Submitted:
10 October 2024
Posted:
11 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials, Methods and Sample Descriptions
2.1. Study Area
2.2. Sediment Sampling

2.2.1. Sampling Point 1
2.2.2. Sampling Point 2
2.2.3. Sampling Point 3
2.2.4. Sampling Point 4
2.2.5. Sampling Point 5
2.3. Grain-Size and Mineralogical Features


2.4. Analysis Methods Description
2.4.1. OSL Dating
2.4.2. Radiocarbon Dating
3. Results
4. Discussion
4.1. Evaluation of the Catastrophe Hypothesis of Grodzicki
4.2. Advancement in Fluvial Geomorphology Knowledge
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Geological Survey and Inferences Drawn from it




Appendix B. Supplementary OSL Data

References
- Orefici, G. Cahuachi. Capital Teocrática Nasca; Fundo Editorial Universidad SMP: Lima, Peru, 2012. (In Spanish).
- Orefici, G. Nasca historical and cultural analysis. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 65–86.
- Delle Rose, M. The geology of Cahuachi. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 47–64.
- Grodzicki, J. Las catástrofes ecológicas en la Pampa de Nazca a fines del Holoceno y el fenómeno El Niño. In Proceedings of th El Fenómeno El Niño: A Través de las Fuentes Arqueológicas y Geológicas, Warsaw, Poland, 18–19 May 1990; pp. 64–102. (In Spanish).
- Grodzicki, J. Los geoglifos de Nazca segun algunos datos geologicos. In Paleo ENSO Records; Ortlieb, L., Machare, J., Eds.; Orstom-Concytec: Lima, Peru, 1992; pp. 119–130. (In Spanish).
- Grodzicki, J. Nasca: Los Sintomas Geológicos del Fenómeno El Niño y Sus Aspectos Arquelógicos; Warsaw University: Warsaw, Poland, 1994. (In Spanish).
- Silverman, H.; Proulx, D.A. The Nasca; Blackwell Publishers: Malden, MA, USA, 2002.
- Eitel, B.; Hecht, S.; Mächtle, B.; Schukraft, G.; Kadereit, A.; Wagner, G.A.; Kromer, B.; Unkel, I.; Reindel, M. Geoarchaeological evidence from desert loess in the Nazca–Palpa region, Southern Peru: Palaeoenvironmental changes and their impact on Pre-Columbian cultures. Archaeometry 2005, 47, 137–158. [CrossRef]
- Delle Rose, M. Landscape Modifications Ascribed to El Niño Events in Late Pre-Hispanic Coastal Peru. Land 2022, 11, 2207. [CrossRef]
- Delle Rose, M.; Mattioli, M.; Capuano, N.; Renzulli, A. Stratigraphy, Petrography and Grain-Size Distribution of Sedimentary Lithologies at Cahuachi (South Peru): ENSO-Related Deposits or a Common Regional Succession? Geosciences 2019, 9, 80. [CrossRef]
- Leon, W.; Aleman, A.; Torres, V.; Rosell, W.; De La Cruz, O. Estratigrafía, sedimentología y Evolución de la Cuenca Pisco Oriental Boletín serie D, n. 27; INGEMMET: Lima, Peru, 2008. (In Spanish).
- Sebrier, M.; Macharé, J. Observaciones acerca del Cuaternario de la Costa del Perù Central. Bull. Inst. Fr. Études Andines 1980, 9, 9–52. (In Spanish). [CrossRef]
- Machare, J. La marge continentale du Pérou: Régimes tectoniques et sédimentaires cénozoïques de l’avant-arc des Andes centrales. Thèse Doct. Sc., Université Paris XI, Orsay, France, 1987. (In French).
- De La Cruz, J.; De La Cruz, O. Memoria descriptiva de la revision y actualizacion del cuadrangulo de Nasca (30-n); INGEMMET: Lima, Peru, 2003. (In Spanish).
- Leon, W.; Torres, V. Memoria descriptiva de la revisión y actualización del cuadrángulos de Punta Grande (29-k), Ica (29-l), Lomitas (30-l), Palpa (30-m), San Juan (31-m), Acari (31-n), y Yauca (32-n); INGEMMET: Lima, Peru, 2003. (In Spanish).
- Hall, S.R.; Farber, D.L.; Audin, L.; Finkel, R.C.; Meriaux, A.S. Geochronology of pediment surfaces in southern Peru: Implications for Quaternary deformation of the Andean Forearc. Tectonophysics 2008, 459, 186–205. [CrossRef]
- Viveen, W.; Sanjurjo-Sanchez, J.; Rosas, M.A.; Vanacker, V.; Villegas-Lanza, J.C. Heinrich events and tectonic uplift as possible drivers for late Quaternary fluvial dynamics in the western Peruvian Andes. Glob. Planet. Change 2022, 218, 103972. [CrossRef]
- Machtle, B.; Unkel, I.; Eitel, B.; Kromer, B.; Schiegl, S. Molluscs as evidence for a Late Pleistocene and Early Holocene humid period in the northern Atacama desert, southern Peru (14.5 S). Quat. Res. 2010, 73, 39–47. [CrossRef]
- Bromley, G.R.M.; Schaefer, J.M.; Winckler, W.; Hall, B.L.; Todd, C.E.; Rademaker, K.M. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quat. Sci. Rev. 2009, 28, 2514–2526.
- Rodbell, D.T.; Hatfield, R.G.; Abbott, M.B.; Chen, C.Y.; Woods, A.; Stoker, J.S. et al. 700,000 years of tropical Andean glaciation. Nature 2022, 607, 301–306.
- Machtle, B.; Eitel, B.; Kadereit, A.; Unkel, I. Holocene environmental changes in the northern Atacama desert, southern Peru and their impact on the rise and fall of Pre-Columbian cultures. Z. Geomorphol. Suppl. 2006, 142, 47–62.
- Eitel, B.; Machtle, B. Man and Environment in the Eastern Atacama Desert (Southern Peru): Holocene Climate Changes and Their Impact on Pre-Columbian Cultures. In New Technologies for Archaeology; Reindel, M., Wagner, G.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 17–37.
- Miall, A.D. Lithofacies types and vertical profile models in braided river deposits: a summary. In Fluvial Sedimentology; Miall, A.D., Ed.; Canadian Petroleum Geology Society: Calgary, Canada, 1978; pp. 597–604.
- Miall, A.D. Methods of architectural-element analysis. In The geology of fluvial deposits; Miall, A.D., Ed.; Springer: Berlin, Heidelberg, Germany, 2006; pp. 75–98.
- INGEMMET. Mapa Geologico del Cuadrangulo de Palpa, 2nd ed.; Ministerio de Energía y Minas: Lima, Peru, 2001.
- Orefici, G. The decline of Cahuachi and the end of the Nasca theocracy. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 449–468.
- Lasaponara, R.; Masini, N. Combating illegal excavations in Cahuachi: ancient problems and modern technologies. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 605–633.
- Orefici, G. Recent discoveries in Cahuachi: The Templo Sur. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 363–374.
- Huntley, D.; Godfrey-Smith, D.; Thewalt, M. Optical dating of sediments. Nature 1985, 313, 105–107.
- Aitken, M.J. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence, 1st ed.; Oxford University Press: Oxford, UK, 1998; 280 pp.
- Galbraith, R.F.; Roberts, R.G.; Laslett, G.M.; Yoshida, H.; Olley, J.M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 1999, 41, 339–364.
- Murray, A.S.; Wintle, A.G. Luminescence Dating of Quartz Using an Improved Single Aliquot Regenerative-Dose Protocol. Radiat. Meas. 2000, 32, 57–73.
- Wintle, A.G.; Murray, A.S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocol. Radiat. Meas. 2006, 41, 369–391.
- Panzeri, L.; Galli, A.; Maspero, F.; Saleh, M.; Martini, M. The activities of the LAMBDA (Laboratory of Milano Bicocca university for Dating and Archaeometry): What’s new? J. Phys. Conf. Ser. 2022, 2204, 012047.
- Duller, G.A.T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 2003, 37, 161–165.
- Faershtein, G.; Porat, N.; Avni, Y.; Matmon, A. Aggradation-incision Transition in Arid Environments at the End of the Pleistocene: an Example from the Negev Highlands, Southern Israel. Geomorphology 2016, 253, 289–304.
- A Medialdea, KJ Thomsen, AS Murray, G Benito. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quat. Geochronol. 2014, 22, 11–24.
- Aitken, M.J. Thermoluminescence Dating, 1st ed.; Academic Press: London, Uk, 1985; 153 pp.
- Bell, W.T. Attenuation Factors for the Absorbed Radiation Dose in Quartz Inclusions for Thermoluminescence Dating. Ancient TL 1979, 8, 2–13.
