This version is not peer-reviewed.
Submitted:
12 October 2024
Posted:
15 October 2024
You are already at the latest version
A peer-reviewed article of this preprint also exists.
Publication | End-point | Dataset | Algorithm | Performance |
Masood et al. [35] | Classification (benign/melanoma) | 135 images (Clinical + dermoscopic) 107 for training, 14 for validation 14 for testing |
Compared 3 ANN algorithms (RP, LM, SCG) |
SCG: Acc: 91,9% Sen: 92.6% Spe: 91.4% LM: Acc: 91,1% Sen: 85.2% Spe: 95.1% RP: Acc: 88,1% Sen: 77.8% Spe: 95.1% |
Aswin et al. [49] | Classification (Cancerous/Non-cancerous) | 30 dermoscopic images for training 50 dermoscopic images for testing |
Hybrid Genetic Algorithm + ANN | Acc: 88% |
Xie et al. [50] | Classification (MM/BN) | Dermoscopic images Xanthous race:240 images (80 MM, 160 BN) Caucasian race: 360 images (120 MM, 240 BN) |
Proposed: meta-ensemble model of multiple neural network ensembles Ensemble 1: single-hidden-layer BP nets with same structures Ensemble 2: single-hidden-layer BP nets and fuzzy nets Ensemble 3: double-hidden-layer BP nets with different structures |
Xanthous race: Sen: 95% Spe: 93.75% Acc: 94.17% Caucasian race: Sen: 83.33% Spe: 95% Acc: 91.11% |
Marchetti et al. [36] | Classification (MM/BN) | ISBI 2016 challenge dataset [51], MM:248 images BN:1031 images Train set:900 images Test set:379 images Reader study:100 images (50 MM, 50 BN) |
Five methods (unlearned and machine learning) were used to combine individual automated predictions into “fusion” algorithms |
Top Fusion Algorithm: Greedy Fusion: Sen: 58% Spe: 92% AUC: 86% Dermatologists: Sen: 82% Spe: 59% AUC: 71% |
Marchetti et al. [37] | Classification (MM/BN/SK) and (biopsy/observation) |
ISIC Archive [52]: 2,750 dermoscopy images (521 (19%) MM, 1,843 (67%) BN, and 386 (14%) SK) Training set: 2,000 images Validation: 150 images Test set: 600 images |
ISBI 2017 Challenge top ranked algorithm |
Algorithm: Sen: 76% Spe: 85% AUC: 0.87 Dermatologists: Sen: 76.0% Spe: 72.6% AUC: 0.74 |
Cueva et al. [53] | Classification (Cancerous/Non-cancerous) |
PH² database [54] Training set: 30 images (10 MM, 10 common mole, 10 no-common mole) Test set: 201 images (80 common mole, 80 no-common mole, 41 MM) |
ANN with backpropagation algorithm | After an analysis of 201 images in the algorithm developed a performance of 97.51% was obtained |
Navarro et al. [55] | Segmentation and registration to evaluate lesion change | ISIC archive [52]: Training set: 2000 dermoscopic images Validation: 150 dermoscopic images Test set: 600 dermoscopic images |
Segmentation: LF-SLIC Registration:SP-SIFT |
Acc: 0.96 for segmentation |
Yu C. et al. [38] | Classification (melanoma/non-melanoma) |
725 images (AM: 350 images, BN: 374 images) Group A: 175 images AM, 187 images BN Group B: 175 images AM, 187 images BN Training set: Group A images for training Group B Group B images for training Group A Test set: Group A images for Group A Group B images for Group B |
CNN (VCG-16) | Group A: CNN: Sen: 92.57 Spe: 75.39 Acc: 83.51 Expert: Sen: 94.88 Spe: 68.72 Acc: 81.08 Non-expert: Sen: 41.71 Spe: 91.28 Acc: 67.84 Group B: CNN: Sen: 92.57 Spe: 68.16 Acc: 80.23 Expert: Sen: 98.29 Spe: 65.36 Acc: 81.64 Non-expert: Sen: 48.00 Spe: 77.10 Acc: 62.71 |
Abbas et al. [39] | Classification (benign nevus/acral melanoma) |
724 images from Yonsei University [38] (350 acral melanoma, 374 benign nevi) 4344 images with data augmentation (2100 acral melanoma, 2244 benign nevi) |
