs/S1P | PC | C57BL/6 mice | PDAC cells, metastatic | PAPTP + ABC294640 | ↓Tumor growth | SPHKs regulated the mitochondrial Kv1.3 ion | [124] |
| MIA PaCa-2 cells | Inhibition of Kv1.3 by PAPTP | / | ↑Sphingosine, S1P-phosphatase | ||||
| Inhibition of S1P-phosphatase by XY-14 | ↓Sphingosine, death of pancreas cancer cells | ||||||
| Inhibition of SPHK2 by ABC294640 | ↑Sphingosine, death of pancreas cancer cells | ||||||
| SPHK1/S1P | PC | MIA PaCa-2, PANC-1 or Capan-1 cells | / | Inhibition of SPHK1 by mebendazole | ↓Cell migration, proliferation and viability, ↑Cell mitochondrial apoptosis | SPHK1 regulated the intrinsic mitochondrial pathway, JAK2/STAT3 and FAK/Vimentin signaling pathway | [125] |
| SPHKs | PC | PSN1 cells | / | Inhibition of SPHKs by SKI-II | ↓Cell proliferation | SPHKs regulated the ratio of S1P/C16 Cer | [62] |
| S1PR1 | PC | MIA PaCa-2 or PAN02 cells | / | Inhibition of S1PR1 by FTY720 | ↓Cell migration, proliferation | S1PR1 regulated the mitochondrial membrane potential, S1PR1-STAT3 loop, and epithelial to mesenchymal transition | [69] |
| MIA PaCa-2 or PAN02 cells | Gemcitabine | Inhibition of S1PR1 by FTY720 | ↑Cell death, ↓Cell proliferation | ||||
| NOD.CB17-Prkdcscid/J mice or C57BL/6 mice | luciferase-tagged MIA PaCa-2 cells | Treatment of FTY720 and gemcitabine | ↓Tumor volume, tumor cell metastasis, proliferation, ↑Cell apoptosis or necrosis | ||||
| SPHK2 | PC | MIA PaCa-2 or PANC-1 cells | Oxaliplatin | Inhibition of SPHK2 by ABC294640 or knockdown of Sphk2 | ↓Cell viability, ↑ER stress | SPHK2 modulated ER stress, thereby regulating PERK/eIF2α phosphorylation and ICD | [130] |
| Male C57BL/6 mice | KPC cells, orthotopic | Oxaliplatin +ABC294640 | ↓Tumor weight, ↑ICD | ||||
| S1P/S1PR2 | PC | PANC-1 or L3.6 cells | Conditioned media collected from S1P-treated PSCs | / | ↑Cell proliferation, migration | S1P regulated tumor microenvironment and the interactions of PSCs with cancer cells | [28] |
| PANC-1 cells | Conditioned media collected from S1P-treated PSCs | Inhibition of S1PR2 by JTE-013, Knockdown of S1pr2 | ↓Cell migration, invasion | ||||
| Male nude mice | L3.6 cells + PSCs or ASPC-1 cells + PSCs, orthotopic | / | ↑Tumor volume, weight, metastasis | ||||
| Knockdown of S1pr2 | ↓Tumor volume, weight, metastasis | ||||||
| S1PR2 | PC | PANC-1 or CFPAC-1 cells | Gemcitabine | Inhibition of S1PR2 by JTE-013 | ↑Gemcitabine -induced apoptosis, ↓Cell migration, invasion | TCA contributes to gemcitabine ineffectiveness by activating S1PR2/ERK signaling | [142] |
| S1P/S1PR2 | PC | Male C57BL/6 mice | PANC-2-luc cells + bile duct ligation, orthotopic,metastatic | Activation of S1PR2 by CYM5520 | ↑Tumor growth | / | [58] |
| Treated with anti-S1P-antibody, sphingomab | ↓Survival, ↑tumor burden | ||||||
| PANC-2-luc or ASPC-1 cells | TCA, CYM5520 | / | ↑Cell growth | ||||
| Inhibition of S1PR2 by JTE-013 | ↓Cell growth, migration, viability | ||||||
