You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Optimizing Transmit Power for User-Cooperative Backscatter-assisted NOMA-MEC: A Green IoT Perspective

Altmetrics

Downloads

23

Views

10

Comments

0

Submitted:

21 October 2024

Posted:

23 October 2024

You are already at the latest version

Alerts
Abstract
Non-orthogonal multiple access (NOMA) enables the parallel offloading of multiuser tasks, effectively enhancing throughput and reducing latency. Backscatter communication, which passively reflects radio frequency (RF) signals, improves energy efficiency and extends the operational lifespan of terminal devices. Both technologies are pivotal for the next generation of wireless networks. However, there is little research focusing on optimizing the transmit power in backscatter-assisted NOMA-MEC systems from a green IoT perspective. In this paper, we aim to minimize the transmit energy consumption of a Hybrid Access Point (HAP) while ensuring task deadlines are met. We consider the integration of Backscatter Communication (BackCom) and Active Transmission (AT), and leverage NOMA technology and user cooperation to mitigate the double near-far effect. Specifically, we formulate a transmit energy consumption minimization problem, accounting for task deadline constraints, task offloading decisions, transmit power allocation, and energy constraints. To tackle the non-convex optimization problem, we employ variable substitution and convex optimization theory to transform the original non-convex problem into a convex one, which is then efficiently solved. We deduce the semi-closed form expression of the optimal solution and propose an energy-efficient algorithm to minimize the transmit power of the entire wireless powered MEC. Simulation results demonstrate that our proposed scheme significantly reduces the transmit power of the HAP compared to existing schemes, validating the effectiveness of our approach.This study provides valuable insights for the design of green IoT systems by optimizing the transmit power in NOMA-MEC networks.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Networks and Communications
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated