Preprint Article Version 1 This version is not peer-reviewed

Study on Transport and Temperature Characteristics of β-Ga2O3 Based Diode Controlled by Varying Anode Work Function

Version 1 : Received: 21 October 2024 / Approved: 21 October 2024 / Online: 21 October 2024 (13:49:41 CEST)

How to cite: He, Y.; Sheng, B.; Lu, X.; Chen, G.; Liu, P.; Zhou, Y.; Wang, X.; Chen, W.; Wang, L.; Yang, J.; Zheng, X.; Ma, X.; Hao, Y. Study on Transport and Temperature Characteristics of β-Ga2O3 Based Diode Controlled by Varying Anode Work Function. Preprints 2024, 2024101599. https://doi.org/10.20944/preprints202410.1599.v1 He, Y.; Sheng, B.; Lu, X.; Chen, G.; Liu, P.; Zhou, Y.; Wang, X.; Chen, W.; Wang, L.; Yang, J.; Zheng, X.; Ma, X.; Hao, Y. Study on Transport and Temperature Characteristics of β-Ga2O3 Based Diode Controlled by Varying Anode Work Function. Preprints 2024, 2024101599. https://doi.org/10.20944/preprints202410.1599.v1

Abstract

This study systematically investigates the effects of different anode work function metals (Ti/Au and Ni/Au) on the transport and temperature characteristics of β-Ga2O3 based Schottky barrier diodes (SBD), junction barrier Schottky diodes (JBSD), and P-N diodes (PND), utilizing Sentaurus TCAD simulation software for mechanistic analysis. From the perspective of transport characteristics, it is observed that the SBD exhibits a lower turn-on voltage and a higher current density. Notably, the turn-on voltage (Von) of the Ti/Au anode SBD is merely 0.2 V, marking the lowest recorded value in the existing literature. Furthermore, our study reveals that the turn-on voltages of the two types of PNDs are nearly identical, confirming that the contact between the anode metals and NiOx is ohmic contact, and the contact between Ni/Au and NiOx exhibits a lower contact resistance. The Von, current density, and variation rate of the JBSD lie between those of the SBD and PND. In terms of temperature characteristics, all diodes can work at 200 °C, with both current density and Von showing a decreasing trend as the temperature increases. Among them, the PND with a Ni/Au anode exhibits the best thermal stability, with reductions in Von and current density of 8.20% and 25.31%, respectively, while the SBD with a Ti/Au anode shows the poorest performance, with reductions of 98.56% and 30.97%. Finally, the reverse breakdown (BV) characteristics of all six devices are tested. The average BV for the PND with Ti/Au and Ni/Au anodes reach 1575 V and 1550 V, respectively. Moreover, although the Von of the JBSD decreases to 0.24 V, its average BV is approximately 220 V. This study demonstrates that β-Ga2O3 based power diodes continue to exhibit excellent characteristics and application prospects in terms of low turn-on voltage.

Keywords

β-Ga2O3; diode; turn-on voltage; temperature characteristic; contact resistance

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.