| Inhibition of all S1PRs except S1PR2 by FTY720 | ↑Cell viability | ||||||
| SPHKs | PC | PAN02 cells | / | Knockdown of Sphk1 | ↑Cell proliferation, migration | / | [27] |
| PAN02 cells | / | Knockdown of Sphk2 | ↓Cell proliferation, migration | ||||
| Male C57BL/6 mice | Sphk1 KO PAN02 cells | / | ↑Survival | ||||
| Male C57BL/6 mice | Sphk2 KO PAN02 cells | / | ↓Survival | ||||
| Sphingosine | PC | Male nude mice | PANC-1 or PANC-1 TRCs, orthotopic | / | Sphingosine significantly decreased in TRCs | / | [143] |
| SPHK2 | PC | Male C57BL/6 mice | PAN02 cells | Inhibition of SPHK2 by ABC294640 | ↓Tumor growth | / | [144] |
| S1P | PC | Capan-1 or PANC-1 cells | / | S1P, 0.5 and 1 μΜ; Inhibition Src by PP2 | ↓Cell proliferation, migration | / | [145] |
| SPHK1 | PC | BxPC-3 cells | / | Overexpression of Sphk1 | ↑Cell proliferation, migration | / | [146] |
| SPHK1 | PC | SWl990 cells | / | Inhibition of SPHK1 by DMS | ↓Cell proliferation, ↑Cell apoptosis | / | [147] |
| Activation of SPHK1 by phorbol 12-myristate13-acetate | ↑Cell proliferation, ↓Cell apoptosis | ||||||
| S1P/S1PRs | PC | PANC-1 cells | / | S1P, 20-200 nΜ; Inhibition of S1PRs by VPC23019 | ↓Cell migration, invasion | / | [79] |
| S1P | PC | Female athymic nude mice | PANC-2-SAL, TPAN1-IFA, metastatic | Inhibition of S1P Lyase by LX2931 | ↓Tumor volume, Hypoxia marker | S1P regulated tumor hypoxia and therapy efficacy in solid tumors | [149] |
| S1PR2 | PC | Nude mice | HPAF II tumor cells expressing S1PR2-GFP | / | ↓Tumor size and metastatic frequency | / | [150] |
| S1P | PC | PANC-1 or MIA PaCa-2 cells | / | S1P, 0-10 μΜ | ↓DNA synthesis | / | [151] |
| SPHK1 | PC | C57BL/6 mice | PANC-2-luc cells | Knockout of Sphk1 | ↓Tumor burden, cell proliferation | / | [148] |
| S1P | DDP | In vitro culture of pancreatic explants of mice embryos | Cdh2–/– (N-cadherin knockout) | S1P, 0.1 µM | ↑ Early morphogenesis of the dorsal pancreas, formation of the dorsal pancreatic bud, dorsal pancreatic mesenchymal cell proliferation, development of dorsal pancreatic endoderm, mesenchyme and endothelium | S1P stimulated mesenchymal cell proliferation | [29] |
| S1PR | DDP | C57BL6 mice embryos | / | Knockout of S1pr | ↓ Volume of the dorsal and ventral pancreata, proliferation of Pdx1+ progenitors | S1PR regulated proliferation rate of Pdx1+ progenitors, hypervascularization | [30] |
| ↑ Aberrant development of the pancreatic endoderm, vascular density of dorsal pancreas | |||||||
| S1PR2 | DDP | C57BL/6J mice embryos | / | Knockout of S1pr2 | ↓ Development of pancreas, survival and commitment of pancreas progenitors, endocrine and acinar differentiation | S1PR2 regulated Gαi-mediated YAP stabilization and Notch attenuation, then partially activated CTGF | [56] |
| ↑ Lpar1, S1PR3 in the epithelium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).




















