1. Introduction
Let
be a finite dimensional Hilbert space. Given an orthonormal basis
for
, the
Shannon entropy at a point
is defined as
where
. In 1983, Deutsch derived following uncertainty principle for Shannon entropy [
1].
Theorem 1.1 (
Deutsch Uncertainty Principle) [
1]). (
Let , be two orthonormal bases for a finite dimensional Hilbert space . Then
Using Buzano inequality, it is easy to see that Theorem 1.1 holds for Parseval frames [
2]. Note that Inequality (
1) is for the sum of entropies and not for the product. It is best if we have uncertainty principles for the product because once we have an uncertainty principle for the product, then the uncertainty principle for the sum follows from the AM-GM inequality. Following is a small list of uncertainty principle (UP) for the product.
Heisenberg-Robertson-Schrodinger UP and its various generalizations [
3,
4,
5,
6,
7,
8,
9].
Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani support size UP [
10,
11,
12].
Smith UP and its generalizations [
13,
14,
15,
16].
Kuppinger-Durisi-Bölcskei support size UP and its generalization [
17,
18].
A. Wigderson-Y. Wigderson UP [
19].
Jiang-Liu-Wu subfactor UP [
22].
Bandeira-Lewis-Mixon numerical sparsity UP [
23].
UP over finite fields [
24,
25,
26].
It seems that for logarithm functions, we can not have uncertainty for the product of entropies using coherence. In this paper, we derive an uncertainty principle for the product of entropies coming from certain functions.
2. Product Entropic Uncertainty Principle
In the paper,
denotes
or
and
denotes a Hilbert space (need not be finite dimensional) over
. We need the notion of continuous frame which is introduced independently by Ali, Antoine and Gazeau [
30] and Kaiser [
31].
Definition 2.1 ([
30,
31]).
Let be a measure space. A collection in a Hilbert space is said to be a continuous Parseval frame for if the following conditions hold.
- (i)
For each , the map is measurable.
- (ii)
Recall that a continuous Parseval frame
for
is said to be
1-bounded if
Let be a function satisfying following.
In the entire paper, we assume that
satisfies above conditions. Given such a
and a 1-bounded continuous Parseval frame
for
, we define entropy
where
. Since
is continuous, the integral exists. Before deriving the theorem of this paper, we need a powerful inequality.
Lemma 2.1 (
Buzano Inequality) [
32,
33,
34]). (
Let be a Hilbert space. Then
Theorem 2.1.
Let , be measure spaces. Let and be 1-bounded continuous Parseval frames for . Then
Proof. Let
. Then using the properties of
and Lemma 2.1, we get
□
Theorem 2.1 gives the following question.
Question 2.1. Let , be measure spaces, be a Hilbert space. For which pairs of 1-bounded continuous Parseval frames and for , we have equality in Inequality (2)?
In 1988, Maassen and Uffink (motivated from the conjecture by Kraus made in 1987 [
35]) improved Deutsch entropic uncertainty principle.
Theorem 2.2 ([
36] ).
(Maassen-Uffink Entropic Uncertainty Principle) Let , be two orthonormal bases for a finite dimensional Hilbert space . Then
In 2013, Ricaud and Torrésani [
11] showed that orthonormal bases in Theorem 2.2 can be improved to Parseval frames.
Theorem 2.3 ([
11] ).
(Ricaud-Torrésani Entropic Uncertainty Principle) Let , be two Parseval frames for a finite dimensional Hilbert space . Then
Proofs of Theorems 2.2 and 2.3 use Riesz-Thorin interpolation and the differentiability of logarithm function. We therefore end by formulating the following problem.
Problem 2.1.
Let and be 1-bounded continuous Parseval frames for . For which functions ϕ, we have
References
- Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 1983, 50, 631–633. [Google Scholar] [CrossRef]
- Mahesh Krishna, K. Functional Deutsch uncertainty principle. J. Class. Anal. 2024, 23, 11–18. [Google Scholar] [CrossRef]
- Schrödinger, E. About Heisenberg uncertainty relation (original annotation by A. Angelow and M.-C. Batoni). Bulgar. J. Phys. 1999, 26, 193–203, Translation of Proc. Prussian Acad. Sci. Phys. Math. Sect. 19 (1930), 296–303. [Google Scholar]
- von Neumann, J. Mathematical foundations of quantum mechanics; Princeton University Press, Princeton, NJ, 2018; pp. xviii+304. [CrossRef]
- Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Heisenberg, W. The physical content of quantum kinematics and mechanics. In Quantum Theory and Measurement; Wheeler, J.A.; Zurek, W.H., Eds.; Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1983; pp. 62–84.
- Folland, G.B.; Sitaram, A. The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 1997, 3, 207–238. [Google Scholar] [CrossRef]
- Selig, K.K. Uncertainty principles revisited. Electron. Trans. Numer. Anal. 2002, 14, 165–177. [Google Scholar]
- Goh, S.S.; Micchelli, C.A. Uncertainty principles in Hilbert spaces. J. Fourier Anal. Appl. 2002, 8, 335–373. [Google Scholar] [CrossRef]
- Elad, M.; Bruckstein, A.M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory 2002, 48, 2558–2567. [Google Scholar] [CrossRef]
- Ricaud, B.; Torrésani, B. Refined support and entropic uncertainty inequalities. IEEE Trans. Inform. Theory 2013, 59, 4272–4279. [Google Scholar] [CrossRef]
- Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
- Smith, K.T. The uncertainty principle on groups. SIAM J. Appl. Math. 1990, 50, 876–882. [Google Scholar] [CrossRef]
- Alagic, G.; Russell, A. Uncertainty principles for compact groups. Illinois J. Math. 2008, 52, 1315–1324. [Google Scholar] [CrossRef]
- Chua, K.S.; Ng, W.S. A simple proof of the uncertainty principle for compact groups. Expo. Math. 2005, 23, 147–150. [Google Scholar] [CrossRef]
- Meshulam, R. An uncertainty inequality for groups of order pq. European J. Combin. 1992, 13, 401–407. [Google Scholar] [CrossRef]
- Kuppinger, P.; Durisi, G.; Bölcskei, H. Uncertainty relations and sparse signal recovery for pairs of general signal sets. IEEE Trans. Inform. Theory 2012, 58, 263–277. [Google Scholar] [CrossRef]
- Studer, C.; Kuppinger, P.; Pope, G.; Bölcskei, H. Recovery of sparsely corrupted signals. IEEE Trans. Inform. Theory 2012, 58, 3115–3130. [Google Scholar] [CrossRef]
- Wigderson, A.; Wigderson, Y. The uncertainty principle: variations on a theme. Bull. Amer. Math. Soc. (N.S.) 2021, 58, 225–261. [Google Scholar] [CrossRef]
- Maccone, L.; Pati, A.K. Stronger Uncertainty Relations for All Incompatible Observables. Phys. Rev. Lett. 2014, 113, 260401. [Google Scholar] [CrossRef]
- Goh, S.S.; Goodman, T.N.T. Uncertainty principles in Banach spaces and signal recovery. J. Approx. Theory 2006, 143, 26–35. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, Z.; Wu, J. Noncommutative uncertainty principles. J. Funct. Anal. 2016, 270, 264–311. [Google Scholar] [CrossRef]
- Bandeira, A.S.; Lewis, M.E.; Mixon, D.G. Discrete uncertainty principles and sparse signal processing. J. Fourier Anal. Appl. 2018, 24, 935–956. [Google Scholar] [CrossRef]
- Evra, S.; Kowalski, E.; Lubotzky, A. Good cyclic codes and the uncertainty principle. Enseign. Math. 2017, 63, 305–332. [Google Scholar] [CrossRef]
- Borello, M.; Willems, W.; Zini, G. On ideals in group algebras: an uncertainty principle and the Schur product. Forum Math. 2022, 34, 1345–1354. [Google Scholar] [CrossRef]
- Feng, T.; Hollmann, H.D.L.; Xiang, Q. The shift bound for abelian codes and generalizations of the Donoho-Stark uncertainty principle. IEEE Trans. Inform. Theory 2019, 65, 4673–4682. [Google Scholar] [CrossRef]
- Bosso, P.; Luciano, G.G.; Petruzziello, L.; Wagner, F. 30 years in: quo vadis generalized uncertainty principle? Classical Quantum Gravity 2023, 40, 195014. [Google Scholar] [CrossRef]
- Tawfik, A.; Diab, A. Generalized uncertainty principle: Approaches and applications. International Journal of Modern Physics D 2014, 23, 1430025. [Google Scholar] [CrossRef]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D (3) 1995, 52, 1108–1118. [Google Scholar] [CrossRef]
- Ali, S.T.; Antoine, J.P.; Gazeau, J.P. Continuous frames in Hilbert space. Ann. Physics 1993, 222, 1–37. [Google Scholar] [CrossRef]
- Kaiser, G. A friendly guide to wavelets; Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011; pp. xx+300. [CrossRef]
- Buzano, M.L. Generalizzazione della diseguaglianza di Cauchy-Schwarz. Rend. Sem. Mat. Univ. e Politec. Torino 1971/73, 31, 405–409 (1974).
- Fujii, M.; Kubo, F. Buzano’s inequality and bounds for roots of algebraic equations. Proc. Amer. Math. Soc. 1993, 117, 359–361. [Google Scholar] [CrossRef]
- Steele, J.M. The Cauchy-Schwarz master class; Cambridge University Press, Cambridge, 2004; pp. x+306. [CrossRef]
- Kraus, K. Complementary observables and uncertainty relations. Phys. Rev. D (3) 1987, 35, 3070–3075. [Google Scholar] [CrossRef]
- Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103–1106. [Google Scholar] [CrossRef]
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).