- Calcagnile, L.; Maruccio, L.; Scrimieri, L.; Delle Side, D.; Braione, E.; D’Elia, M.; Quarta, G. Development and application of facilities at the Centre for Applied Physics, Dating and Diagnostics (CEDAD) at the University of Salento during the last 15 years. Nucl. Instrum. Methods Phys. Res., B 2019, 456, 252–256.
- D’Elia, M.; Calcagnile, L.; Quarta, G.; Rizzo, A.; Sanapo, C.; Laudisa, M.; Toma, U.; Rizzo, A. Sample preparation and blank values at the AMS radiocarbon facility of the University of Lecce. Nucl. Instrum. Methods Phys. Res., B 2004, 223–224, 278–283.
- Hajdas, I.; Ascough, P.; Garnett, M.H.; Fallon, S.J.; Pearson, C.L.; Quarta, G.; Spalding, K.L.; Yamaguchi, H.; Yoneda, M. Radiocarbon Dating. Nat. Rev. Methods Prim. 2021, 1, 62.
- Steffen, D.; Schlunegger, F.; Preusser, F. Drainage basin response to climate change in the Pisco valley, Peru. Geology 2009, 37, 491–494.
- Viveen, W.; Baby, P.; Sanjurjo-Sanchez, J.; Hurtado-Enríquez, C. Fluvial terraces as quantitative markers of late Quaternary detachment folding and creeping thrust faulting in the Peruvian Huallaga basin. Geomorphology 2020, 367, 1–23.
- Baby, P.; Viveen, W.; Sanjurjo-Sanchez, ´ J.; Bigot, J.-Y.; Dosseto, A., Villegas-Lanza, J.C.; Apa´estegui, J.; Guyot, J.-L.; First record of OSL-dated fluvial sands in a tropical Andean cave reveals rapid late Quaternary tectonic uplift. Terra Nova 2021, 33, 262–273.
- Sanjurjo-Sanchez, J.; Viveen, W.; Vega-Centeno Sara-Lafosse, R. Testing the accuracy of OSL and pIR IRSL dating of young geoarchaeological sediments in coastal Peru. Quat. Geochronol. 2022, 73, 101382.
- Viveen, W., Zevallos-Valdivia, L., Sanjurjo-Sanchez, J. The influence of centennial-scale variations in the South American summer monsoon and base-level fall on Holocene fluvial systems in the Peruvian Andes. Global Planet. Change 2019, 176, 1–22.
- Viveen, W., Sanjurjo-Sanchez, J., Baby, P., Gonz´ alez-Moradas, M.d.A. An assessment of competing factors for fluvial incision: an example of the late Quaternary exorheic Moyobamba basin. Peruvian Subandes. Global Planet. Change 2021, 200, 1–24, 103476.
- Bailey, R.M. The interpretation of quartz optically stimulated luminescence equivalent dose versus time plots. Radiat. Meas. 2000, 32, 129–140.
- Bailey, R.M. Paper II: The interpretation of measurement-time-dependent single-aliquot equivalent-dose estimates using predictions from a simple empirical model. Radiat. Meas. 2003, 37, 685–691.
- Li, B., Li, S.-H. Comparison of De estimates using the fast component and the medium component of quartz OSL. Radiat. Meas. 2006, 41, 125–136.
- Magnini, L.; Pozzi-Escot, D.; Oshiro, J.; Angeles, R.; Apa, M.I.P.; Ventura, G. Effects of the Architectural Layout of the Sanctuary of Pachacamac (2nd–16th Century CE, Peru) on the Exposure to Rain, Wind, and Solar Radiation from the Morphometric Analysis of Digital Surface Models. Remote Sens. 2024, 16, 1848.
- Silverman, H.; Browne, D. New Evidence for the Date of the Nazca Lines. Antiquity 1991, 65, 208–220.
- Bray, W. Under the skin of Nazca. Nature 1992, 358, 19.
- Rink, W.J.; Bartoll, J. Dating the geometric Nasca lines in the Peruvian desert. Antiquity 2005, 79, 390–401.
- Unkel, I.; Kromer, B.; Reindel, M.; Wacker, L.; Wagner, G.A. A Chronology of the Pre-Columbian Paracas and Nasca Cultures in South Peru Based on AMS 14C Dating. Radiocarbon 2007, 49, 551–564.
- Mogrovejo, J.D.; Makowski, C.M. Cajamarquilla y los Mega Niños del Pasado prehispánico. Íconos: revista peruana de conservación, arte y arqueología 1999, 1, 46–57. (In Spanish).
- Contreras, D.A. Landscape and environment: insights from the Prehispanic central Andes. J. Archaeol. Res. 2010, 18, 241–288.