Compared three CNN algorithms (Seven-layered deep CNN, ResNet-18, AlexNet) |
ResNet-18 Acc: 0.97 AUC: 0.97 AlexNet: Acc: 0.96 AUC: 0.96 Proposed ConvNet Acc: 0.91 AUC: 0.91 |
Fink et al. [40] | Classification (Benign/Malignant) |
Training set: >120.000 dermoscopic images and labels Test set: 72 images (36 combined naevi, 36 melanomas) |
CNN (Moleanalyzer-Pro) based on a GoogleNet Inception_v4 architecture |
CNN: Sen: 97.1% Spe: 78.8% Dermatologists: Sen: 90.6% Spe: 71.0 % |
Phillips et al. [56] | Classification (MM/dysplastic nevi/other) | Pretrained algorithm Training set (in study): 289 images (36 melanoma lesions; 67 nonmelanoma lesions, 186 control lesions) Test set:1550 images |
SkinAnalytics (CNN) |
The algorithm: İphone 6s image: AUC: 95,8% Spe: 78,1% Galaxy S6 image: AUC: 93,8% Spe: 75,6% DSLR image: AUC: 91,8% Spe: 45,5% Specialists: AUC: 77,8% Spe: 69,9% |
Martin-Gonzalez et al. [57] | Classification (benign/ malignant skin lesion) |
Pretrained with 37,688 images from ISIC Archive [52] 2019 and 2020 Training set: 339 images (143 MM, 196 BN) Test set:232 images (55 MM, 177 BN) |
QuantusSKIN (CNN) | AUC: 0,813 Sen: 0,691 Spe: 0,802 Acc: 0,776 |
Brinker et al.[41] | Classification (Melanoma/Nevi) |
Training set: 12,378 dermoscopic images from ISIC dataset [52] Test set:100 dermoscopic images (20 MM, 80 Nevi) |
ResNet-50 (CNN) |
Algorithm: Sen: 74.1% Spe: 86.5% Dermatologists: Sen: 74.1% Spe: 60% |
Giulini et al.[42] | Classification (Melanoma/Nevi) |
Over 28,000 dermoscopic images CNN test set: 2489 images (344 melanomas, 2155 nevi) Physician test set: 100 images (50 MM, 50 nevi) |
Session 1: Physicians without CNN Session 2: Physicians with CNN |
Physicians without CNN Sen: 56.31% Spe: 69.28% Physicians with CNN Sen: 67.88% Spe: 73.72% |
Ding et al.[58] | Classification (Binary:melanoma/non-melanoma and multiclass: benign nevi, seborrheic keratosis or melanoma) |
ISIC Dataset [52] Training set: 2000 images (374 MM, 254 SK, 1,372 BN) Validation set: 150 images (30 MM, 42 SK, 78 BN) Test set: 600 images (117 MM, 90 SK, 393 BN) |
Segmentation: U-Net Classification: Five CNNs (Inception-v3, ResNet-50, Densenet169, Inception-ResNet-v2 and Xception) with SE-block and the neural network for ensemble learning consisting of two local connected layers and a softmax layer |
Binary: Inception-v3 Acc: 0.885 AUC: 0.883 ResNet-50 Acc: 0.88 AUC: 0.882 Densenet169 Acc: 0.893 AUC: 0.882 Inception-ResNet-v2 Acc: 0.89 AUC: 0.894 Xception Acc: 0.891 AUC: 0.896 Ensemble Acc:0.909 AUC: 0.911 Multiclass: Inception-v3 Acc: 0.792 AUC: 0.883 ResNet-50 Acc: 0.762 AUC: 0.864 Densenet169 Acc: 0.800 AUC: 0.881 Inception-ResNet-v2 Acc: 0.800 AUC: 0.873 Xception Acc: 0.810 AUC: 0.896 Ensemble Acc: 0.851 AUC: 0.913 |
Yu L. Et al.[59] | Segmentation and Classification (Benign/Malignant) |
ISIC dataset [52] Training set: 900 images Test set: 350 images |
FCRN for skin lesion segmentation and very deep residual network for classification |
Segmentation: Sen: 0,911 Spe: 0,957 Acc: 0,949 Classification with segmentation: Sen: 0,547 Spe: 0,931 Acc: 0,855 |
Bisla et al. [60] | Classification (Nevus, SK, MM) |
Training set: ISIC dataset [52]: 803 MM, 2107 nevus, 288 SK PH² dataset [54]: 40 MM, 80 Nevus Edinburgh dataset [31]: 76 MM, 331 nevus, 257 SK Test set: ISIC data sets 600 images (117 MM, 90 SK, and 393 nevus) |
Segmentation:Modified U-Net (CNN) Augmentation: de-coupled DCGANs Classification:ResNet-50 |
AUC: 0,915 Acc: 81,6% |
Mahbod et al. [43] | Classification (MM/All, SK/All) |
ISIC dataset [52] Training: 2037 dermoscopic images (411 MM, 254 SK, 1372 BN) |
Feature Extraction: Pretrained CNNs (AlexNet, ResNet-18 and VGG16) Classification: SVM |
AUC: 90,69 |
Bassel et al. [61] | Classification (Benign/Malignant) |
ISIC dataset [52]: 1800 images of benign type and 1497 pictures of malignant cancer Training set: 70% of images (1440 benign, 1197 malignant) Test set: 30% of images (360 benign, 300 malignant) |
Model 1:Feature Extraction: ResNet50 Model 2:Feature Extraction: VCG-16 Model 3:Feature Extraction: Xception Classification: Stacked CV model (SVM+NN+RF+KNN) |
ResNet Model: Acc: 81,6% AUC: 0,818 VCG-16 Model: Acc: 86,5 % AUC: 0,843 Xception Model: Acc: 90,9 AUC: 0,917 |
Ningrum et al. [44] | Classification (Melanom/benign) |
ISIC dataset [52] 900 images Training set: 720 images Validation set: 180 images Test set: 300 (93 malignant, 207 nonmalignant) |
Classification: CNN model for images + ANN model for patient metadata . |
CNN Acc: 73.69 AUC: 82.4 CNN+ANN Acc: 92.34 AUC: 97.1 |
Nambisan et al.[62] | Segmentation and classification (Melanoma/Benign) |
ISIC dataset [52] Segmentation task: 487 MM images Classification task: 1000 images (500 MM, and 500 benign (100 images per class from the Actinic keratosis, Melanocytic nevus, Benign keratosis, Dermatofibroma, and Vascular lesion) |
Segmentation (Classification dataset+Segmentation dataset (Irregular networks)) U-Net/U-Net++/MA-Net/PA-Net Handcrafted Feature Extraction Classification: Level 0 (without segmentation): DL classification model Level 1 (With segmentation and with level 0 model’s results): Conventional classification model |
Conventional Ensemble Acc: 0.793 DL Ensemble Acc: 0.838 EfficientNet-B0 + Conventional Ensemble Acc: 0.862 |
Collenne et al. [63] | Classification (Melanoma/Nevi) |
ISIC dataset [52] (6371 nevi and 1301 melanoma) Training set 70% of images: Validation set: 10% of images Test set: 20% of images |
Segmentation: U-Net Classification ANN( for asymmetry features + CNN (EfficientNet) |
Handcrafted Model with asymmetry features (ANN): Acc: 79% AUC: 0.87 Sen: 90% Spe: 67% ANN+CNN: Sen: 0.92 Spe: 0.82 Acc: 0.87 AUC: 0.942 |
Hekler et al. [45] | Classification (Melanoma/Nevi) |
HAM10000 [64] and BCN20000 [65] Datasets 29,562 images (7,794 melanoma and 21,768 nevi) %80 training, %20 validation Test set: SCP2 dataset, 293 melanoma and 363 melanocytic nevi from 617 patients |
ConvNeXT architecture 1. Classification using single image 2. Classification using multiple real-world images 3. Classification using multiple artificially modified images |
Single image approach: Acc: 0.905 ECE: 0.131 Multiview real-world approach: Acc: 0.930 ECE: 0.072 Multiview artificial approach: Acc:0.929 ECE: 0.086 |
Crawford et al.[46] | Classification (Excision/no excision) |
Self-referred patients | MoleAnalyzer Pro |
AI Sen: 64.7% Spe: 75.76% PPV: 40.0% NPV: 89.6% Acc: 73.56% |
Publication | End-point | Dataset | Algorithm | Performance |
Esteva et al. [66] | Classification Binary: Keratinocyte carcinoma/SK; melanoma/nevi 3 way: Benign/Malign/Non-neoplastic 9 way: Cutaneous lymphoma and lymphoid infiltrates/ Benign dermal tumors, cysts, sinuses/ Malignant dermal tumor/ Benign epidermal tumors, hamartomas, milia, and growths/ Malignant and premalignant epidermal tumors/ Genodermatoses and supernumerary growths/ Inflammatory conditions/ Benign melanocytic lesions/ Malignant Melanoma |
ISIC [52] and Edinburgh dataset [31] and the Stanford Hospital: 129,450 clinical images, including 3,374 dermoscopic images of 757 disease classes Training set: 127,463 images Test set:1,942 images |
Google Inception v3 (CNN) | Binary classification (Algorithm AUC) Carcinoma: 0,96 Melanoma: 0,0,94 Melanoma (Dermoscopic images): 0,91 3 way classification: Dermatologist 1 Acc: 65.6% Dermatologist 2 Acc: 66.0% CNN Acc: 69.4 ± 0.8% CNN partitioning algorithm Acc: 72.1 ± 0.9% 9 way classification: Dermatologist 1 Acc: 53.3% Dermatologist 2 Acc: 55.0% CNN Acc: 48.9 ± 1.9% CNN partitioning algorithm Acc: 55.4 ± 1.7% |
Rezvantalab et al. [67] | Classification (MM/Melanocytic Nevi/BCC/AKIEC/Benign keratosis/DF/Vascular lesion) |
HAM10000 dataset [64] :10015 dermatoscopic images (1113 MM, 6705 nevi, 514 BCC, 327 AK and intraepithelial carcinoma (AKIEC), 1099 benign keratosis, 115 DF, 142 vascular lesions) PH² set (55): 80 nevi, 40 MM Training set: 70 % Validation set: 15% Test set: 15% |
Compared CNNs for classification: Inception v3/InceptionResNet v2/ResNet 152/DenseNet 201 |
AUC (Melanoma) Dermatologist: 82,26 DenseNet 201: 93,80 ResNet 152: 94,40 Inception v3: 93,40 InceptionResNet v2: 93,20 AUC (BCC) Dermatologist: 88,82 DenseNet 201: 99,30 ResNet 152: 99,10 Inception v3: 98,60 InceptionResNet v2: 98,60 |
Maron et al. [68] | Classification Two way:Benign/Malignant Five way:AKIEC/BCC/MM/Nevi/BKL (benign keratosis, including seborrhoeic keratosis, solar lentigo and lichen planus like keratosis) |
Training set: 11,444 images (ISIC Archive[52] and HAM10000 dataset [64]) Test set: 300 test images (60 for each of the five disease classes) (HAM10000 dataset) |
CNN (ResNet50) |
Two way classification: CNN AUC: 0,928 CNN Spe: 91,3% Dermatologist Spe: 59,8% Five way classification: CNN AUC: 0,960 CNN Spe: 89,2% Dermatologist Spe: 98,8% |
Tschandl et al [69] | Classification (Benign/Malignant) |
Training set:7895 dermoscopic and 5829 close-up images Test set: 2,072 dermoscopic and close-up images |
Combined convolutional neural network (cCNN) (InceptionResNetV2, InceptionV3, Xception, ResNet50) |
cCNN: AUC: 0,695 Sen: 80,5% Spe: 53,5% Human Raters: AUC: 0,742 Sen: 77,6% Spe: 51,3% |
Tschandl et al. [70] | Classification (7 way classification: intraepithelial carcinoma including AK and Bowen’s disease; BCC; benign keratinocytic lesions including solar lentigo, SK, and LPLK; dermatofibroma; melanoma; melanocytic nevi; and vascular lesions) |
Training set: 10,015 dermoscopic images Test set: 1,195 images |
Top 3 algorithms of the ISIC 2018 challenge[73] |
Algorithms (mean): Sen: 81,9% Spe: 96,2% Human readers (mean): Sen: 67,8% Spe: 94,0% |
Haenssle et al.[71] | Classification (Benign/Malignant) Management decision (treatment/ excision, no action, follow-up examination) |
Pretrained CNN Test set: 100 images including pigmented/ non-pigmented and melanocytic/non-melanocytic skin lesions |
Inception v4/ Moleanalyzer Pro (CNN) |
CNN Management Decision: Sen: 95.0% Spe: 76.7% Acc: 84.0% AUC: 0.918 CNN Diagnosis (Benign/Malignant) Sen: 95.0% Spe: 76.7% Acc: 84.0% Level 1 Management Decision: Dermatologist: Sen: 89.0% Spe: 80.7% Acc: 84.0 % Level 1 Diagnosis (Benign/Malignant) Dermatologist: Sen: 83.8% Spe: 77.6% Acc: 80.1% Level 2 Management Decision: Dermatologist: Sen: 94.1% Spe: 80.4% Acc: 85.9% Level 2 Diagnosis (Benign/Malignant) Dermatologist: Sen: 90.6% Spe: 82.4% Acc: 85.7% |
Hekler et al. [72] | Primary end point: Classification to 5 categories (MM/nevus/BCC/AK,Bowen’s disease or squamous cell carcinoma/seborrhoeic keratosis, lentigo solaris or lichen ruber planus) Secondary end-point: Binary classification (Benign/malignant) |
Training set: 12336 dermoscopic images (585 images of AK,Bowen,SCC, 910 images of BCC, 3101 images of seborrhoeic keratosis,lentigo Solaris,lichen ruber planus, 4219 images of nevi,3521 images of MM) | CNN (ResNet50) |
Multiclass classification: Physician Acc: 42.94% CNN Acc: 81.59% Physician+CNN Acc: 82.95% Binary classification: Physician Sen: 66% Spe: 62% CNN Sen: 86.1% Spe: 89.2% Physician+CNN Sen: 89% Spe: 84% |
Xinrong Lu et al. [74] | Classification (normal, carcinoma, and melanoma) |
HAM10000 dataset [64] Training set: 8012 images (%80) Test set: 2003 images (%20) |
Proposed Xception (The ReLU activation function of the model was replaced with the swish activation function) compared with VGG16, InceptionV3, AlexNet and Xception |
VGG16: Acc: 48.99 Sen: 53.7 InceptionV3 Acc: 52.99 Sen: 53.99 AlexNet Acc: 75.99 Sen: 76.99 Xception Acc: 92.90 Sen: 91.99 Proposed Xception Acc: 100 Sen: 94.05 |
Mengistu et al. [75] | Classification (BCC, SCC, MM) |
235 images (162 images for training and 73 images for testing) | Combined SOM and RBFNN and compared them with KNN, ANN, and naïve-Bayes |
Proposed model Acc: 93,15% KNN Acc:71,23% ANN Acc: 63,01% Naïve-Bayes Acc: 56,16% |
Rashid et al. [76] | Classification (MM/Melanocytic Nevus/BCC/AKIEC/Benign Keratosis/DF/Vascular Lesion) |
ISIC dataset [52] Training set: 8000 images Test set: 2000 images |
GAN compared with CNN (DenseNet and ResNet-50) | GAN Acc: 0,861 DenseNet Acc: 0.815 ResNet-50 Acc: 0.792 |
Alwakid et al. [77] | Classification (MM/BN/BCC/Vascular lesion/Benign keratosis/Actinic Carcinoma/DF) |
HAM10000 dataset [64] 10015 dermatoscopic images Training set: 8029 images Validation set: 993 images Test set: 993 images |
Inception-V3, InceptionResnet-V2 |
Inception-V3 Acc: 0.897 Spe: 0.89 Sen: 0.90 InceptionResnet-V2 Acc: 0.913 Spe: 0.90 Sen: 0.91 |
Publication | End-point | Dataset | Algorithm | Performance |
Nasr-Esfahani et al. [19] | Classification (benign/melanoma) | 170 clinical images that underwent data augmentation to generate 6120 images (80% training, 20% validation) | CNN with 2 convolutional layers each followed by pooling layers along with a fully connected layer | Acc: 81% Spe: 80% Sen: 81% NPV: 86% PPV: 86% |
Yap et al. [20] | Classification of melanoma from 5 different types of lesions | 2917 cases with each case containing patient metadata, macroscopic image and dermoscopic images with 5 classes (naevus, melanoma, BCC, SCC, and pigmented benign keratoses) | ResNet-50 with embedding networks | Macroscopic images alone AUC: .791 Macroscopic and dermoscopy AUC: .866 Macroscopic, dermoscopy and metadata AUC: .861 |
Riazi Esfahani et al. [21] | Classification (malignant melanoma/benign nevi) | 793 images (437 malignant melanoma and 357 benign nevi) | CNN | Acc: 88.6% Spe: 88.6% Sen: 81.8% |
Dorj et al.[22] | Classification of melanoma from 4 different skin cancers (actinic keratoses, BCC, SCC, melanoma) | 3753 images (2985 training and 758 testing) including 958 melanoma | AlexNet with ECOC-SVM classifier | Acc: .942 Spe: .9074 Sen: .9783 |
Soenksen et al. [23] | Classification across 6 different classes as well as distinguishing SPLs | 33,980 (including backgrounds, skin edges, bare skin sections, low priority NSPLs, medium priority NSPLs and SPLs) (60% training, 20% validation and 20% as testing) | DCNN with VGG16 Image Net pretrained network as transfer learning | Across all 6 classes AUCmicro: .97 Spemicro: .903 Senmicro:.899 For SPLs AUC:.935 |
Pomponiu et al. [24] | Classification (melanoma/benign nevi) | 399 images (217 benign, 182 melanoma) from online image libraries | CNN with a KNN classifier | Acc: .83 Spe: .95 Sen: .92 |
Han et al. [25] | Melanoma detection from 12 different skin diseases | Training: 19,938 images from the Asan dataset [29], MED-NODE dataset [30], and atlas site images Testing: 480 images from Asan and Edinburgh datasets [31] |
ResNet152 | Asan AUC: .96 Spe: .904 Sen: .91 Edinburgh AUC: .88 Spe: .855 Sen: .807 |
Liu et al. [26] | Primary: classification among 26 different skin conditions Secondary: classification among a full set of 419 different skin conditions |
Training: 64,837 images with metadata Validation set A: 14833 images with metadata Validation set B used to compare to dermatologists: 3707 images with metadata |
DLS with Inception-v4 modules and shallow module | Validation set A for 26 image classification: Acctop1:.71 Acctop3: .93 Sentop1:.58 Sentop3: .83 Validation set B for 26 image classification: Acctop1:.66 Acctop3: .9 Sentop1:.56 Sentop3: .64 Dermatologists: Acctop1:.63 Acctop3: .75 Sentop1:.51 Sentop3: .49 |
Sangers et al. [27] | Classification (low/high risk) | 785 images (418 suspicious, 367 benign) | RD-174 | Overall app classification Sen: .869 Spe:.704 Classification for melanocytic lesions: Sen: .819 Spe: .733 |
Polturu et al. [28] | Classification (non-melanoma/melanoma) | 206 images from DermIS [32] and Derm Quest [33] (87 nonmelanoma and 119 melanoma, 85% used for training and 15% used for testing) | AutoML was created using a no-code online service platform | Acc: .844 Sen: .833 Spe: .857 |
Publication | End-Point | Dataset | Algorithm | Performance |
Kose et al. [84] | Segmentation; detection of artifacts | 117 RCM mosaics | MED-Net; an automated semantic segmentation method | Sensitivity:82%, Specificity: 93% |
Gerger et al. [85] | Classification; benign nevi vs melanoma | 408 benign nevi and 449 melanoma images | CART (Classification and Regression Trees) | Learning set: 97.31% of images correctly classified Training set: 81.03% of images correctly classified |
Koller et al. [86] | Classification; benign nevi vs melanoma | 4669 melanoma and 11 600 benign nevi RCM images | CART (Classification and Regression Trees) | Learning set: 93.60% of the melanoma and 90.40% of the nevi images correctly classified |
Wodzinski et al. [87] | Classification; benign nevi vs melanoma vs BCC | 429 RCM mosaics | a CNN based on ResNet architecture | F1 score for melanoma in test set: 0.84 ± 0.03 |
Kose et al. [88] | Segmentation; six distinct patterns (aspecific, non-lesion, artifact, ring, nested, meshwork) | 117 RCM mosaics | an automated semantic segmentation method, MED-Net | Pixel-wise mean sensitivity: 70 ± 11% Pixel-wise mean specificity: 95 ± 2%, respectively, with 0.71 ± 0.09 Dice coefficient over six classes. |
D’Alonzo et al. [89] | Segmentation; “benign” and “aspecific (nonspecific)” regions | 157 RCM mosaics | Efficientnet, a deep neural network (DNN) | AUC of 0.969, and Dice coefficient of 0.778 |
Mandal et al. [91] | Classification; Atypical intraepidermal melanocytic proliferation (AIMP) vs Lentigo Maligna (LM) | 517 RCM stacks (389 LM and 148 AIMP) from 110 patients | DenseNet169, a CNN classifier. | Accuracy: 0.80 F1 score for LM: 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 MDPI (Basel, Switzerland) unless otherwise stated