Preprint
Article

3-Heisenberg-Robertson-Schrodinger Uncertainty Principle

This version is not peer-reviewed.

Submitted:

19 October 2024

Posted:

25 October 2024

You are already at the latest version

Abstract
Let X be a 3-product space. Let A : D(A) ⊆ X → X , B : D(B) ⊆ X → X and C : D(C) ⊆ X → X be possibly unbounded 3-self-adjoint operators. Then for all x ∈ D(ABC) ∩ D(ACB) ∩ D(BAC) ∩ D(BCA) ∩ D(CAB) ∩ D(CBA) with ⟨x, x, x⟩ = 1, we show that (1) ∆x(3, A)∆x(3, B)∆x(3, C) ≥ |⟨(ABC − aBC − bAC − cAB)x, x, x⟩ + 2abc|, where ∆x(3, A) := ∥Ax − ⟨Ax, x, x⟩x∥, a := ⟨Ax, x, x⟩, b := ⟨Bx, x, x⟩, c := ⟨Cx, x, x⟩. We call Inequality (1) as 3-Heisenberg-Robertson-Schrodinger uncertainty principle. Classical HeisenbergRobertson-Schrodinger uncertainty principle (by Schrodinger in 1930) considers two operators whereas Inequality (1) considers three operators.
Keywords: 
Subject: 
Computer Science and Mathematics  -   Mathematics

MSC:  46C50; 46B99

1. Introduction

Let H be a complex Hilbert space and A be a possibly unbounded self-adjoint linear operator defined on domain D ( A ) H . For h D ( A ) with h = 1 , define the uncertainty (also known as variance) of A at the point h as
Δ h ( A ) A h A h , h h = A h 2 A h , h 2 .
In 1929, Robertson [1] derived the following mathematical form of the uncertainty principle (term due to Condon [2]) of Heisenberg derived in 1927 [3]. Recall that, for two linear operators A : D ( A ) H H and B : D ( B ) H H , we define [ A , B ] A B B A and { A , B } A B + B A .
Theorem 1. 
[1,3,4,5,6,7] (Heisenberg-Robertson Uncertainty Principle) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint operators. Then for all h D ( A B ) D ( B A ) with h = 1 , we have
1 2 Δ h ( A ) 2 + Δ h ( B ) 2 1 4 Δ h ( A ) + Δ h ( B ) 2 Δ h ( A ) Δ h ( B ) 1 2 | [ A , B ] h , h | .
In 1930, Schrodinger improved Inequality (1) [8].
Theorem 2. 
[8] (Heisenberg-Robertson-Schrodinger Uncertainty Principle) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint operators. Then for all h D ( A B ) D ( B A ) with h = 1 , we have
Δ h ( A ) Δ h ( B ) | A h , B h A h , h B h , h | = | [ A , B ] h , h | 2 + | { A , B } h , h 2 A h , h B h , h | 2 2 .
Theorem 2 leads to the following question.
Question 3. 
What is the version of Theorem 2 for three operators?
In this note, we answer Question 3 by deriving an uncertainty principle for three operators acting on classes of Banach spaces, using trilinear forms. We note that there are uncertainty principles derived for three operators on Hilbert spaces, but ours differ from them [9,10,11,12,13].

