Altmetrics
Downloads
73
Views
63
Comments
0
A peer-reviewed article of this preprint also exists.
Submitted:
22 October 2024
Posted:
24 October 2024
You are already at the latest version
Algorithm 1 Proposed adversarial training for T epochs, given attack magnitude , step size , and dataset D for pre-trained NR-IQA model , loss function , and FR metric M. |
for do
for do
// PGD-1 adversarial attack:
// Subjective score correction:
// norm is calculated according to Equation (7)
// Update model with some optimizer and step size β
end for
end for
|
IQA | Image quality assessment |
FR | Full reference |
NR | No reference |
CNN | Convolutional neural network |
ViT | Vision transformer |
SROCC | Spearman rank order correlation coefficient |
NOT | Neural optimal transport |
AT | Adversarial Training |
NT | Norm regularization Training |
Attack | Description | Invisibility Metric | Optimizer | Optimization parameters |
---|---|---|---|---|
FGSM [24] | One-step gradient attack. |
distance |
Gradient descent |
Number of iterations |
I-FGSM [43] | Iterative version of FGSM. |
distance |
Gradient descent |
Step size at each iteration Number of iterations |
MI-FGSM [44] | I-FGSM with momentum. |
distance |
Gradient descent |
Step size at each iteration Number of iterations Decay factor |
AMI-FGSM [45] | MI-FGSM with . |
distance |
Gradient descent |
Step size at each iteration Number of iterations Decay factor |
Korhonen et al. [6] | Using spatial activity map to concentrate perturbations in textured regions. Spatial activity map is computed using the Sobel filter. |
distance | Adam | Learning rate Number of iterations |
NVW [48] | Using variance map to concentrate perturbations in the high variance areas. |
distance | Adam | Learning rate Number of iterations |
Zhang-SSIM Zhang-LPIPS [7] Zhang-DISTS |
Adding a full-reference metric as an additional term of the objective function. |
distance | Adam | Learning rate Number of iterations |
SSAH [49] | Attacking the semantic similarity of the image. |
Low-Frequency component distortion |
Adam | Learning rate Number of iterations Hyperparameter Wavelet type – haar |
AdvJND [46] | Adding the just noticeable difference (JND) coefficients in the constraint to improve the quality of images. |
distance |
Gradient descent |
Number of iterations |
MADC [47] | Updating image in the direction of increasing the metric score while keeping MSE fixed. |
distance |
Gradient descent |
Learning rate Number of iterations |
AdvCF [42] | Using gradient information in the parameter space of a simple color filter. |
Unrestricted color perturbation |
Adam | Learning rate Number of iterations |
cAdv [50] | Adaptive selection of locations in the image to change their colors. |
Unrestricted color perturbation |
Adam | Learning rate Number of iterations |
StAdv [51] | Adversarial examples based on spatial transformation. |
The sum of spatial movement distance for any two adjacent pixels |
L-BFGS-B | Hyperparameter to balance two losses Number of iterations |
One Pixel [52] | Using differential evolution to perturbe several pixels without gradient-based methods. |
distance Number of perturbed pixels |
Differential evolution |
Number of iterations A multiplier for setting the total population size |
Attack | Description | Perturbation budget |
Number of iterations n |
Step size |
---|---|---|---|---|
FGSM [24] | One-step gradient attack. | 1 | ||
PGD-1 [26] | FGSM with initial random perturbation. | 1 | ||
APGD-2 [28] | Step size-free variant of PGD. | 2 | Adaptive |
Attack | Description | Perturbation budget |
Number of iterations n |
Step size |
---|---|---|---|---|
FGSM [24] | One-step gradient attack. | 1 | ||
PGD-1 [26] | FGSM with initial random perturbation. | 1 | ||
PGD-10 [25] | Iterative FGSM with initial random perturbation. | 10 |
Defense method |
SROCC | R () ↑ | IR-score ↑ | ||||||
---|---|---|---|---|---|---|---|---|---|
FGSM |
Adaptive FGSM |
PGD-10 |
Adaptive PGD-10 |
FGSM |
Adaptive FGSM |
PGD-10 |
Adaptive PGD-10 |
||
w/o | 0.925 | 0.706 | - | 0.353 | - | - | - | - | - |
Crop (0.79) | 0.909 | 0.893 | 0.832 | 0.552 | 0.465 | 0.540 | 0.443 | 0.452 | 0.428 |
Resize (0.8) | 0.910 | 0.992 | 0.651 | 0.833 | 0.250 | 0.612 | 0.019 | 0.668 | 0.067 |
AT | 0.913 | 1.221 | 1.221 | 0.587 | 0.587 | 1.030 | 1.030 | 0.604 | 0.604 |
AT+Resize (0.9) | 0.911 | 1.347 | 1.270 | 1.002 | 0.581 | 1.360 | 0.967 | 0.792 | 0.596 |
AT+Crop (0.9) | 0.913 | 1.309 | 1.213 | 0.901 | 0.770 | 1.306 | 1.203 | 0.743 | 0.718 |
Training strategy |
Penalty | SROCC | IR-score↑ | |||
---|---|---|---|---|---|---|
FGSM | PGD-10 | |||||
KonIQ-10k | NIPS2017 | KonIQ-10k | NIPS2017 | |||
Base model | – | 0.931 | – | – | – | – |
adv | – | 0.837 | 1.106 | 1.366 | 0.542 | 0.555 |
+ pretr. | – | 0.848 | 1.337 | 1.407 | 0.445 | 0.510 |
+ clean | – | 0.920 | 1.257 | 1.489 | 0.569 | 0.645 |
+ clean + pretr. | – | 0.921 | 0.865 | 1.026 | 0.585 | 0.675 |
adv | -5% | 0.844 | 0.993 | 0.982 | 0.635 | 0.686 |
+ pretr. | -5% | 0.841 | 1.500 | 1.549 | 0.648 | 0.718 |
+ clean | -5% | 0.922 | 1.482 | 1.910 | 0.596 | 0.602 |
+ clean + pretr. | -5% | 0.926 | 1.036 | 1.393 | 0.621 | 0.685 |
adv | LPIPS | 0.784 | 1.001 | 1.011 | 0.424 | 0.323 |
+ pretr. | LPIPS | 0.717 | 1.554 | 1.685 | 0.565 | 0.603 |
+ clean | LPIPS | 0.924 | 2.092 | 2.218 | 0.516 | 0.527 |
+ clean + pretr. | LPIPS | 0.925 | 1.984 | 2.248 | 0.454 | 0.451 |
Trained with |
FGSM AT | PGD-1 AT | APGD-2 AT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label strategy | Origin | 0.920 | 0.922 | 0.922 | 0.924 | 0.917 | 0.925 | 0.925 | 0.926 | 0.858 | 0.915 | 0.915 | 0.917 |
Min | 0.908 | 0.917 | 0.921 | 0.920 | 0.911 | 0.925 | 0.926 | 0.926 | 0.870 | 0.876 | 0.847 | 0.843 | |
-5% | 0.920 | 0.926 | 0.928 | 0.927 | 0.922 | 0.927 | 0.926 | 0.923 | 0.882 | 0.919 | 0.920 | 0.919 | |
-10% | 0.922 | 0.925 | 0.926 | 0.927 | 0.923 | 0.927 | 0.927 | 0.926 | 0.901 | 0.916 | 0.920 | 0.917 | |
PSNR | 0.906 | 0.913 | 0.916 | 0.917 | 0.907 | 0.914 | 0.923 | 0.924 | 0.922 | 0.912 | 0.911 | 0.912 | |
SSIM | 0.917 | 0.926 | 0.925 | 0.923 | 0.922 | 0.927 | 0.925 | 0.923 | 0.886 | 0.918 | 0.921 | 0.917 | |
MS_SSIM | 0.917 | 0.924 | 0.925 | 0.928 | 0.918 | 0.927 | 0.926 | 0.926 | 0.878 | 0.918 | 0.919 | 0.917 | |
LPIPS | 0.920 | 0.925 | 0.924 | 0.925 | 0.921 | 0.928 | 0.928 | 0.926 | 0.906 | 0.921 | 0.921 | 0.921 |
Trained with |
FGSM AT | PGD-1 AT | APGD-2 AT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label strategy | Origin | 0.772 | 0.866 | 0.462 | 0.285 | 0.749 | 0.896 | 0.498 | 0.184 | -0.032 | 0.390 | 0.405 | 0.318 |
Min | 8.134 | 7.269 | 6.539 | 5.644 | 8.173 | 7.051 | 5.184 | 4.635 | 6.716 | 5.747 | 4.415 | 3.416 | |
-5% | 0.908 | 1.036 | 0.831 | 0.656 | 1.270 | 0.504 | 0.375 | 0.271 | 0.629 | 0.842 | 1.085 | 0.700 | |
-10% | 1.761 | 2.119 | 0.969 | 0.817 | 1.927 | 1.300 | 0.938 | 0.664 | 1.184 | 1.348 | 1.240 | 1.067 | |
PSNR | 7.422 | 7.712 | 6.381 | 5.997 | 7.114 | 7.663 | 5.518 | 4.827 | 5.609 | 7.468 | 4.196 | 3.102 | |
SSIM | 0.724 | 1.278 | 2.638 | 3.262 | 1.010 | 1.518 | 2.691 | 3.153 | 0.282 | 1.281 | 2.210 | 2.305 | |
MS_SSIM | 1.455 | 1.138 | 0.761 | 0.883 | 0.986 | 0.853 | 0.642 | 0.534 | 0.348 | 0.687 | 0.629 | 0.825 | |
LPIPS | 1.537 | 1.984 | 3.500 | 3.825 | 2.343 | 2.640 | 3.288 | 3.016 | 1.306 | 2.238 | 2.495 | 2.422 |
FGSM AT | PGD-1 AT | APGD-2 AT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label strategy | Origin | 0.714 | 0.586 | 0.468 | 0.386 | 0.742 | 0.493 | 0.392 | 0.590 | 0.869 | 0.601 | 0.421 | 0.408 |
Min | 1.777 | 0.316 | 0.156 | 0.174 | 1.795 | 0.359 | 0.260 | -0.048 | 1.528 | 0.406 | 0.403 | 0.110 | |
-5% | 0.810 | 0.621 | 0.477 | 0.297 | 0.674 | 0.644 | 0.614 | 0.359 | 0.845 | 0.662 | 0.448 | 0.444 | |
-10% | 0.710 | 0.514 | 0.459 | 0.325 | 0.702 | 0.600 | 0.418 | 0.334 | 0.874 | 0.574 | 0.449 | 0.420 | |
PSNR | 1.404 | 0.637 | 0.392 | 0.617 | 1.333 | 0.389 | 0.012 | 0.089 | 1.261 | 1.001 | 0.113 | -0.045 | |
SSIM | 0.744 | 0.576 | 0.370 | 0.322 | 0.658 | 0.515 | 0.326 | 0.397 | 0.842 | 0.606 | 0.339 | 0.160 | |
MS_SSIM | 0.702 | 0.552 | 0.317 | 0.231 | 0.734 | 0.546 | 0.103 | 0.241 | 0.889 | 0.619 | 0.395 | 0.259 | |
LPIPS | 0.697 | 0.455 | 0.345 | 0.437 | 0.688 | 0.598 | 0.247 | 0.319 | 0.854 | 0.629 | 0.469 | 0.428 |
FGSM AT | PGD-1 AT | APGD-2 AT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label strategy | Origin | 0.974 | 1.027 | 0.651 | 0.072 | 0.925 | 0.891 | 0.522 | 0.596 | -0.144 | 0.531 | 0.708 | 0.662 |
Min | 12.589 | 11.962 | 10.624 | 9.024 | 13.022 | 11.728 | 8.580 | 7.558 | 10.455 | 10.206 | 7.685 | 6.859 | |
-5% | 1.350 | 1.394 | 1.032 | 0.570 | 1.678 | 1.109 | 0.579 | 0.493 | 0.934 | 1.085 | 1.348 | 1.016 | |
-10% | 2.280 | 2.435 | 0.976 | 0.948 | 2.323 | 1.775 | 1.541 | 1.179 | 1.324 | 1.739 | 1.673 | 1.388 | |
PSNR | 11.401 | 12.235 | 10.438 | 9.254 | 10.852 | 12.372 | 9.356 | 8.329 | 7.008 | 11.493 | 6.807 | 5.043 | |
SSIM | 1.004 | 1.274 | 2.272 | 2.627 | 1.364 | 1.542 | 2.476 | 2.717 | 0.619 | 1.152 | 2.420 | 2.636 | |
MS_SSIM | 1.239 | 1.368 | 0.457 | 0.467 | 1.081 | 1.184 | 0.739 | 0.446 | 0.194 | 0.585 | 0.741 | 0.941 | |
LPIPS | 1.378 | 2.249 | 3.237 | 3.388 | 2.346 | 2.846 | 3.328 | 3.283 | 1.095 | 1.927 | 3.101 | 2.864 |
FGSM AT | PGD-1 AT | APGD-2 AT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label strategy | Origin | 0.767 | 0.676 | 0.550 | 0.430 | 0.820 | 0.528 | 0.451 | 0.706 | 0.894 | 0.670 | 0.505 | 0.541 |
Min | 1.826 | 0.447 | 0.250 | 0.224 | 1.846 | 0.461 | 0.333 | 0.000 | 1.389 | 0.411 | 0.521 | 0.235 | |
-5% | 0.879 | 0.686 | 0.567 | 0.360 | 0.714 | 0.712 | 0.723 | 0.430 | 0.867 | 0.745 | 0.490 | 0.545 | |
-10% | 0.745 | 0.591 | 0.542 | 0.366 | 0.774 | 0.676 | 0.450 | 0.389 | 0.892 | 0.623 | 0.570 | 0.519 | |
PSNR | 1.445 | 0.650 | 0.490 | 0.735 | 1.300 | 0.512 | 0.037 | 0.101 | 1.126 | 0.775 | 0.000 | -0.118 | |
SSIM | 0.828 | 0.615 | 0.414 | 0.345 | 0.727 | 0.491 | 0.358 | 0.464 | 0.886 | 0.635 | 0.385 | 0.113 | |
MS_SSIM | 0.784 | 0.622 | 0.398 | 0.236 | 0.803 | 0.575 | 0.052 | 0.289 | 0.908 | 0.663 | 0.478 | 0.352 | |
LPIPS | 0.769 | 0.452 | 0.360 | 0.484 | 0.730 | 0.639 | 0.295 | 0.369 | 0.874 | 0.704 | 0.560 | 0.494 |
FGSM AT | PGD-1 AT | APGD-2 AT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label strategy | Origin | 1.431 | 1.202 | 1.309 | 1.032 | 1.474 | 1.359 | 1.278 | 1.251 | 1.361 | 1.472 | 1.429 | 1.304 |
Min | 0.157 | 0.222 | 0.175 | 0.189 | 0.159 | 0.199 | 0.199 | 0.165 | 0.345 | 0.334 | 0.269 | 0.261 | |
-5% | 1.418 | 1.371 | 1.336 | 1.346 | 1.413 | 1.348 | 1.253 | 1.229 | 1.508 | 1.534 | 1.259 | 1.261 | |
-10% | 1.424 | 1.420 | 1.345 | 1.328 | 1.359 | 1.258 | 1.194 | 1.160 | 1.222 | 1.260 | 1.084 | 1.076 | |
PSNR | 0.218 | 0.176 | 0.208 | 0.184 | 0.240 | 0.167 | 0.211 | 0.142 | 0.265 | 0.173 | 0.192 | 0.154 | |
SSIM | 1.426 | 1.312 | 0.850 | 0.723 | 1.332 | 1.190 | 0.591 | 0.431 | 1.607 | 1.302 | 0.623 | 0.464 | |
MS_SSIM | 1.407 | 1.179 | 1.116 | 1.153 | 1.435 | 1.355 | 1.225 | 1.107 | 1.554 | 1.458 | 1.235 | 1.163 | |
LPIPS | 1.218 | 1.129 | 0.647 | 0.497 | 1.192 | 0.751 | 0.508 | 0.449 | 1.288 | 0.899 | 0.546 | 0.452 |
FGSM AT | PGD-1 AT | APGD-2 AT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label strategy | Origin | 0.826 | 0.446 | 0.277 | 0.200 | 0.840 | 0.337 | 0.210 | 0.422 | 1.313 | 0.439 | 0.240 | 0.228 |
Min | 0.178 | 0.212 | 0.096 | 0.102 | 0.164 | 0.252 | 0.149 | -0.010 | 0.426 | 0.242 | 0.248 | 0.039 | |
-5% | 1.107 | 0.520 | 0.300 | 0.129 | 0.759 | 0.535 | 0.465 | 0.205 | 1.074 | 0.495 | 0.273 | 0.250 | |
-10% | 0.991 | 0.396 | 0.290 | 0.179 | 0.881 | 0.462 | 0.250 | 0.196 | 1.336 | 0.412 | 0.276 | 0.245 | |
PSNR | 0.323 | 0.308 | 0.252 | 0.517 | 0.381 | 0.247 | 0.016 | 0.043 | 0.447 | 0.518 | 0.047 | -0.055 | |
SSIM | 0.928 | 0.445 | 0.214 | 0.187 | 0.731 | 0.366 | 0.182 | 0.231 | 1.084 | 0.434 | 0.177 | 0.053 | |
MS_SSIM | 0.779 | 0.441 | 0.178 | 0.119 | 0.842 | 0.395 | 0.053 | 0.080 | 1.495 | 0.457 | 0.208 | 0.129 | |
LPIPS | 0.854 | 0.319 | 0.204 | 0.279 | 0.831 | 0.459 | 0.133 | 0.180 | 1.186 | 0.485 | 0.277 | 0.240 |
FGSM AT | PGD-1 AT | APGD-2 AT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label strategy | Origin | 1.467 | 1.338 | 1.459 | 1.267 | 1.473 | 1.391 | 1.327 | 1.340 | 1.488 | 1.583 | 1.497 | 1.461 |
Min | 0.146 | 0.151 | 0.123 | 0.135 | 0.147 | 0.130 | 0.135 | 0.114 | 0.471 | 0.247 | 0.262 | 0.263 | |
-5% | 1.678 | 1.629 | 1.441 | 1.455 | 1.556 | 1.613 | 1.400 | 1.193 | 1.495 | 1.540 | 1.291 | 1.282 | |
-10% | 1.382 | 1.401 | 1.422 | 1.284 | 1.333 | 1.404 | 0.979 | 0.933 | 1.257 | 1.243 | 1.148 | 1.094 | |
PSNR | 0.183 | 0.133 | 0.147 | 0.136 | 0.244 | 0.114 | 0.138 | 0.093 | 0.341 | 0.143 | 0.152 | 0.076 | |
SSIM | 1.639 | 1.472 | 1.037 | 0.964 | 1.562 | 1.387 | 0.795 | 0.632 | 1.695 | 1.440 | 0.803 | 0.573 | |
MS_SSIM | 1.567 | 1.482 | 1.295 | 1.308 | 1.590 | 1.595 | 1.193 | 1.117 | 1.666 | 1.538 | 1.389 | 1.193 | |
LPIPS | 1.489 | 1.329 | 0.837 | 0.660 | 1.410 | 1.018 | 0.631 | 0.540 | 1.514 | 1.148 | 0.612 | 0.517 |
FGSM AT | PGD-1 AT | APGD-2 AT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label strategy | Origin | 0.997 | 0.585 | 0.380 | 0.269 | 1.042 | 0.428 | 0.286 | 0.580 | 1.440 | 0.585 | 0.354 | 0.382 |
Min | 0.158 | 0.322 | 0.187 | 0.162 | 0.156 | 0.349 | 0.228 | 0.055 | 0.463 | 0.332 | 0.400 | 0.216 | |
-5% | 1.334 | 0.635 | 0.415 | 0.212 | 0.905 | 0.681 | 0.618 | 0.279 | 1.188 | 0.687 | 0.346 | 0.371 | |
-10% | 1.129 | 0.507 | 0.389 | 0.248 | 1.115 | 0.597 | 0.312 | 0.265 | 1.401 | 0.535 | 0.417 | 0.356 | |
PSNR | 0.307 | 0.413 | 0.357 | 0.686 | 0.434 | 0.349 | 0.071 | 0.096 | 0.566 | 0.270 | 0.034 | -0.033 | |
SSIM | 1.170 | 0.547 | 0.279 | 0.227 | 0.923 | 0.408 | 0.238 | 0.306 | 1.279 | 0.540 | 0.252 | 0.070 | |
MS_SSIM | 0.992 | 0.574 | 0.276 | 0.163 | 1.032 | 0.490 | 0.078 | 0.168 | 1.607 | 0.571 | 0.312 | 0.227 | |
LPIPS | 0.982 | 0.370 | 0.246 | 0.338 | 0.915 | 0.552 | 0.200 | 0.251 | 1.265 | 0.632 | 0.390 | 0.325 |
Attack type | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Defense type | No attack | FGSM | PGD | ||||||||||
2 | 4 | 6 | 8 | 10 | 2 | 4 | 6 | 8 | 10 | ||||
No defense | 0.738 | 0.327 | 0.281 | 0.252 | 0.227 | 0.205 | 0.171 | 0.053 | 0.021 | 0.009 | 0.005 | ||
R-LPIPS [33] | 0.728 | 0.471 | 0.445 | 0.427 | 0.414 | 0.405 | 0.279 | 0.163 | 0.114 | 0.091 | 0.077 | ||
FGSM | 2 | 0.729 | 0.501 | 0.477 | 0.459 | 0.444 | 0.430 | 0.311 | 0.193 | 0.139 | 0.111 | 0.094 | |
4 | 0.725 | 0.500 | 0.476 | 0.458 | 0.444 | 0.430 | 0.318 | 0.200 | 0.147 | 0.117 | 0.099 | ||
8 | 0.726 | 0.504 | 0.481 | 0.464 | 0.449 | 0.435 | 0.318 | 0.202 | 0.150 | 0.120 | 0.102 | ||
10 | 0.727 | 0.505 | 0.484 | 0.467 | 0.451 | 0.439 | 0.317 | 0.203 | 0.150 | 0.120 | 0.103 | ||
PGD-1 | 2 | 0.729 | 0.491 | 0.466 | 0.447 | 0.430 | 0.415 | 0.307 | 0.184 | 0.129 | 0.100 | 0.083 | |
4 | 0.727 | 0.500 | 0.476 | 0.459 | 0.445 | 0.431 | 0.317 | 0.197 | 0.144 | 0.114 | 0.096 | ||
8 | 0.724 | 0.516 | 0.497 | 0.483 | 0.472 | 0.461 | 0.323 | 0.210 | 0.161 | 0.132 | 0.115 | ||
10 | 0.721 | 0.518 | 0.499 | 0.485 | 0.472 | 0.463 | 0.326 | 0.214 | 0.164 | 0.135 | 0.118 | ||
APGD-2 | 2 | 0.733 | 0.483 | 0.454 | 0.435 | 0.418 | 0.403 | 0.297 | 0.175 | 0.121 | 0.094 | 0.077 | |
4 | 0.726 | 0.498 | 0.473 | 0.455 | 0.442 | 0.428 | 0.318 | 0.202 | 0.150 | 0.120 | 0.103 | ||
8 | 0.722 | 0.512 | 0.490 | 0.475 | 0.462 | 0.449 | 0.332 | 0.224 | 0.175 | 0.149 | 0.131 | ||
10 | 0.722 | 0.514 | 0.494 | 0.479 | 0.467 | 0.457 | 0.332 | 0.228 | 0.180 | 0.154 | 0.139 |
Attack type | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Defense type | No attack | FGSM | PGD | ||||||||||
2 | 4 | 6 | 8 | 10 | 2 | 4 | 6 | 8 | 10 | ||||
No defense | 0.887 | 0.873 | 0.866 | 0.849 | 0.819 | 0.778 | 0.625 | 0.459 | 0.338 | 0.245 | 0.169 | ||
R-LPIPS [33] | 0.869 | 0.865 | 0.861 | 0.856 | 0.828 | 0.801 | 0.821 | 0.771 | 0.717 | 0.666 | 0.608 | ||
FGSM | 2 | 0.802 | 0.795 | 0.792 | 0.782 | 0.767 | 0.745 | 0.679 | 0.631 | 0.592 | 0.548 | 0.499 | |
4 | 0.806 | 0.799 | 0.796 | 0.786 | 0.771 | 0.748 | 0.685 | 0.636 | 0.596 | 0.553 | 0.503 | ||
8 | 0.804 | 0.796 | 0.793 | 0.783 | 0.766 | 0.743 | 0.668 | 0.616 | 0.575 | 0.528 | 0.476 | ||
10 | 0.805 | 0.797 | 0.793 | 0.783 | 0.766 | 0.743 | 0.659 | 0.605 | 0.557 | 0.507 | 0.453 | ||
PGD-1 | 2 | 0.865 | 0.862 | 0.86 | 0.854 | 0.84 | 0.82 | 0.828 | 0.8 | 0.765 | 0.725 | 0.685 | |
4 | 0.859 | 0.856 | 0.854 | 0.849 | 0.838 | 0.822 | 0.829 | 0.811 | 0.787 | 0.758 | 0.727 | ||
8 | 0.852 | 0.849 | 0.847 | 0.842 | 0.834 | 0.822 | 0.828 | 0.819 | 0.806 | 0.788 | 0.767 | ||
10 | 0.847 | 0.844 | 0.842 | 0.838 | 0.83 | 0.819 | 0.823 | 0.815 | 0.803 | 0.787 | 0.769 | ||
APGD-2 | 2 | 0.837 | 0.832 | 0.829 | 0.820 | 0.803 | 0.780 | 0.749 | 0.703 | 0.658 | 0.611 | 0.562 | |
4 | 0.830 | 0.825 | 0.822 | 0.814 | 0.800 | 0.779 | 0.752 | 0.716 | 0.682 | 0.645 | 0.605 | ||
8 | 0.818 | 0.813 | 0.810 | 0.802 | 0.787 | 0.766 | 0.736 | 0.701 | 0.668 | 0.633 | 0.595 | ||
10 | 0.817 | 0.812 | 0.808 | 0.800 | 0.785 | 0.764 | 0.730 | 0.695 | 0.660 | 0.623 | 0.585 |
Training | IR-score↑ | ||||
---|---|---|---|---|---|
strategy | SROCC | FGSM | PGD-10 | ||
KonIQ-10K | NIPS2017 | KonIQ-10K | NIPS2017 | ||
AT | 0.784 | 1.001 | 1.011 | 0.424 | 0.323 |
+ pretr. | 0.717 | 1.554 | 1.685 | 0.565 | 0.603 |
+ clean | 0.924 | 2.092 | 2.218 | 0.516 | 0.527 |
+ clean, pretr. | 0.925 | 1.984 | 2.248 | 0.454 | 0.451 |
Training strategy |
SROCC | IR-score↑ | |
---|---|---|---|
FGSM | PGD-10 | ||
AT | 0.668 | 0.665 | 0.597 |
+ pretr. | 0.817 | 0.801 | 0.732 |
+ clean | 0.701 | 0.696 | 0.621 |
+ clean, pretr. | 0.832 | 0.872 | 0.765 |
SROCC (train ) | IR-score↑ (trained with PGD-1) | ||||||
---|---|---|---|---|---|---|---|
Trained with | FGSM | PGD-1 | APGD-2 | ||||
Label strategy | – | 0.920 | 0.917 | 0.858 | 0.848 | 1.231 | 1.013 |
Min | 0.908 | 0.911 | 0.870 | 6.252 | 5.730 | 4.253 | |
-5% | 0.920 | 0.922 | 0.882 | 1.331 | 1.301 | 0.773 | |
-10% | 0.922 | 0.923 | 0.901 | 1.819 | 1.637 | 1.264 | |
PSNR | 0.906 | 0.907 | 0.922 | 5.938 | 5.872 | 4.504 | |
SSIM | 0.917 | 0.922 | 0.886 | 1.350 | 1.905 | 2.458 | |
MS-SSIM | 0.917 | 0.918 | 0.878 | 1.002 | 1.384 | 1.165 | |
LPIPS | 0.920 | 0.921 | 0.906 | 1.857 | 2.608 | 2.679 | |
Avg | 0.916 | 0.918 | 0.888 |
FR-IQA model |
Train |
SROCC | IR-score↑ | |
---|---|---|---|---|
FGSM | PGD-10 | |||
R-LPIPS [33] | 0.858 | 0.791 | 0.777 | |
AT-LPIPS (FGSM) |
2 / 255 | 0.855 | 0.804 | 0.782 |
4 / 255 | 0.843 | 0.811 | 0.791 | |
8 / 255 | 0.845 | 0.807 | 0.786 | |
10 / 255 | 0.832 | 0.792 | 0.775 | |
AT-LPIPS (PGD-1) |
2 / 255 | 0.848 | 0.817 | 0.801 |
4 / 255 | 0.837 | 0.821 | 0.808 | |
8 / 255 | 0.856 | 0.814 | 0.799 | |
10 / 255 | 0.849 | 0.802 | 0.783 | |
AT-LPIPS (APGD-2) |
2 / 255 | 0.841 | 0.802 | 0.788 |
4 / 255 | 0.834 | 0.805 | 0.791 | |
8 / 255 | 0.830 | 0.799 | 0.783 | |
10 / 255 | 0.835 | 0.788 | 0.775 |
SROCC | [7] () | IR-score ↑ | Train. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NR-IQA model | ↑ | FGSM | PGD-10 | FGSM | PGD-10 | time | |||||
KonIQ | NIPS | KonIQ | NIPS | KonIQ | NIPS | KonIQ | NIPS | (min) | |||
LinearityIQA [20] | base | 0.931 | 0.699 | 0.780 | 0.182 | 0.266 | - | - | - | - | 73 |
AT | 0.824 | 1.507 | 1.628 | 1.485 | 1.573 | 0.162 | 0.069 | 0.901 | 0.918 | 237 | |
NT [34] | 0.930 | 0.797 | 0.844 | 0.304 | 0.382 | 0.029 | -0.356 | 0.239 | 0.227 | 79 | |
AT (ours) | 0.922 | 1.555 | 1.567 | 0.731 | 0.921 | 1.020 | 1.366 | 0.657 | 0.726 | 275 | |
KonCept512 [17] | base | 0.925 | 0.706 | 0.620 | 0.353 | 0.033 | - | - | - | - | 93 |
AT | 0.868 | 1.246 | 1.383 | 0.873 | 1.135 | 0.547 | 0.850 | 0.657 | 0.957 | 222 | |
NT [34] | 0.822 | 1.459 | 1.246 | 1.096 | 1.008 | 0.687 | 0.784 | 0.774 | 0.946 | 101 | |
AT (ours) | 0.913 | 1.265 | 1.416 | 0.632 | 0.726 | 1.044 | 0.900 | 0.538 | 0.831 | 255 | |
HyperIQA [18] | base | 0.894 | 0.531 | 0.505 | -0.168 | -0.090 | - | - | - | - | 133 |
AT | 0.778 | 1.624 | 1.779 | 1.376 | 1.634 | 0.547 | 0.682 | 0.945 | 0.961 | 141 | |
NT [34] | 0.846 | 1.093 | 1.013 | 0.742 | 0.733 | 0.243 | 0.043 | 0.826 | 0.775 | 219 | |
AT (ours) | 0.891 | 0.848 | 1.625 | 0.622 | 1.010 | 1.385 | 1.413 | 0.762 | 0.911 | 163 | |
WSP-IQA [19] | base | 0.916 | 0.618 | 0.711 | 0.124 | 0.285 | - | - | - | - | 68 |
AT | 0.882 | 0.948 | 1.140 | 0.405 | 0.609 | 0.534 | 0.662 | 0.459 | 0.506 | 76 | |
NT [34] | 0.915 | 0.644 | 0.742 | 0.109 | 0.280 | 0.279 | 0.243 | -0.094 | -0.109 | 92 | |
AT (ours) | 0.899 | 1.135 | 1.224 | 0.319 | 0.461 | 1.352 | 1.428 | 0.355 | 0.317 | 117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Fan Tang
et al.
,
2022
Sunfu Tan
et al.
,
2023
Vadim Ziyadinov
et al.
,
2023
© 2024 MDPI (Basel, Switzerland) unless otherwise stated