- Valdez, R.; Jacay, J. Cronología, indicadores paleoclimáticos, aluviones y fenómenos de El Niño en la costa central del Perù. Arqueológicas 2012, 29, 71–86. (In Spanish).
- Ghezzi, I.; Guadalupe, E. Fenómenos geológicos que afectaron las edificaciones de Chankillo. Revista del Instituto de Investigación 2014, 17, 45–51. (In Spanish).
- Cornejo, M.A. Adaptación tecnológica a los cambios climáticos en los Andes peruanos. Revista de Arqueologia Americana 2015, 33, 115–151. (In Spanish).
- Steffen, D.; Schlunegger, F.; Preusser, F. Late Pleistocene fans and terraces in the Majes valley, southern Peru, and their relation to climatic variations. Int J. Earth Sci. (Geol. Rundsch.) 2010, 99, 1975–1989.
- Viveen, W.; Sanjurjo-Sanchez, J.; Bravo-Lembcke, G.; Uribe-Ventura, R. A 121-ka record of Western Andean fluvial response to suborbital climate cycles recorded by rhythmic grain size variations of the Lima fluvial fan. Earth Surf. Process. Landforms 2024, 49, 2326–2347.
- Zhang, J.-F.; Qiu, W.-L.; Hu, G.; Zhou, L.-P. Determining the Age of Terrace Formation Using Luminescence Dating—A Case of the Yellow River Terraces in the Baode Area, China. Methods Protoc. 2020, 3, 17.
- Hancock, G.S.; Anderson, R.S. Numerical modeling of fluvial strath-terrace formations in response to oscillating climate. Geol. Soc. Am. Bull. 2002, 114, 1131–142.
- Foster, M.A.; Anderson, R.S.; Gray, H.J.; Mahan, S.A. Dating of river terraces along Lefthand Creek, western High Plains, Colorado, reveals punctuated incision. Geomorphology 2017, 295, 176–190.
- Parsons, A.J.; Abrahams, A.D.; Simanton, J.R. Microtopography and soil surface materials on semi-arid piedmont hillslopes, southern Arizona. J. Arid. Environ. 1992, 22, 107–115.
- Williams S.H.; Zimbelman, J.R. Desert pavement evolution: an example of the role of sheetflood. J. Geol. 1994, 102, 243–248.
- Dixon, Lag deposits. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, A. Eds.; Springer: New York, USA, 2015: 6 pp.
- Haff, P.K.; Werner, B.T. Dynamic processes on desert pavements and the healing of surficial disturbances. Quat. Res. 1996, 45, 38–46.
- Pelletier, J.D.; Cline, M.; DeLong, S.B. Desert pavement dynamics: numerical modeling and field-based calibration. Earth Surf. Process. Landforms 2007, 32, 1913–1927.








| Sampling point | Samples | Latitude* | Longitude* | Altitude** |
|---|---|---|---|---|
| 1 | NZ16 | 14°48’41.58”S | 75°08’43.66”W | 335 |
| 2 | NZ7-8 | 14°48’38.45”S | 75°07’49.86”W | 345 |
| 3 | NZ11 | 14°48’40.26”S | 75°07’46.96”W | 355 |
| 4 | NZ1a | 14°49’07.94”S | 75°07’00.38”W | 390 |
| 5 | NZ3 | 14°49’10.53”S | 75°06’57.05”W | 390 |
| Sample | W | ppm U (± 5%) | ppm Th (± 5%) | K2O (± 3%) | Dose rate (mGy/a) | (Gy) | Age |
|---|---|---|---|---|---|---|---|
| NZ1a | 0.22 | 2.32 | 7.33 | 1.73 | 2.65 ± 0.13 | 67 ± 4 | > 25280 ± 1970 |
| NZ3 | 0.21 | 2.96 | 9.36 | 1.89 | 3.08 ± 0.15 | 7.0 ± 0.7 | 2270 ± 250 |
| NZ7 | 0.20 | 2.31 | 7.31 | 1.7 | 2.64 ± 0.13 | nd | |
| NZ8 | 0.20 | 2.99 | 9.45 | 1.75 | 2.98 ± 0.15 | nd | |
| NZ11 1 | 0.30 | 3.05 | 9.63 | 1.51 | 2.70 ± 0.13 | 66 ± 3 | 24440 ± 1650 |
| 143 ± 15 | 52960 ± 6140 | ||||||
| NZ16 | 0.23 | 3.21 | 10.13 | 2.04 | 3.29 ± 0.16 | 63 ± 9 | 19150 ± 3100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