2. 3-Heisenberg-Robertson-Schrodinger Uncertainty Principle

The Heisenberg-Robertson-Schrodinger uncertainty principle requires the inner product to handle two operators; for three operators, we need a 3-product defined as follows.
Definition 1. 
Let X be a real Banach space with norm · . A map · , · , · : X × X × X R is said to be a 3-product if following conditions hold.
(i) 
x , y , z = σ ( x ) , σ ( y ) , σ ( z ) for all x , y , z X , for all bijections σ : { x , y , z } { x , y , z } .
(ii) 
α x , y , z = α x , y , z for all x , y , z X , for all α R .
(iii) 
x + w , y , z = x , y , z + w , y , z for all x , y , z , w X .
(iv) 
| x , y , z | x y z for all x , y , z X .
In this case, we say that X is a 3-product space.
Following is the standard example we keep in mind.
Example 1. 
Let ( Ω , μ ) be a measure space and L 3 ( Ω , μ ) be the standard real Lebesgue space. Generalized Holder’s inequality says that
Ω | f 1 ( x ) f 2 ( x ) f 3 ( x ) | d μ ( x ) Ω | f 1 ( x ) | 3 d μ ( x ) 1 3 Ω | f 2 ( x ) | 3 d μ ( x ) 1 3 Ω | f 3 ( x ) | 3 d μ ( x ) 1 3 < , f 1 , f 2 , f 3 L 3 ( Ω , μ ) .
Therefore L 3 ( Ω , μ ) is a 3-product space equipped with 3-product
f 1 , f 1 , f 3 Ω f 1 ( x ) f 2 ( x ) f 3 ( x ) d μ ( x ) , f 1 , f 2 , f 3 L 3 ( Ω , μ ) .
We next introduce the notion of self-adjointness for operators on 3-product spaces.
Definition 2. 
Let X be a 3-product space. A possibly unbounded linear operator A : D ( X ) X X is said to be 3-self-adjoint if
A x , y , z = x , A y , z = x , y , A z , x , y , z D ( X ) .
Example 2. 
Consider R n with the 3-product
( x j ) j = 1 n , ( y j ) j = 1 n , ( z j ) j = 1 n j = 1 n x j y j z j , ( x j ) j = 1 n , ( y j ) j = 1 n , ( z j ) j = 1 n R n .
Let a 1 , , a n be any real numbers. Define
A : R n ( x j ) j = 1 n ( a j x j ) j = 1 n R n .
Then A is 3-self-adjoint.
Example 3. 
Consider 3 ( N ) (as a real sequence space) with the 3-product
{ x n } n = 1 , { y n } n = 1 , { z n } n = 1 n = 1 x n y n z n , { x n } n = 1 , { y n } n = 1 , { z n } n = 1 3 ( N ) .
Let { x n } n = 1 be a bounded real sequence. Define
A : 3 ( N ) { x n } n = 1 { a n x n } n = 1 3 ( N ) .
Then A is 3-self-adjoint.
Example 4. 
We continue from Example 1. Let ϕ L ( Ω , μ ) . Define
A : L 3 ( Ω , μ ) f A f L 3 ( Ω , μ ) ; A f : Ω α ( A f ) ( α ) ϕ ( α ) f ( α ) R .
Then A is 3-self-adjoint.
Let A : D ( X ) X X be a 3-self-adjoint operator. For x D ( A ) with x , x , x = 1 , define the 3-uncertainty of A at the point x as
Δ x ( 3 , A ) A x A x , x , x x .
Theorem 4. 
(3-Heisenberg-Robertson-Schrodinger Uncertainty Principle) Let X be a 3-product space. Let A : D ( A ) X X , B : D ( B ) X X and C : D ( C ) X X be possibly unbounded 3-self-adjoint operators. Then for all
x D ( A B C ) D ( A C B ) D ( B A C ) D ( B C A ) D ( C A B ) D ( C B A )
with x , x , x = 1 , we have
1 27 Δ x ( 3 , A ) + Δ x ( 3 , B ) + Δ x ( 3 , C ) 3 Δ x ( 3 , A ) Δ x ( 3 , B ) Δ x ( 3 , C ) | ( A B C A x , x , x B C B x , x , x A C C x , x , x A B ) x , x , x + 2 A x , x , x B x , x , x C x , x , x | .
Proof. 
First inequality follows from AM-GM inequality for three positive reals. Given
x D ( A B C ) D ( A C B ) D ( B A C ) D ( B C A ) D ( C A B ) D ( C B A )
with x , x , x = 1 , set
a A x , x , x , b B x , x , x , c C x , x , x .
Then
Δ x ( 3 , A ) Δ x ( 3 , B ) Δ x ( 3 , C ) | A x a x , B x b x , C x c x | = | A B C x , x , x ( a B C + b A C + c A B ) x , x , x + ( a b C + b c A + c a B ) x , x , x a b c | = | A B C x , x , x ( a B C + b A C + c A B ) x , x , x + 2 a b c | = | ( A B C A x , x , x B C B x , x , x A C C x , x , x A B ) x , x , x + 2 A x , x , x B x , x , x C x , x , x | .

References

  1. Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
  2. Condon, E.U. Remarks on Uncertainty Principles. In Selected Scientific Papers of E.U. Condon; Springer: New York, NY, USA, 1991; pp. 93–96. [Google Scholar]
  3. Heisenberg, W. The physical content of quantum kinematics and mechanics. In Quantum Theory and Measurement; Princeton University Press: Princeton, NJ, USA, 1983; pp. 62–84. [Google Scholar]
  4. Cassidy, D.C. Heisenberg, uncertainty and the quantum revolution. Sci. Am. 1992, 266, 106–112. [Google Scholar] [CrossRef]
  5. von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 2018; pp. xviii+304. [Google Scholar] [CrossRef]
  6. Debnath, L.; Mikusiński, P. Introduction to Hilbert spaces with applications; Academic Press, Inc.: San Diego, CA, USA, 1999; pp. xx+551. [Google Scholar]
  7. Ozawa, M. Heisenberg’s original derivation of the uncertainty principle and its universally valid reformulations. Curr. Sci. 2015, 109, 2006–2016. [Google Scholar] [CrossRef]
  8. Schrödinger, E. About Heisenberg uncertainty relation. Bulgar. J. Phys. 1999, 26, 193–203. [Google Scholar]
  9. Song, Q.C.; Qiao, C.F. Stronger Schrödinger-like uncertainty relations. Phys. Lett. A 2016, 380, 2925–2930. [Google Scholar] [CrossRef]
  10. Kechrimparis, S.; Weigert, S. Heisenberg uncertainty relation for three canonical observables. Phys. Rev. A 2014, 90, 062118. [Google Scholar] [CrossRef]
  11. Qin, H.H.; Fei, S.M.; Li-Jost, X. Multi-observable Uncertainty Relations in Product Form of Variances. Sci. Rep. 2016, 6, 31192. [Google Scholar] [CrossRef]
  12. Kechrimparis, S.; Weigert, S. Geometry of uncertainty relations for linear combinations of position and momentum. J. Phys. A 2018, 51, 025303. [Google Scholar] [CrossRef]
  13. Dodonov, V.V. Variance uncertainty relations without covariances for three and four observables. Phys. Rev. A 2018, 97, 022105. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated