You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Exploring the Molecular Structure and Treatment Dynamics of Cellulose Fibres with Photoacoustic and Reversed Double-Beam Spectroscopy

Altmetrics

Downloads

16

Views

13

Comments

0

Submitted:

24 October 2024

Posted:

25 October 2024

You are already at the latest version

Alerts
Abstract
In this study, we explored the structural and chemical modifications of cellulose fibres subjected to chemical and mechanical treatments through an innovative analytical approach. We employed photoacoustic spectroscopy (PAS) and reversed double-beam photoacoustic spectroscopy (RDB-PAS) to examine the morphological changes and the chemical integrity of the treated fibres. The methodology provided enhanced sensitivity and specificity in detecting subtle alterations in the treated cellulose structure. Additionally, we applied Coifman wavelet transformation to the PAS signals, which facilitated a refined analysis of the spectral features indicative of chemical and mechanical modifications at a molecular level. This advanced signal processing technique allowed for a detailed decomposition of the PAS signals, revealing hidden characteristics that are typically overshadowed in raw data analyses. Further, we utilized the concept of energy trap distribution to interpret the wavelet-transformed data, providing insights into the distribution and density of energy states within the fibres. Our results indicated significant differences in the energy trap spectra between untreated and treated fibres, reflecting the impact of chemical and mechanical treatments on the fibre’s physical properties. The combination of these sophisticated analytical techniques elucidated the complex interplay between mechanical and chemical treatments and their effects on the structural integrity and chemical composition of cellulose fibres.
Keywords: 
Subject: Chemistry and Materials Science  -   Paper, Wood and Textiles
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated